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Abstract

This paper shows how to use the fractional Sumudu homotopy perturbation technique (SHP) with the Caputo fractional operator (CF) to solve
time fractional linear and nonlinear partial differential equations. The Sumudu transform (ST) and the homotopy perturbation technique (HP) are
combined in this approach. In the Caputo definition, the fractional derivative is defined. In general, the method is straightforward to execute and
yields good results. There are some examples offered to demonstrate the technique’s validity and use.
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1. Introduction

For characterizing nonlocal structures, fractional calculus
has arisen as a new mathematical technique. Due to their nu-
merous applications in physics and engineering, fractional dif-
ferential equations have attracted a lot of attention during the
last decade [1-4].

Many authors have investigated fractional calculus theory,
and current study is centered on proving the important benefits
of fractional calculus over classical calculus [5, 6]. In several
instances, the fractional calculus gave the best outcomes than
the conventional method.

There is a significant literature dealing with the subject area
of approximating solutions to fractional differential equations

∗Corresponding author tel. no: +9647819374140
Email addresses: lkalzaki@utq.edu.iq (Lamees K. Alzaki ),

hassankamil@utq.edu.iq (Hassan Kamil Jassim)

using various approaches known as perturbation methods. The
perturbation techniques have certain disadvantages; for exam-
ple, the approximate solution requires a succession of smaller
parameters, which is challenging because the majority of non-
linear problems do not have any small values. Despite proper
selections of smaller parameters might occasionally lead to an
optimal solution, in most circumstances, bad choices have ma-
jor consequences in the solutions. As a result, an analytical
technique that does not need a smaller parameter in the equa-
tion representing the phenomena is preferred. He [7] was the
first to propose the homotopy perturbation technique (HPM).
Many writers investigated the HPM to analyze linear and non-
linear equations encountered in numerous scientific and techni-
cal sectors.

In general, higher performance of the fractional calculus is
demonstrated by reduced error levels created during an estimat-
ing procedure. Various approximation and methodologies, like
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the fractional Adomian decomposition method (FADM) [8-10],
fractional homotopy method (FHPM) [11, 12, 13], fractional
function decomposition method [14, 15], fractional variational
iteration method (FVIM) [16-18], fractional reduce differential
transform method (FRDTM) [18, 19, 20, 21], fractional differ-
ential transform method [22, 23, 24], fractional Laplace vari-
ational iteration method [25-32], fractional Laplace homotopy
perturbation method (FLHPM) [33], fractional Laplace decom-
position method (FLDM) [34, 35], fractional Sumudu homo-
topy analysis method [36], fractional Sumudu variational iter-
ation method (FVIM) [37, 38], fractional Sumudu decomposi-
tion method (FSDM) [39-41], fractional natural decomposition
method (FNDM) [42, 43], fractional Sumudu homotopy per-
turbation method (FSHPM) [44, 45], energy balance method
(EBM) [46], power series methods (PSM) [47], have been used
in latest years to analyze partial differential equations within
Caputo sense.Moreover, many studies provide functional dif-
ferential equations using various types of transforms, such as
the Mellin transform [48]. Also, the Lagrange interpolation is
used to estimate the delay argument [49]. Furthermore, the lo-
cal truncation errors and stability polynomials are calculated
[50-52].

Our objective is to develop and use the Sumudu homotopy
perturbation methodology, which combines the Sumudu trans-
form with the homotopy perturbation method to solve nonlinear
fractional differential equations.

2. Preliminaries

This section goes through some of the fractional calculus
definitions and notation that will be utilized in this study [4, 45,
46, 47, 53, 54, 55].

Definition 2.1. The Riemann Liouville fractional integral op-
erator of order δ ≥ 0 of a function ϕ(µ) ∈ Cϑ, ϑ ≥ −1 is given
by the form

Iδϕ(µ) =


1

Γ(δ)

∫ µ

0 (µ − τ)δ−1ϕ(τ)dτ, δ > 0, µ > 0

I0ϕ(µ) = ϕ(µ), δ = 0

(1)

where Γ(·) is the well-known Gamma function.

