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Abstract

The analysis of the derivation of the Riemann Analytic Continuation Formula from Euler’s Quadratic Equation is presented in this paper. The
connections between the roots of Euler’s quadratic equation and the Analytic Continuation Formula of the Riemann Zeta equation are also
considered. The method of partial summation is applied twice on the resulting series, thus leading to the Riemann Analytic Continuation Formula.
A polynomial approach is anticipated to prove the Riemann hypothesis; thus, a general equation for the zeros of the Analytic Continuation Formula
of the Riemann Zeta equation based on a polynomial function is also obtained. An expression in Terms of Prime numbers and their products is
considered and obtained. A quadratic function, G(tn), that is required for Euler’s quadratic equation (EQE) to give the Analytic Continuation
Formula of the Riemann Zeta equation (ACF) is presented. This function thus allows a new way of defining the Analytic Continuation Formula of
the Riemann Zeta equation (ACF) via this equivalent equation. By and large, the Riemann Zeta function is shown to be a type of L function whose
solutions are connected to some algebraic functions. These algebraic functions are shown and presented to be connected to some polynomials.
These Polynomials are also shown to be some of the algebraic functions’ solutions. Conclusively, ς(z) is redefined as the product of a new function
which is called H(tn, z) and this new function is shown to be dependent on the polynomial function, G(tn).
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1. Introduction

Many authors have recently presented some polynomial ap-
proaches to prove the Riemann Hypothesis [1-9]. Some of the
proofs were based on Jensen polynomials, Laguerre polynomi-
als as Jensen polynomials of Laguerre–Pólyaentire functions,
and some worked on a general theorem which models such
polynomials by Hermite polynomials. The authors presented

∗Corresponding author tel. no: +234 7066466859
Email address: opeyemi.enoch@fuoye.edu.ng (Opeyemi O. Enoch)

an Approximation to Zeros of the Riemann Zeta Function us-
ing Fractional Calculus [10]. This allowed the authors to con-
struct a fractional iterative method to nd the zeros of functions
in which it is possible to avoid expressions that involve hyper-
geometric functions, Mittag-Leffler functions or infinite series
[10], to mention a few.

As good as their works are, seeking a clearer insight into
these possible polynomials is expedient, knowing fully that so-
lutions to most difficult problems may not necessarily be com-
plex. Significantly, it is known that the Riemann Zeta function
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is a type of L function whose solutions are connected to some
algebraic functions, and polynomials are also types of solutions
of algebraic functions. A polynomial approach can be antici-
pated to prove the Riemann Hypothesis.

This study aims to present the link that connects Euler’s
Quadratic Equation (EQE) and the Analytic Continuation For-
mula of the Riemann Zeta equation (ACF) by using the par-
tial summation on a generalized polynomial function of Euler’s
Quadratic Equation. (EQE).

The remaining part of this paper is organized as follows:
Section Two is the Materials and Methods. The Derivation of
the Analytic Continuation Formula of the Riemann Zeta equa-
tion (ACF) from Euler’s Quadratic Equation (EQE) is presented
in Section Three. Section Four considers the obtained Expres-
sion in Terms of Prime Numbers and Their Products. While
Section Five is for obtaining a quadratic function; G (tn) , in
terms of the Analytic Continuation Formula of the Riemann
Zeta equation (ACF). Section six presents a new way of defin-
ing the Analytic Continuation Formula of the Riemann Zeta
equation (ACF) via an equivalent equation. The Concluding
remark is presented in section seven.

2. Materials and Methods

The following equations and method shall be used in the
derivation of the Analytic Continuation Formula of the Rie-
mann Zeta equation (ACF) from the Euler’s quadratic equation
(EQE) [11]:
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= −
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2
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=
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From the expression [14-15],

(
1
pz − 1

) ∞∑
n=0

1
pnz = −1 (3)

The method of partial summation as found in literature [14-15]
is given as:

∑
P≤x

log2 p +
∑
pq≤x

log p log q = 2x log x + ϑ (x) (4)

By partial summation, we get from Equation (5)

∑
p≤x

log p +
∑
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log p log q
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(
x

log x

)
, (5)

the above Equation (5) gives Equation (6)
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∑
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∑
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=2x
∑
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−
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∑
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log q log r
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(
x
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+ o

(
x log log x

)
(8)

These equations above shall be used to derive the analytic
continuation formula of the Riemann Zeta Function from Eu-
ler’s Quadratic Equation. By this derivation, it will be readily
obvious to see through into the generation of the zeros of the
Riemann Zeta Function.

