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This paper is aim at maximizing the expected utility of an investor’s terminal wealth; to achieve this, we study the optimal portfolio strategy for an
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1. Introduction

In the study of optimal portfolio strategy in a financial mar-
ket, volatility plays a vital role in influencing the behaviour of
the risky assets due to its fluctuating nature as a result of dif-
ferent information available in the financial market. For an in-
vestor to make relatively right choice when investing in risky
assets, there is need to consider stochastic volatility models and
not constant volatility in order to understand the fluctuating na-

∗Corresponding author tel. no: +2347030811189
Email address: edikanakpanibah@gmail.com (Edikan E. Akpanibah )

ture of the risky assets. One of such stochastic volatility model
is the CEV model.

The CEV model was developed by [1] and is an exten-
sion geometric Brownian motion (GBM). According to [2], the
model is capable of capturing the implied volatility skew. A lot
of researchers such as ([3],[4]) studied utility maximization un-
der constant elasticity model in defined contribution (DC) pen-
sion scheme. In [5], optimal investment and reinsurance prob-
lem of utility maximization under CEV model was studied. The
authors in [2] studied optimal investment problem with taxes,
dividend and transaction cost using CEV model and logarithm
utility function. The optimal portfolio strategy with multiple
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contributors in a DC pension fund using Legendre transfor-
mation method was studied by [6]. The authors in [7] solved
the optimal portfolio problem with default risk and refund of
premium clause in a DC plan; in their work, the stock market
price followed the CEV model. In [8], the effect of additional
voluntary contribution on the investment strategies under CEV
model; they used power transformation method in solving their
problem. The study of optimal portfolio with stochastic inter-
est have been investigated by many authors though the risky
assets were modelled by GBMs; they include [9], who studied
optimal portfolio management with stochastic interest rate for
a protected case of DC fund. In ([10]-[11]), stochastic interest
rate model was used to obtain optimal portfolio allocation in a
DC plan. Also, the authors in ([12]-[13]) considered investment
strategy with interest rate of Vasicek type while the authors in
([14]-[16]), studied the optimal portfolio problem when the in-
terest rate is of affine interest.

From the available literatures, most of the authors that worked
on optimal portfolio strategies under CEV model considered
cases where the risk free interest rate is constant except for
[17] who studied the optimal portfolio strategies under CEV
model with stochastic interest rate. They pointed out that one of
the main reasons why other authors could not combined CEV
model and stochastic interest in finding the optimal portfolio
strategies was in the difficulty to find a closed form solution of
the optimal portfolio strategies analytically. Also they pointed
out that in financial market, interest rate is not constant rather a
fluctuating processes and that the interest rate volatility presents
another source of risks in financial market; In other words,
when this risk is not taken into consideration, we are actually
undermining the risk generated by this interest rate which is
crucial in affecting the prices of various assets available in fi-
nancial market. In their work, they used the exponential utility
to optimize the expected utility of an insurer with exponential
utility function and used the Legendry transformation method
and asymptotic expansion method to obtain solutions for the
optimal portfolio strategies.

In this work, we maximize the expected utility of an in-
surer’s wealth by studying the optimal portfolio strategies of
an insurer with logarithm utility function whose risky asset is
model by CEV model and the risk free interest is stochastic
and follows the CIR model. Furthermore, we use the power
transformation, change of variable and asymptotic approach to
derive an asymptotic solution of the optimal portfolio strategies
and value function. Also some numerical simulations to explain
our results are given. The main difference between our work
and that of [17] is that we consider an investor with logarithm
utility instead of exponential utility and apply power transfor-
mation method and change of variable method instead of Leg-
endre transformation method.

2. Preliminaries

For a financial market with portfolio comprising of a risk
free asset (treasury security) and a risky asset (marketable se-
curity) which is open continuously for a period of T > 0 rep-
resenting the expiring date of the investment. Let (Ω, F, P) be
a probability space which is complete, Ω and P are real space
probability measure respectively, {Br (t) , Bs (t) : t ≥ 0} is a set
of Brownian motions and F the filtration representing informa-
tion produced by the Brownian motions.

Let the risk free asset price C (t) at time t be given as

dC(t)
C(t)

= r (t) dt, C (0) > 0 (1)

where r (t) is the short interest rate and follows the (CIR)
model whose dynamics is{

dr (t) = (b − cr (t)) dt − a1
√

r (t)dBr (t)
r (0) = r0 > 0

(2)

and b , c and a1 are positive numbers such that the following
condition holds a2

1 < 2b (Feller’s Condition). [17]
Let S (t) be the price of the marketable security whose price

process follows the CEV model which is an extension of the
GMB. The CEV as earlier stated has the capability to capture
the volatility skew of the marketable security unlike the GBM
whose volatility is constant. From the work of [4, 6, 8, 17], the
dynamic of the price process of the marketable security is given
by the stochastic differential equation when t ≥ 0 as follows

dS (t)
S (t)

= µdt + σS β (t) dBs (t) (3)

where µ , σ and β are positive constant and represent the
instantaneous expected rate of return, instantaneous volatility
and elasticity parameter respectively see [2−4]. Also, Br (t) and
Bs (t) are assumed to be correlated instantaneous correlation
coefficient ρ = 1 such that dBr (t) dBs (t) = dt see [17].