Properties of the operator Iδare as follows: For ϕ ∈ Cϑ, ϑ ≥
−1, δ, γ ≥ 0, then

1. IδIγϕ(µ) = Iδ+γϕ(µ)
2. IδIγϕ(µ) = IγIδϕ(µ)

3. Iδµm =
Γ(m + 1)

Γ(δ + m + 1)
µδ+m

Definition 2.2. In the Caputo interpretation, the fractional deriva-
tive of ϕ(µ) is given as

Dδϕ(µ) = Im−δDmϕ(µ)

=
1

Γ(m − δ)

∫ µ

0
(µ − τ)m−δ−1ϕ(m)(τ)dτ, (2)

for m − 1 < α ≤ m,m ∈ N, µ > 0 and ϕ ∈ Cm
−1.

The fundamental properties of the operator Dδ are given as fol-
lows:

1. DδIδϕ(µ) = ϕ(µ)

2. DδIδϕ(µ) = ϕ(µ) −
∑n−1

k=0 ϕ
(k)(0)

µk

k!

Definition 2.3. For δ > 0, the gamma function Γ(·), is defined
as follows:

Γ(δ) =

∫ ∞

0
xδ−1e−xdx (3)

Definition 2.4. By considering Eδ with δ > 0, the definition of
the Mittag–Leffler function given as the following:

Eδ(z) =

∞∑
m=0

zδ

Γ(mδ + 1)
(4)

Some special cases of the Mittag-Leffler function Eδ(z)

1. E0(z) = 1
1−z , |z| < 1,

2. E1(z) = ez,
3. E2(z) = cosh

√
z, z ∈ C,

4. E2(−z2) = cosz, z ∈ C

Definition 2.5. The Sumudu transform is identified based on a
collection of functions

A = {ϕ(τ) : ∃M, ω1, ω2 > 0,

with |ϕ(τ)| ≤ Me
|τ|
ω j , ifτ ∈ (−1) j × [0,∞)}

as determined by the formula

S[ϕ(ω)] = G(ω) =

∫ ∞

0
e−τϕ(ωτ)dτ, ω ∈ (−ω1, ω2)

Some properties of Sumudu Transform

1. S[k] = k, k constant
2. S

[
τmδ

Γ(mδ+1)

]
= ωmδ

Definition 2.6. The Caputo fractional derivative for the Sumudu
transform is given as the following

S
[
Dµδ
τ ϕ(µ, τ)

]
= ω−µδS

[
ϕ(µ, τ)

]
−

m−1∑
k=0

ω(−µδ+k)ϕ(k)(µ, 0),

m − 1 < mδ < m (5)

3. Fractional Sumudu Homotopy Perturbation Method (FSHPM)

Consider this generic fractional nonlinear PDEs:

Dmδ
τ ϕi(µ, τ) + R

[
ϕ(µ, τ)

]
+ N

[
ϕ(µ, τ)

]
= ð(µ, τ),m − 1 < mδ ≤ m (6)

with

ϕ(µ, 0) = f (µ), (7)

in which Dmδ
τ ϕ(µ, τ) is the Caputo fractional derivative of the

function ϕ(µ, τ), R refers for the linear differential operator,
2
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while N refers for a nonlinear system differential operator, and
ð(µ, τ) is the origin term. Using the ST to both sides of (6), we
get

S[Dµδ
τ ϕ(µ, τ)] + S[R

[
ϕ(µ, τ)

]
] + S[N

[
ϕ(µ, τ)

]
]

= S[ð(µ, τ)] (8)

We obtain by utilizing the ST’s property

S[ϕ(µ, τ)] = −ωδ
m−1∑
k=0

ϕ(k)(µ, 0) + ωδS
[
ð(µ, τ)

]
−ωδS

[
R[ϕ(µ, τ)] + N[ϕ(µ, τ)]

]
(9)

Operating the inverse Sumudu transform on both sides of (9),
we get

ϕ(µ, τ) = S−1
[
ωδ

m−1∑
k=0

ϕ(k)(µ, 0)
]

+ S−1
[
ωδS

[
ð(µ, τ)

]]
−S−1

[
ωδS

[
R[ϕ(µ, τ)] + N[ϕ(µ, τ)]

]]
(10)

We implement the HPM:

ϕ(µ, τ) =

∞∑
n=0

pnϕn(µ, τ), (11)

Thus the nonlinear term may be decomposed as follows:

N[ϕ(µ, τ)] =

∞∑
n=0

pnHn(ϕ0, ϕ1, . . . , ϕn), (12)

where

Hn(ϕ0, ϕ1, . . . , ϕn) =
1
n!