3. Derivation of the ACF from EQE

The polynomial function in (1) was always discovered to be
prime for 1 ≤ x ≤ 40 [12]. It was from this quadratic equation
that Euler obtained the first few prime numbers [13].

1 ≤ x ≤ 40 : x2 + x + 41 (9)

Another known fact is that Equation 10 is also a prime for x =

1 . . . , 39.

x2 − x + 41 (10)

Interestingly, the roots of (9, 10) are x = −0.5±6.3836i and
x = 0.5 ± 6.3836i respectively, which are the similitude of the
non-trivial zeros of the Riemann zeta function. With these sim-
ilarities [16], the question that readily comes to mind is; what is
the possibility of using the structure of this Euler’s equation to
obtain ACF if the coefficients of x2 and x are taken as k and for
the constant integral, 41, is replaced with G (tn)? To seek an an-
swer to this question, a transformation of the Euler’s equation,
when it is multiplied by another linear equation whose roots
will are −2n : n = 1, 2, 3, . . ., will be

ζE (z) =
(
kz2 − kz + G(tn)

)
(z + 2n) (11)

The roots of this polynomial will be the same as the trivial
and the non-trivial zeros of the Riemann Zeta function under
certain conditions that G(tn) is known. It has been shown that
there are Meromorphic functions that are equivalent to the Rie-
mann zeta function [6-7], and they are given as:
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ζE (z) =
(z + 2n)
(z − 1)

(
kz2 − kz + G(n)

)
; k = 4 (12)

Or

ζE (z) =
(z + 2n)

(ez−1 − 1)

(
kz2 − kz + G(n)

)
; k = 4 (13)

Provided that G(n) is also known.
The Equation (12) and Equation (13) are transformed into

matrices whose Eigenvalues are the trivial and non-trivial spec-
tral points of the Riemann zeta function [5-7, 13] provided that;

G (n) = 800.162 + 968.548J (n) (14)

Or

G (n) = 800.162 + 968.548nv(n) (15)

Or

G (tn) = 1 + kt2
n where k = 4 (16)

Such that G (tn) = G(n).
From 11, let

ζE (z) =
(
kz2 − kz + G (tn)

)
(z + 2n) (17)

Riemann gave the following expression in his work [11]:
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Equation (17) can written as

ζE (z) = 2n
(
1 +

z
2n

) (
kz2 − kz + G (tn)

)
(20)

Using the method of discretization, Equation (20) becomes;

γ (z) =

∞∑
n≥1

(ζE (z)) (21)

=

∞∑
n≥1

[
2n

(
1 +

z
2n

) (
kz2 − kz + G (tn)

)]
(22)

Thus applying the method of partial summation in [15],as
in Equation (6) the resulting equation from Equation (22) shall
be ∑

dq≤n

[
2n

(
1 + z

2n

) (
kz2 − kz + G(tn)

)]
=

∑
d≤n

2n
[
kz2 − kz + G(tn)

] ∑
q≤n/d

(1 +
z

2n
), (23)

Where d = 2n
[
kz2 − kz + G(tn)

]
and q = 1 + z

2n
Eventually, Equation (23) can be written as:

γ (z) =

∞∑
n≥1

(ζE (z)) (24)

=
∑
d≤n

[
2n
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)] ∑
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(
1 +

z
2n

)
(25)

Interestingly, since

−
z
2
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z
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∞∑
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(26)

25 becomes:

γ (z) =

∞∑
n≥1

(ζE (z))

= −
z
2

Γ

( z
2

)
(z − 1)

∑
d≤n

2n
(
kz +

G (tn)
(z − 1)

) (27)

With a little rearrangement and the introduction of π
−z
2 π

z
2 =

1, Equation (27) is the same as:

γ (z) = ∅(z)

∑
d≤n

2n
[(

kz +
G(tn)

(z − 1)

)
π

z
2

] (28)

where ∅(z) = − z
2 (z − 1)π

−z
2 Γ( z

2 )
If the principle of partial summation is again applied on the

series in Equation (28), Equation (29) we will obtain:

∑
rb≤n

2n
[(

kz +
G(tn)

(z − 1)

)
π

z
2

]
=

π z
2

∑
r≤n

(
kz +

G (tn)
(z − 1)

)∑
b≤ n

r

2n

 ; rb = d (29)

By this, (28) becomes:

γ (z) = ∅(z)

π z
2

∑
r≤n

(
kz +

G (tn)
(z − 1)

)∑
b≤ n

r

2n

 (30)

where r = (kz +
G(tn
(z−1) )π

z
2 and b = 2n.