Note, when β = 0 in equation (3), the model in (3) reduce
to that of GMB see [2].

3. Wealth Formulations
and Methodology

Let Z (t) be the investor’s wealth at time t. Also, let ϕ and ϕ1

be the proportions of the investor’s wealth to be invested in risky
asset and risk-free asset respectively such that ϕ1 = 1−ϕ. Since
the investor’s total wealth is summation of his investments in
the two assets hence the differential form of the investor’s total
wealth is

dZ (t) = Z (t)
(
ϕ1

dC (t)
C (t)

+ ϕ
dS (t)
S (t)

)
(4)
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substituting equations (1) and (3) into (4), we have{
dZ(t) = Z(t)((ϕ(µ − r) + r)dt + ϕσS β (t) dBs (t))

Z (0) = Z0
(5)

Next, let the investor’s utility at any given state Z at time t
be given as

Jϕ (t, r, s2, z) = Eϕ

[
U (Z (T ))

r (t) = r, S (t) = s,
Z (t) = z

]
(6)

With boundary condition J (t, r, s2, z) = U (z)
where r is the risk free interest rate and z is the wealth. The

objective here is to determine the optimal portfolio strategies
and the optimal value function of the investor given as

ϕ∗ and J (t, r, s2, z) = supϕ Jϕ (t, r, s2, z) such that

Jϕ∗ (t, r, s2, z) = J (t, r, s2, z) (7)

The value function Jϕ∗ (t, r, s2, z) can be considered as a kind
of utility function.

From the maximum principle and Ito’s lemma, the Hamil-
ton Jacobi Bellman (HJB) equation which is a nonlinear partial
differential equation associated with (6) is obtained by maxi-
mizing the expected utility Jϕ (t, r, s2, z) subject to the investor’s
wealth in as follows

Jt + µsJs + 1
2σ

2 s2β+2 Jss

+rzJz + (b − cr) Jr + 1
2 ra2

1

+σa1
√

rsβ+1 Jsr + sup


1
2ϕ

2σ2z2 s2βJzz

+ϕ


(µ − r) zJz

+σ2zs2β+1 Jzs

+σa1
√

rzsβJzr





= 0 (8)

Differentiating (8) with respect to ϕ , we obtain the first
order maximizing condition as(

ϕσ2z2s2βJzz + (µ − r) zJz + σ2zs2β+1Jzs

+σa1
√

rzsβJzr

)
= 0 (9)

Solving (9) for ϕ we have

ϕ∗ = −

[
(µ − r) Jz + σ2s2β+1Jzs + σa1

√
rsβJzr

]
zσ2s2βJzz

(10)

Where ϕ∗ is the optimal portfolio strategy of the risky asset.
Substituting (10) into (8), we have

Jt + µsJs + 1
2σ

2s2β+2Jss + rzJz + (b − cr) Jr

+ 1
2 ra2

1Jrr + σa1
√

rsβ+1Jsr

+ 1
2

[(µ−r)Jz+σ
2 s2β+1 Jzs+σa1

√
rsβJzr]2

σ2 s2βJzz

 = 0 (11)

4. Optimal Portfolio Strategies for an investor with
Logarithm Utility

In this section, we consider an investor with utility function
which exhibit constant relative risk aversion (CRRA) different
from the one in [17] where the investor exhibits constant ab-
solute risk aversion (CARA). Since our interest here is to de-
termine the optimal portfolio strategies for the investor with
CRRA utility, we choose the logarithm utility function similar
to the one in [2].