∂n

∂pn

[
N
[ ∞∑

i=0

piϕi(µ, τ)
]]

p=0

When we substitute (11) and (12) into (10), we obtain

∞∑
n=0

pnϕn(µ, τ) = S−1
[
ωδ

m−1∑
k=0

ϕ(k)(µ, 0)
]

+ S−1
[
ωδS

[
ð(µ, τ)

]]
−pS−1

(
ωδS

[
R
[ ∞∑

n=0

pnϕn(µ, τ)
]

+

∞∑
n=0

pnHn

])
We get the following set of equations by comparing the terms
with comparable powers of p:

P0 : ϕ0(µ, τ) = S−1
[
ωδ

m−1∑
k=0

ϕ(k)(µ, 0)
]

+S−1
[
ωδS

[
ð(µ, τ)

]]
P1 : ϕ1(µ, τ) = −S−1

[
ωδS

[
R[ϕ0(µ, τ)] + H0

]]
P2 : ϕ2(µ, τ) = −S−1

[
ωδS

[
R[ϕ1(µ, τ)] + H1

]]
...

Pn : ϕn(µ, τ) = −S−1
[
ωδS

[
R[ϕn−1(µ, τ)] + Hn−1

]]
,

n ≥ 1 (13)

Consequently, we use truncated series to estimate the analytical
result ϕ(µ, τ)

ϕ(µ, τ) = lim
p→1

∞∑
n=0

pnϕn(µ, τ) (14)

4. Applications

This section will put the proposed method for solving time
fractional partial differential equations into application.

4.1. Example
Firstly, examine the time-fractional Cauchy reaction–diffusion

equation shown below

Dδ
τϕ(µ, τ) = ϕµµ(µ, τ) − ϕ(µ, τ), 0 < δ ≤ 1 (15)

with

ϕ(µ, 0) = e−µ + µ (16)

For the (15), applying the Sumudu transform ST on both sides
of it, we achieve

S[ϕ(µ, τ)] = ϕ(µ, 0) + ωδS
[
ϕµµ(µ, τ) − ϕ(µ, τ)

]
(17)

Using the inverse ST to (17), we obtain

S[ϕ(µ, τ)] = e−µ + µ + S−1
(
ωδS

[
ϕµµ(µ, τ) − ϕ(µ, τ)

])
(18)

According to the HPM, and substituting

ϕ(µ, τ) =

∞∑
n=0

pnϕn(µ, τ)

in (18), we have
∞∑

n=0

pnϕn(µ, τ) = e−µ + µ

+pS−1
(
ωδS

[
∂2

∂µ2

[ ∞∑
n=0

pnϕn(µ, τ)
]
−

∞∑
n=0

pnϕn(µ, τ)
])

(19)

We get the following set of equations by comparing the terms
with comparable powers of p:

P0 : ϕ0(µ, τ) = e−µ + µ

P1 : ϕ1(µ, τ) = S−1
(
ωδS

[
∂2ϕ0(µ, τ)

∂µ2 − ϕ0(µ, τ)
])

= S−1(ωδS[−µ]
)

= −
µτδ

Γ(δ + 1)
,

P2 : ϕ2(µ, τ) = S−1
(
ωδS

[
∂2ϕ1(µ, τ)

∂µ2 − ϕ1(µ, τ)
])

= S−1
(
ωδS

[
−

µτδ

Γ(δ + 1)

])
= −

µτ2δ

Γ(2δ + 1)
,
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P3 : ϕ3(µ, τ) = S−1
(
ωδS

[
∂2ϕ2(µ, τ)

∂µ2 − ϕ2(µ, τ)
])

= S−1
(
ωδS

[
−

µτ2δ

Γ(2δ + 1)

])
= −

µτ3δ

Γ(3δ + 1)
,

P4 : ϕ4(µ, τ) = S−1
(
ωδS

[
∂2ϕ3(µ, τ)

∂µ2 − ϕ3(µ, τ)
])

= S−1
(
ωδS

[
−

µτ3δ

Γ(3δ + 1)

])
= −

µτ4δ

Γ(4δ + 1)
,

...