(30) shall be used subsequently in this paper.
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4. An Expression in Terms of Prime Numbers and Their
Products

A non-conventional expression for −1 [12-13] is;(
1
pz − 1

) ∞∑
n=0

1
pnz = −1, (31)

(31) allows us to write (28) as:

γ (z) = − ∅ (z)
(

1
pz − 1

) ∞∑
n=0

1
pnz

∑
d≤n

2nF (t, z) (32)
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)
π

z
2

]
Pleasantly (32) gives:
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)
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2
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z
2
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( z
2
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1
pnz . (33)

Intuitively, if (33) is multiplied over prime numbers one
comes to;

γ (z)
∏

p

( 1
pz − 1

)∑
d≤n

[2nF(t, z)]

−1

=
z
2

(z − 1)π
−z
2 Γ

( z
2

)∏
p

∞∑
n≥1

1
pnz . (34)

Conclusively, the RHS of (34) is the same as the Analytic
Continuation formula of the Riemann Zeta function, while the
LHS is an equivalence of the RHS.

5. Obtaining G (tn) in Terms of the ACF

Riemann defines ε (z) [11] as ;

ε (z) =
z
2

(z − 1) π
−z
2 Γ

( z
2

)
ζ (z) (35)

By this, ζ (z) can be represented as:

ζ (z) =
2ε (z) π

z
2

z (z − 1) Γ
(

z
2

) (36)

For the LHS of (34) to be equal to (34), we represent εe in
Equation (37) as

εe = γ (z)

∏
p

(
1
pz − 1

) ∞∑
d≤n

2nF(t, z)

−1

(37)

Using (29) on (34), we obtain:

εe = γ (z)

J(n)
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p

(
1
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)∑
r≤n

∏
p

F (t, z)

−1

(38)

such that

J (n) =
∑
b≤ n

r

∏
p

2n

and

εe = γ (z) π−
z
2 B (t, z)

∏
p

(
1
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)−1

(39)

where

B (t, z) =
∏
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(
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G (tn)
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)∑
b≤ n

r

2n


−1

Gives:

εe = γ (z) π−
z
2 ζ (z) B (t, z) . (40)

By making the series containing G (tn) the subject of the
expression in (38), we obtain:

∑
r≤n

∏
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(
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)

=
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εe

π z
2

∑
b≤ n

r
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p

(
1
pz − 1
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(41)

followed by Further simplification shown that (41) becomes:

∑
r≤n

∏
p

(
kz +

G (tn)
(z − 1)

)

=
γ (z)
εe

ζ (z)

π z
2

∑
b≤ n

r

∏
p

2n


−1

(42)

Since

ζ (z) =

∏
p

(
1
pz − 1

)−1

. (43)

It can be shown in existing works [1-2] that;

nz =

m∏
i=1

P∝iz
i (44)
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implies that

∑
d≤n

2n = 2
∑
d≤n

m∏
i=1

P∝i
i (45)

With this, (42) can be expressed as (45), in terms of prime
numbers such that:

∑
r≤n

∏
p

(
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G (tn)
(z − 1)

)

=
γ (z)
εe

ζ (z) π−
z
2

∑
b≤ n

r

∏
p

1
2

m∏
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6. Defining the ACF via (34)

If the LHS of (34) is written as:

εe = γ (z)
∏

p

[(
1
pz − 1

)
H (t, z)

]−1

(47)

where

H (t, z) = π
z
2

∑
d≤n

2n
(
kz +

G (tn)
(z − 1)

)
Then we can write (35) as the RHS of (34) such that;

εe =
z
2

(z − 1) π
−z
2 Γ

( z
2

)∏
p

∞∑
n≥1

1
pnz (48)

Where ε (z) = εe and From the Nachlass of Riemann [15],
ε (z) is also defined as;

ε (z) =
1
2

+
z
2

(z − 1) D (x, z) (49)

where

D (x, z) =

∫ ∞

1
ψ (x)

(
x

z
2−1 + x−

(z+1)
2

)
dx (50)

and

ψ (x) =

∞∑
n=1

e−n2πx (51)

Such that if ε (z) = εe then;