From [2, 14], The logarithm utility function is given as

U (z) = lnz (12)

Next, we conjecture a solution to (11) similar to the one in
[2] with the form:{

J (t, r, s, z) = w (t, r, s) + v (t, r, s) ln z
w (T, r, s) = 0, v (T, r, s) = 1,

(13)

 Jt = wt + vt ln z, Js = ws + vs ln z , Jss = wss + vss ln z,
Jr = wr + vr ln z, Jrr = wrr + vrr ln z, Jsr = wsr + vsr ln z

Jsr = wsr + vsr ln z, Jzz = − v
z2 , Jzr =

vr
z , Jzs =

vs
z

 (14)

Substituting (14) into (11), we have


vt + µsvs + 1

2σ
2s2β+2vss

+ (b − cr) vr + 1
2 ra2

1vrr

+σa1
√

rsβ+1vsr

 ln z

+


wt + µsws + 1

2σ
2s2β+2wss

+ (b − cr) vr + rv + 1
2 ra2

1wrr

+σa1
√

rsβ+1wsr

+ 1
2

[(µ−r)v+σ2 s2β+1vs+σa1
√

rsβvr]2

σ2 s2βv




= 0 (15)

Splitting (15) we have(
vt + µsvs + 1

2σ
2s2β+2vss + (b − cr) vr

+ 1
2 ra2

1vrr + σa1
√

rsβ+1vsr

)
= 0 (16)


wt + µsws + 1

2σ
2s2β+2wss + (b − cr) vr

+rv + 1
2 ra2

1wrr + σa1
√

rsβ+1wsr

+ 1
2

[(µ−r)v+σ2 s2β+1vs+σa1
√

rsβvr]2

σ2 s2βv

 = 0 (17)

Taking the boundary condition v (T, r, s) = 1 into consider-
ation, we solve (16) as follows using power transformation and
change variable approach.

Proposition 4.1

The solution of equation (16) is given as

v (t, r, s) = h (t, r, q) = 1

where

h (t, r, q) = h1 (t, r, q) +
√
αh2 (t, r, q) + αh3 (t, r, q)

and
h1 (t, r, q) = 1, h2 (t, r, q) = 0, and h3 (t, r, q) = 0
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Proof
Assume{

v (t, r, s) = h (t, r, q) , q = s−2β

h (T, r, s) = 1

}
(18)

Then
vt = ht, vs = −2βs−2β−1hq ,

vss = 2β (2β + 1) s−2β−2hq + 4β2s−4β−2hqq,

vr = hr, vrr = hrr, vrs = −2βs−2β−1hrq

 (19)

Substituting (19) into (16), we have[
ht − 2µβqhq + σ2β (2β + 1) hq + 2β2σ2qhqq

+ (b − cr) hr + 1
2 ra2

1hrr − 2βσa1
√

r
√

qhrq

]
= 0 (20)

We can rewrite (20) as

(A + B + C) h = 0 (21)

Where

A =

[
(b − cr) hr +

1
2

ra2
1hrr

]
h (22)

B =
[
ht + β

(
σ2 (2β + 1) − 2µq

)
hq + 2β2σ2qhqq

]
h (23)

C =
[
−2βσa1

√
r
√

qhrq

]
h (24)

Next we follow the approach in [17] by applying the asymp-
totic expansion method to solve the problem in (21).

Assume that the volatility follows a slow fluctuating pro-
cess, we attempt to determine an asymptotic solution for (21)
by using the slow-fluctuating process rα to replace r in (2), such
that 0 < α � 1 is a small positive integer:

drα (t) = (b − crα (t)) dt − a1
√

rα (t)dBr (t) (25)

Substituting (25) into (21) and also replacing b − cr by
α (b − cr) and

√
r by
√
α
√

r, we will have(
αA + B +

√
αC

)
hα = 0 (26)

Next, we conjecture a solution for (26) as follows

hα (t, r, q) = h1 (t, r, q) +
√
αh2 (t, r, q) + αh3 (t, r, q) (27)

Substituting (27) into (26)

(
αA + B +

√
αC

) ( h1 (t, r, q) +
√
αh2 (t, r, q)

+αh3 (t, r, q)

)
= 0

Simplifying the above equation, we arrive at

(
Bh1 (t, r, q) +

[
Bh2 (t, r, q) + Ch1 (t, r, q)

]√
α

+
[
Ah1 (t, r, q) + Bh3 (t, r, q) + Ch2 (t, r, q)

]
α

)
= 0

This implies that{
Bh1 (t, r, q) = 0
h1 (T, r, s) = 1

(28)

{
Bh2 (t, r, q) + Ch1 (t, r, q) = 0

h1 (T, r, s) = 1 , h2 (T, r, s) = 0
(29)

{
Ah1 (t, r, q) + Bh3 (t, r, q) + Ch2 (t, r, q)

h1 (T, r, s) = 1, h2 (T, r, s) = 0 h3 (T, r, s) = 0
(30)

To obtain the solution of (27), we solve (28), (29) and (30).
Recall from (22), (23) and (24), equation (28), (29) and (30)

can be expressed as h1t + β
(
σ2 (2β + 1) − 2µq

)
h1q + 2β2σ2qh1qq = 0

h1 (T, r, q) = 1
(31)


h2t + β

(
σ2 (2β + 1) − 2µq

)
h2q

+2β2σ2qh2qq − 2βσa1
√

r
√

qh1rq = 0
h2 (T, r, q) = 0

(32)


h3t + β

(
σ2 (2β + 1) − 2µq

)
h3q + 2β2σ2qh3qq

+ (b − cr) h1r + 1
2 ra2

1h1rr − 2βσa1
√

r
√

qh2rq

h3 (T, r, q) = 0
(33)