Pn : ϕn(µ, τ) = S−1
(
ωδS

[
∂2ϕn−1(µ, τ)

∂µ2 − ϕn−1(µ, τ)
])

= (−1)n µτnδ

Γ(nδ + 1)

Hence, the outcome of (15) is provided by

ϕ(µ, τ) = lim
p→1

∞∑
n=0

pnϕn(µ, τ)

= e−µ + µ
[
1 −

τδ

Γ(δ + 1)
+

τ2δ

Γ(2δ + 1)
+

τ3δ

Γ(3δ + 1)
. . .

+(−1)n τnδ

Γ(nδ + 1)

]
= e−µ + µEδ(τδ) (20)

For δ = 1, the (20) is close to the form ϕ(µ, τ) = e−µ + µe−τ,
which is the precise solution of (15) for δ = 1. The outcome is
same as with FSDJM [53].

4.2. Example

We determine the most important time fractional Cauchy
reaction-diffusion equation:

Dδ
τϕ(µ, τ) = ϕµµ(µ, τ) − (1 + 4µ2)ϕ(µ, τ),

0 < δ ≤ 1 (21)

with

ϕ(µ, 0) = eµ
2

(22)

We obtain by utilizing the ST’s property on both sides of (21),
we get

S[ϕ(µ, τ)] = ϕ(µ, 0) + ωδS
[
ϕµµ(µ, τ)

−(1 + 4µ2)ϕ(µ, τ)
]

(23)

Using the inverse ST to (23), we have

S[ϕ(µ, τ)] = eµ2 + S−1
(
ωδS

[
ϕµµ(µ, τ)

−(1 + 4µ2)ϕ(µ, τ)
])

(24)

According to the HPM, and substituting

ϕ(µ, τ) =

∞∑
n=0

pnϕn(µ, τ)

in (24), we have
∞∑

n=0

pnϕn(µ, τ) = eµ
2

+ pS−1

(
ωδS

[
∂2

∂µ2

[ ∞∑
n=0

pnϕn(µ, τ)
]
− (1 + 4µ2)

∞∑
n=0

pnϕn(µ, τ)
])

(25)

We get the following set of equations by comparing the terms
with comparable powers of p:

P0 : ϕ0(µ, τ) = eµ
2

P1 : ϕ1(µ, τ) = S−1
(
ωδS

[
∂2ϕ0(µ, τ)

∂µ2

−(1 + 4µ2)ϕ0(µ, τ)
])

=
τδ

Γ(δ + 1)
eµ

2
,

P2 : ϕ2(µ, τ) = S−1
(
ωδS

[
∂2ϕ1(µ, τ)

∂µ2 − (1 + 4µ2)ϕ1(µ, τ)
])

=
τ2δ

Γ(2δ + 1)
eµ

2
,

P3 : ϕ3(µ, τ) = S−1
(
ωδS

[
∂2ϕ2(µ, τ)

∂µ2 − (1 + 4µ2)ϕ2(µ, τ)
])

=
τ3δ

Γ(3δ + 1)
eµ

2
,

P4 : ϕ4(µ, τ) = S−1
(
ωδS

[
∂2ϕ3(µ, τ)

∂µ2 − (1 + 4µ2)ϕ3(µ, τ)
])

=
τ4δ

Γ(4δ + 1)
eµ

2
,

...

Pn : ϕn(µ, τ) = S−1
(
ωδS

[
∂2ϕn−1(µ, τ)

∂µ2 − (1 + 4µ2)ϕn−1(µ, τ)
])

=
τnδ

Γ(nδ + 1)
eµ

2

Hence, the outcome of (21) is provided by

ϕ(µ, τ) = lim
p→1

∞∑
n=0

pnϕn(µ, τ)

= eµ
2[

1 +
τδ

Γ(δ + 1)
+

τ2δ

Γ(2δ + 1)
+

τ3δ

Γ(3δ + 1)
· · · +

4
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τnδ

Γ(nδ + 1)

]
= eµ

2
Eδ(τδ) (26)

For δ = 1, the (26) is close to the form ϕ(µ, τ) = eµ
2+τ, which

is the precise solution of (21) for δ = 1. The outcome is same
as with FSDJM [53].