1
2

+
z
2

(z − 1) D (x, z)

=
z
2

(z − 1) π
−z
2 Γ

( z
2

)∏
p
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n≥1

1
pnz (52)

Or as;

1
2

+
z
2

(z − 1) D (x, z)

= γ (z)
∏

p

[(
1
pz − 1

)
H (t, z)

]−1

(53)

Since

H (t, z) = π
z
2

∑
d≤n

[
2n

(
kz +

G (tn)
(z − 1)

)]
The evaluation of the intergrades in (52 and 53) will give;

D (x, z) = 2N(z) (54)

Where

N (z)

=

∞∑
n=1

e−n2π

 1( z
2−1)(

2n2π + z − 2
) +

1( z+1
2 )(

2n2π − z − 1
)  (55)

With (52), we can write (52) and (53) as follows;

1
2

+ z (z − 1) N(z)

=
z
2

(z − 1) π
−z
2 Γ

( z
2

)∏
p

∞∑
n≥1

1
pnz (56)

and

1
2

+ z (z − 1) N(z)

= γ (z)
∏

p

[(
1
pz − 1

)
H(t, z)

]−1

(57)

(53) and (54) now give new definitions of the ζ (z) as:

[ z
2

(z − 1) π
−z
2 Γ

( z
2

)]−1
[
1
2

+ z (z − 1) N (z)
]

=
∏

p

∞∑
n≥1

1
pnz (58)

and

γ (z)−1
∏

p

H(t, z)
[
1
2

+ z (z − 1) N(z)
]

=
∏

p

[(
1
pz − 1

)]−1

(59)
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Equating (56) and (57), (60) is obtained:

[ z
2

(z − 1) π
−z
2 Γ

( z
2

)]−1
[
1
2

+ z (z − 1) N (z)
]

=

γ (z)−1
∏

p

H (t, z)

 [1
2

+ z (z − 1) N (z)
]

(60)

From (60), γ (z) is obtained (61) :

γ (z) =

[ z
2

(z − 1) π
−z
2 Γ

( z
2

)]∏
p

H (t, z) (61)

such that H (t, z) is represented in (62

H (t, z) = π
z
2

∑
d≤n

[
2n

(
kz +

G (tn)
(z − 1)

)]
(62)

It can be written as Equation (29).

7. Conclusion

With the contents of G (tn),in (13 and 14): G (tn) = 1 +

kt2
n where k = 4, (61) and (62) can be implemented to give

the same results and zeros of the Analytic Continuation formula
and that of the Riemann Zeta function. It has been shown that
the Analytic Continuation formula of the Riemann Zeta func-
tion can be obtained from Euler’s Quadratic Equation. Riemann
Zeta Function can be written as (63) provided G (tn) holds as
defined in (58) and (59).

ζ (z) =
∏

p

H (t, z)

=
∏

p

∑
d≤n

[
2nπ

z
2

(
kz +

G (tn)
(z − 1)

)]
(63)

Enoch obtained the following for the generation of the ze-
ros of the Analytic Continuation formula of the Riemann Zeta
function [5-7]:

G (tn) =
kz (z − 1)σ
τ − ϑ

(64)

Where

σ =

 z
2
π
−z
2 Γ

( z
2

) ( 1
pz − 1

) ∞∑
n=0

1
pnz − 1

 (65)

Such that;

ϑ =
z
2
π
−z
2 Γ

( z
2

) ( 1
pz − 1

) ∞∑
n=0

1
pnz (66)

and

τ =

[
1

2 (z − 1)
+ zN (z)

]∏
p

(
1
pz − 1

)
(67)

He pointed out that (58) and (59) definition of G (tn) is the
same as obtained in Equations (14), (15) and (16). The func-
tions; Jn and vn are written as polynomials of order two or three
for this to be possible by the authors [8-9]. He was able to
obtain a general equation for the zeros of the Analytic Contin-
uation formula from Equation (16) as;

G (tn) = 1 + kt2
n ; k = 4 (68)

By which Equation (69) holds as :

tn =

(
G (tn) − 1

k

)1/2

(69)

Again from:

1 + kt2
n =

kz (z − 1)σ
τ − ϑ

; k = 4 (70)

Such that;

tn = ±

(
z (z − 1)σ

(τ − ϑ)
−

1
k

) 1
2

; k = 4 (71)

The k value can hold for any integer, depending on the pat-
tern of choice.
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