Let

h1 (t, r, q) = D0 (t, r) + qD1 (t, r) (34)

And(
h1t = D0t + qD1t, h1q = D1, h1qq = 0

)
(35)

Substituting (35) in (31), we have

D0t + βσ2 (2β + 1) D1 = 0, D0 (T, r) = 1 (36)

D1t − 2µβD1 = 0, D1 (T, r) = 0 (37)

Solving (37), we have

D1 (t, r) = 0 (38)

Putting (38) into (36) solving it, we have

D0 (t, r) = 1 (39)

Hence from (34)

h1 (t, r, q) = 1 (40)

Next, we solve (32), by assuming a solution of the form

h2 (t, r, q) =

 D2 (t, r) + q
1
2 D3 (t, r) + qD4 (t, r)

+q
3
2 D5 (t, r)

 (41)
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And
h2t = D2t + q

1
2 D3t + qD4t + q

3
2 D5t ,

h2q = 1
2 q−

1
2 D3 + D4 + 3

2 q
1
2 D5

h2qq = − 1
4 q−

3
2 D3 + 3

4 q−
1
2 D5, h1rq = 0

 (42)

Substituting (42) into (32), we have

D2t + βσ2 (2β + 1) D4 = 0, D2 (T, r) = 0 (43)

D4t − 2µβD4 = 0, D4 (T, r) = 0 (44)

D5t − 3µβD5 = 0, D5 (T, r) = 0 (45)

D3t − µβD3 +
3
2
βσ2 (3β + 1) D5 = 0, D3 (T, r) = 0 (46)

Solving (43), (44), (45) and (46) with their boundary con-
ditions, we have

D2 (t, r) = 0, D3 (t, r) = 0, D4 (t, r) = 0,D5 (t, r) = 0

hence from (41)

h2 (t, r, q) = 0 (47)

Next , we attempt to solve (33), by assuming a solution of
the form

h3 (t, r, q) =

 D6 (t, r) + q
1
2 D7 (t, r) + qD8 (t, r)

+q
3
2 D9 (t, r) + q2D9 (t, r)

 (48)


h3t = D6t + q

1
2 D7t + qD8t + q

3
2 D9t + q2D10t ,

h3q = 1
2 q−

1
2 D7 + D8 + 3

2 q
1
2 D9 + 2qD10

h2qq = − 1
4 q−

3
2 D7 + 3

4 q−
1
2 D9 + 2D10h1r = 0,

h1rr = 0, h2rq = 0

 (49)

Substituting into (33), we have

D6t + βσ2 (2β + 1) D8 = 0, D6 (T, r) = 0 (50)

D7t − µβD7 +
3
2
βσ2 (3β + 1) D9 = 0, D7 (T, r) = 0 (51)

D8t − 2µβD8 + 2βσ2 (4β + 1) D10 = 0, D8 (T, r) = 0(52)

D9t − 3µβD9 = 0, D9 (T, r) = 0 (53)

D10t − 4µβD10 = 0, D10 (T, r) = 0 (54)

Solving (50), (51), (52), (53) and (54), we obtain

D6 (t, r) = 0,D7 (t, r) = 0, D8 (t, r) = 0,

D9 (t, r) = 0,D10 (t, r) = 0

Hence from (48)

h3 (t, r, q) (55)

Therefore, from (27), we have

hα (t, r, q) = h1 (t, r, q) +
√
αh2 (t, r, q) + αh3 (t, r, q) = 1

Hence from (18),

v (t, r, s) = 1

Proposition 4.2

The solution of equation (17) is given as

w (t, r, s) = f1 (t, r, q) +
√
α f2 (t, r, q) + α f3 (t, r, q)

Where


f1 (t, r, q) =

[
(2β+1)(µ−r)2

8βµ + r
]

(T − t)

+

(
q (µ−r)2

4µβσ2 −
(2β+1)(µ−r)2

8βµ2

) [
1 − e2µβ(t−T )

]
f2 (t, r, q) = K2 (t, r) + q

1
2 K3 (t, r) + qK4 (t, r)

f3 (t, r, q) = K6 (t, r) + q
1
2 K7 (t, r) + qK8 (t, r)


and



K2 (t, r) =

[
(2β+1)(µ−r)2

8βµ + r
]

(T − t)

−
(2β+1)(µ−r)2

8βµ2

[
1 − e2µβ(t−T )

]
K3 (t, r) =

a1
√

r(µ−r)
σβµ2

[
1 − 2eµβ(t−T ) + e2µβ(t−T )

]
K4 (t, r) =

(µ−r)2

4µβσ2

[
1 − e2µβ(t−T )

]

K6 (t, r) =





(2β+1)(µ−r)(b−cr)[1−e2µβ(t−T )]
8βσ2µ2

+
(2β+1)(µ−r)2

4σ2µ
+ r

r(2β+1)(µ−r)(b−cr)
4βµ2

+
ra2

1(2β+1)(µ−2r)
8βµ2 +

(µ−3r)a2
1

2µ2


(T − t)

+

 r(2β+1)(µ−r)(b−cr)
4µ −

(b−cr)
2

+
ra2

1(2β+1)(µ−2r)
8µ

 (t2 − T 2
)



r(2β+1)(µ−r)(b−cr)
8β2µ3 +

(2β+1)(µ−r)(ra2
1+µ−r)

8βσ2µ2

+
ra2

1(2β+1)(µ−2r)
8µ

+
(µ−3r)a2

1
4βµ3


(
1 − e2µβ(t−T )

)
(µ−3r)a2

1
4βµ3

(
1 − eµβ(t−T )

)


K7 (t, r) =

a1
√

r(µ−r)
σβµ2

[
1 − 2eµβ(t−T ) + e2µβ(t−T )

]

K8 (t, r) =



(µ−r)2

4µβσ2

[
1 − e2µβ(t−T )

]
+


ra2

1
−2 (b − cr) (µ − r)

4µβσ2


 1

2µβ

[
1 − e2µβ(t−T )

]
+ (t − T ) e2µβ(t−T )





Proof

Substitute (t, r, s) = 1, vs = 0, vr = 0 into (17), we have wt + µsws + 1
2σ

2s2β+2wss + (b − cr) wr + r + 1
2 ra2

1wrr

+σa1
√

rsβ+1wsr + 1
2

(µ−r)2

σ2 s2β

 = 0(56)

w (T, r, s) = 0

Assume{
w (t, r, s) = f (t, r, q) , q = s−2β

f (T, r, q) = 0
(57)

Then
wt = ft, ws = −2βs−2β−1 fq ,

wss = 2β (2β + 1) s−2β−2 fq + 4β2s−4β−2 fqq,

wr = fr, wrr = frr, wrs = −2βs−2β−1 frq

(58)
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Substituting (58) into (56), we have
ft − 2µβq fq + σ2β (2β + 1) fq

+ 1
2

(µ−r)2q
σ2 + r + 2β2σ2q fqq + (b − cr) fr

+ 1
2 ra2

1 frr − 2βσa1
√

r
√

q frq

 = 0 (59)

We can rewrite (59) as

(E + F + G) f = 0 (60)

Where

E =

[
(b − cr) fr +

1
2

ra2
1 frr

]
f (61)

F =

 ft + β
(
σ2 (2β + 1) − 2µq

)
fq

+2β2σ2q fqq + 1
2

(µ−r)2q
σ2 + r

 f (62)

G =
[
−2βσa1

√
r
√

q frq

]
f (63)

Similarly, we apply the same approach used in solving (21)
to determine the solution of (60) as follows

drα (t) = (b − crα (t)) dt − a1
√

rα (t)dBr (t) (64)

Substituting (64) into (60) and also replacing b − cr by
α (b − cr) and

√
r by
√
α
√

r, we will have(
αE + F +

√
αG

)
fα = 0 (65)

Next, we conjecture a solution for (65) as follows

fα (t, r, q) = f1 (t, r, q) +
√
α f2 (t, r, q) + α f3 (t, r, q) (66)

Substituting (66) into (65) and simplifying it, we have

F f1 (t, r, q) +
[
F f2 (t, r, q) + G f1 (t, r, q)

]√
α

+
[
E f1 (t, r, q) + F f3 (t, r, q) + G f2 (t, r, q)

]
α = 0

This implies that{
F f1 (t, r, q) = 0
f1 (T, r, s) = 0

(67)

{
F f2 (t, r, q) + G f1 (t, r, q) = 0

f1 (T, r, s) = f2 (T, r, s) = 0
(68)

{
E f1 (t, r, q) + F f3 (t, r, q) + G f2 (t, r, q)
f1 (T, r, s) = f2 (T, r, s) = f3 (T, r, s) = 0

(69)

To obtain the solution of (66), we solve (67), (68) and (69).
Recall from (61), (62) and (63), equation (67), (68) and (69)

can be expressed as
f1t + β

(
σ2 (2β + 1) − 2µq

)
f1q + 2β2σ2q f1qq

+ 1
2

(µ−r)2q
σ2 + r = 0

f1 (T, r, q) = 1
(70)


f2t + β

(
σ2 (2β + 1) − 2µq

)
f2q + 2β2σ2q f2qq

+ 1
2

(µ−r)2q
σ2 + r − 2βσa1

√
r
√

q f1rq = 0
f2 (T, r, q) = 0

(71)


f3t + β

(
σ2 (2β + 1) − 2µq

)
f3q + 2β2σ2q f3qq

+ 1
2

(µ−r)2q
σ2 + r

+ (b − cr) f1r + 1
2 ra2

1 f1rr − 2βσa1
√

r
√

q f2rq

f3 (T, r, q) = 0

(72)

Let

f1 (t, r, q) = K0 (t, r) + qK1 (t, r) (73)

and(
f1t = K0t + qK1t, f1q = K1, f1qq = 0

)
(74)

Substituting (74) in (70), we have

K0t + βσ2 (2β + 1) K1 + r = 0, K0 (T, r) = 0 (75)

K1t − 2µβK1 +
1
2

(µ − r)2

σ2 = 0, K1 (T, r) = 0 (76)

Solving (76), we have

K1 (t, r) =
(µ − r)2

4µβσ2

[
1 − e2µβ(t−T )

]
(77)

Putting (77) into (75) solving it, we have

K0 (t, r) =


[

(2β+1)(µ−r)2

8βµ + r
]

(T − t)

−
(2β+1)(µ−r)2

8βµ2

[
1 − e2µβ(t−T )

]
 (78)

Hence from (34)

f1 (t, r, q) =


[

(2β+1)(µ−r)2

8βµ + r
]

(T − t)

+

(
q (µ−r)2

4µβσ2 −
(2β+1)(µ−r)2

8βµ2

) [
1 − e2µβ(t−T )

]
(79)

Next, we solve (71), by assuming a solution of the form

f2 (t, r, q) = K2 (t, r)+q
1
2 K3 (t, r)+qK4 (t, r)+q

3
2 K5 (t, r)(80)

and
f2t = K2t + q

1
2 K3t + qK4t + q

3
2 K5t ,

f2q = 1
2 q−

1
2 K3 + K4 + 3

2 q
1
2 K5

f2qq = − 1
4 q−

3
2 K3 + 3

4 q−
1
2 K5,

K1r =
(µ−r)
2µβσ2

[
e2µβ(t−T ) − 1

]
 (81)

Substituting (81) into (71), we have

K2t + βσ2 (2β + 1) K4 + r = 0,K2 (T, r) = 0(
K3t − µβK3 + 3

2βσ
2 (3β + 1) K5

−2βσa1
√

rK1r = 0

)
,K3 (T, r) = 0

K4t − 2µβK4 +
(µ−r)2

2σ2 = 0,K4 (T, r) = 0
K5t − 3µβK5 = 0,K5 (T, r) = 0


(82)
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Solving (82) with their boundary conditions, we have

K2 (t, r) =


[

(2β+1)(µ−r)2

8βµ + r
]

(T − t)

−
(2β+1)(µ−r)2

8βµ2

[
1 − e2µβ(t−T )

]


K3 (t, r) =
a1
√

r(µ−r)
σβµ2

[
1 − 2eµβ(t−T ) + e2µβ(t−T )

]
K4 (t, r) =

(µ−r)2

4µβσ2

[
1 − e2µβ(t−T )

]
K5 (t, r) = 0


(83)

Hence from (80)

f2 (t, r, q) =

 K2 (t, r) + q
1
2 K3 (t, r) + qK4 (t, r)

+q
3
2 K5 (t, r)

 (84)

Where K2, K3, K4, and K5 are given in equation (83)
Next, we attempt to solve (72), by assuming a solution of

the form

f3 (t, r, q) =

 K6 (t, r) + q
1
2 K7 (t, r) + qK8 (t, r)

+q
3
2 K9 (t, r) + q2K10 (t, r)

 (85)



f3t = K6t + q
1
2 K7t + qK8t + q

3
2 K9t + q2K10t ,

f3q = 1
2 q−

1
2 K7 + K8 + 3

2 q
1
2 K9 + 2qK10

f3qq = − 1
4 q−

3
2 K7 + 3

4 q−
1
2 K9 + 2K10,

f1r = K0r + qK1r, f1rr = K0rr + qK1rr

f2rq = 1
2 q−

1
2 K3r + K4r + 3

2 q
1
2 K5r


(86)

Substituting into (72), we have

(
K6t + βσ2 (2β + 1) K8 + r + (b − cr) K0r

−βσa1
√

rK3r + 1
2 ra2

1K0rr

)
= 0

K6 (T, r) = 0
K7t − µβK7 + 3

2βσ
2 (3β + 1) K9 − 2βσa1

√
rK4r = 0,

K7 (T, r) = 0 K8t + 2βσ2 (4β + 1) K10 + (b − cr) K1r

−2µβK8 − 3βσa1
√

rK9r + 1
2 ra2

1K1rr +
(µ−r)2

2σ2

 = 0

K8 (T, r) = 0
K9t − 3µβK9 = 0,K9 (T, r) = 0

K10t − 4µβK10 = 0,K10 (T, r) = 0


(87)

Solving (87), we obtain

K6 (t, r) =





(2β+1)(µ−r)(b−cr)[1−e2µβ(t−T )]
8βσ2µ2

+
r(2β+1)(µ−r)(b−cr)

4βµ2

+
(2β+1)(µ−r)2

4σ2µ
+ r

+
ra2

1(2β+1)(µ−2r)
8βµ2 +

(µ−3r)a2
1

2µ2


(T − t)

+

 r(2β+1)(µ−r)(b−cr)
4µ −

(b−cr)
2

+
ra2

1(2β+1)(µ−2r)
8µ

 (t2 − T 2
)



r(2β+1)(µ−r)(b−cr)
8β2µ3

+
(2β+1)(µ−r)(ra2

1+µ−r)
8βσ2µ2

+
ra2

1(2β+1)(µ−2r)
8µ

+
(µ−3r)a2

1
4βµ3


(
1 − e2µβ(t−T )

)
(µ−3r)a2

1
4βµ3

(
1 − eµβ(t−T )

)


K7 (t, r) =

a1
√

r(µ−r)
σβµ2

[
1 − 2eµβ(t−T ) + e2µβ(t−T )

]
K8 (t, r) =


(µ−r)2

4µβσ2

[
1 − e2µβ(t−T )

]
+

ra2
1−2(b−cr)(µ−r)

4µβσ2

 1
2µβ

[
1 − e2µβ(t−T )

]
+ (t − T ) e2µβ(t−T )




K9 (t, r) = 0
K10 (t, r) = 0



(88)

Hence from (85)

f3 (t, r, q) =

 K6 (t, r) + q
1
2 K7 (t, r) + qK8 (t, r)

+q
3
2 K9 (t, r) + q2K10 (t, r)

 (89)

With K6, K7 , K8, K9 , K10 given in (88)
Therefore, from (66), we have

fα (t, r, q) = f1 (t, r, q) +
√
α f2 (t, r, q) + α f3 (t, r, q)

With f1 (t, r, q) , f2 (t, r, q) and f3 (t, r, q) given in equation
(79), (84) and (89) respectively.

Hence from (57),

w (t, r, s) = f1 (t, r, q) +
√
α f2 (t, r, q) + α f3 (t, r, q)

Proposition 4.3

The optimal portfolio strategies and optimal value function
are given as

ϕ∗ =
(µ − r)
σ2s2β (90)

ϕ∗1 =
(µ − r)
σ2s2β (91)

And

J (t, r, s, z) =

(
ln z + f1 (t, r, q) +

√
α f2 (t, r, q)

+α f3 (t, r, q)

)
(92)

where


f1 (t, r, q) =


[

(2β+1)(µ−r)2

8βµ + r
]

(T − t)

+

 q (µ−r)2

4µβσ2

−
(2β+1)(µ−r)2

8βµ2

 [1 − e2µβ(t−T )
]


f2 (t, r, q) = K2 (t, r) + q

1
2 K3 (t, r) + qK4 (t, r)

f3 (t, r, q) = K6 (t, r) + q
1
2 K7 (t, r) + qK8 (t, r)


and
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K2 (t, r) =


[

(2β+1)(µ−r)2
8βµ + r

]
(T − t)

−
(2β+1)(µ−r)2

8βµ2

[
1 − e2µβ(t−T )

]


K3 (t, r) =

 a1
√

r(µ−r)
σβµ2

 1 − 2eµβ(t−T )

+e2µβ(t−T )




K4 (t, r) =
(µ−r)2

4µβσ2

[
1 − e2µβ(t−T )

]

K6 (t, r) =





(2β+1)(µ−r)(b−cr)
[
1−e2µβ(t−T )]

8βσ2µ2

+
(2β+1)(µ−r)2

4σ2µ
+ r

r(2β+1)(µ−r)(b−cr)
4βµ2

+
ra2

1(2β+1)(µ−2r)

8βµ2 +
(µ−3r)a2

1
2µ2


(T − t)

+


r(2β+1)(µ−r)(b−cr)

4µ

−
(b−cr)

2 +
ra2

1(2β+1)(µ−2r)
8µ

 (t2 − T 2
)



r(2β+1)(µ−r)(b−cr)
8β2µ3

+
(2β+1)(µ−r)

(
ra2

1+µ−r
)

8βσ2µ2

+
ra2

1(2β+1)(µ−2r)
8µ +

(µ−3r)a2
1

4βµ3


(
1 − e2µβ(t−T )

)

(µ−3r)a2
1

4βµ3

(
1 − eµβ(t−T )

)


K7 (t, r) =

a1
√

r(µ−r)
σβµ2

[
1 − 2eµβ(t−T ) + e2µβ(t−T )

]

K8 (t, r) =


(µ−r)2

4µβσ2

[
1 − e2µβ(t−T )

]
+

ra2
1−2(b−cr)(µ−r)

4µβσ2

 1
2µβ

[
1 − e2µβ(t−T )

]
+ (t − T ) e2µβ(t−T )





Proof

1. recall that equation (11) is given as
ϕ∗ = −

[(µ−r)Jz+σ
2 s2β+1 Jzs+σa1

√
rsβJzr]

zσ2 s2βJzz
.

From proposition 1 and equation (14)
v (t, r, q) = 1 Jz = 1

z , Jzz = − 1
z2 , Jzr = vr

z = 0 , Jzs =
vs
z =

0
Substituting the above equation into (11), we have

ϕ∗ = −

[
(µ − r) 1

z

]
zσ2s2β

(
− 1

z2

) =
(µ − r) 1

z

σ2s2β 1
z

=
(µ − r)
σ2s2β

2. recall that from equation (13),

J (t, r, s, z) = w (t, r, s) + v (t, r, s) ln z
From proposition 1 and 2, the proof is completed.

Remark 4.1
From proposition 4.3, we observed that our result is similar

to the one in [3] but the difference between our result and theirs
is that their interest rate is a constant while ours is stochastic.

5. Numerical Simulations

Here, the numerical simulations are used to study the effect
of parameters on the portfolio strategies under logarithm utility.
To achieve this, the following data will be use unless stated
otherwise: σ = 1, β = −1, µ = 0.4, r (0) = 0.05, S (0) =

1.5, T = 3

6. Discussion

Figure 1, present a simulation of optimal portfolio strate-
gies against time. The graph shows that the investor will invest
more in marketable security and gradually increases investment
in treasury security to balance with the marketable security and
as expiry date draws closer; there is a continuous decrease in
investment in risky asset and a continuous increase in that of
risk free asset. This is so because investors like avoiding risk
toward the end of investment especially for highly risky assets.

Figure 2, shows a plot of optimal portfolio strategies against
time with different values of the elasticity parameter β. The
graph shows that as the elasticity parameter decreases, the in-
surer is more scared to invest in marketable security as expira-
tion date approaches. Furthermore, we observed a very sharp
decline when β = −2, showing how volatile the risky asset can
be hence discouraging for investors with high risk aversion co-
efficient but when β = 0, the decline is almost unnoticeable,
showing that the risky asset is not volatile. This is shows that
geometric Brownian motions i.e when β = 0 may lead an in-
vestor astray while taking investment decisions.

Figure 3, present a simulation of optimal portfolio strategies
against time with different values of µ; the graph shows that as
µ increases, the investment strategy for the marketable security
decreases continuously while that of treasury security increases
continuously with time. The reason being the interest rate is not
constant. Furthermore, we observe that as expiration date of in-
vestment draws closer, the risk-free interest may increase faster
than µ , thereby making µ − r < 0. Hence a drastic decrease in
optimal portfolio strategy of marketable security.

Figure 4, shows a simulation of the optimal portfolio strate-
gies against time with different values of σ, it is observed that
as σ increases the optimal investment in marketable security
decreases while that of risk-free asset increases. Recall that σ
is the instantaneous volatility representing the risk coefficient of
marketable security. Therefore, for risk averse investors, bigger
σ , implies less investment in marketable security.

7. Conclusion

This paper considers optimal portfolio strategy for an in-
surer with logarithm utility using CEV to model the risky asset
in the presence of stochastic interest rate. Investment in trea-
sury security and marketable security were considered such that
the risk free interest rate follows the CIR model. The asymp-
totic solutions of the the optimal portfolio strategies and it value
function was found using power transformation, change of Vari-
able and asymptotic expansion technique. Furthermore, we
present some numerical simulations to study the effect of some
parameters on the optimal portfolio strategy under stochastic
interest rate.
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Figure 1. Time evolution of optimal portfolio strategies.

Figure 2. Time evolution of optimal portfolio strategy with different β.
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Figure 3. Time evolution of optimal portfolio strategy with different µ.

Figure 4. Time evolution of optimal portfolio strategy with different σ.
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