4.3. Example
Consider the nonlinear fractional Cauchy reaction–diffusion

equation is given as the following

Dδ
τϕ(µ, τ) = ϕµµ(µ, τ) − ϕµ(µ, τ) + ϕ(µ, τ)ϕµµ(µ, τ)

−ϕ2(µ, τ) + ϕ(µ, τ), 0 < δ ≤ 1 (27)

w.r.t initial condition

ϕ(µ, 0) = eµ (28)

Operating the ST on both sides of (27), and employing ST’s
differential property, we obtain

S[ϕ(µ, τ)] = ϕ(µ, 0) + ωδS
[
ϕµµ(µ, τ) − ϕµ(µ, τ)

+ϕ(µ, τ)ϕµµ(µ, τ) − ϕ2(µ, τ) + ϕ(µ, τ)
]

(29)

We obtain by applying the inverse Sumudu transform on both
sides of (29)

ϕ(µ, τ) = eµ + S−1
(
ωδS

[
ϕµµ(µ, τ) − ϕµ(µ, τ) +

ϕ(µ, τ)ϕµµ(µ, τ) − ϕ2(µ, τ) + ϕ(µ, τ)
])

(30)

According to the HPM, and substituting

ϕ(µ, τ) =

∞∑
n=0

pnϕn(µ, τ)

ϕϕµµ =

∞∑
n=0

pnHn

ϕ2 =

∞∑
n=0

pnGn

in (30), we have
∞∑

n=0

pnϕn(µ, τ) =

eµ + pS−1
(
ωδS

[
∂2

∂µ2

[ ∞∑
n=0

pnϕn

]
−

∂

∂µ

[ ∞∑
n=0

pnϕn

]
+

∞∑
n=0

pnHn −

∞∑
n=0

pnGn −

∞∑
n=0

pnϕn

])
(31)

We get the following set of equations by comparing the terms
with comparable powers of p:

P0 : ϕ0(µ, τ) = eµ,

P1 : ϕ1(µ, τ) = S−1
(
ωδS

[
∂2ϕ0

∂µ2 −
∂ϕ0

∂µ
+ H0 −G0

+ϕ0

])
=

τδ

Γ(δ + 1)
eµ,

P2 : ϕ2(µ, τ) = S−1
(
ωδS

[
∂2ϕ1

∂µ2 −
∂ϕ1

∂µ
+ H1 −G1

+ϕ1

])
=

τ2δ

Γ(2δ + 1)
eµ,

P3 : ϕ3(µ, τ) = S−1
(
ωδS

[
∂2ϕ2

∂µ2 −
∂ϕ2

∂µ
+ H2 −G2

+ϕ2

])
=

τ3δ

Γ(3δ + 1)
eµ,

P4 : ϕ4(µ, τ) = S−1
(
ωδS

[
∂2ϕ3

∂µ2 −
∂ϕ3

∂µ
+ H3 −G3

+ϕ3

])
=

τ4δ

Γ(4δ + 1)
eµ,

(32)

...

Pn : ϕn(µ, τ) = S−1
(
ωδS

[
∂2ϕn−1

∂µ2 −
∂ϕn−1

∂µ

+Hn−1 −Gn−1 + ϕn−1

])
=

τnδ

Γ(nδ + 1)
eµ

Hence, the outcome of (27) is provided by

ϕ(µ, τ) = lim
p→1

∞∑
n=0

pnϕn(µ, τ)

= eµ
[
1 +

τδ

Γ(δ + 1)
+

τ2δ

Γ(2δ + 1)
+ · · · +

τnδ

Γ(nδ + 1)

]
= eµEδ(τδ) (33)

For δ = 1, the (33) is close to the form ϕ(µ, τ) = eµ+τ, which is
the precise solution of (27) for δ = 1. The outcome is same as
with FSDJM [53].

4.4. Example

Assume the coupled fractional Burger’s equations shown
below where 0 < δ ≤ 1, 0 < γ ≤ 1

Dδ
τϕ(µ, τ) − ϕµµ − 2ϕϕµ + (ϕψ)µ = 0,

Dδ
τψ(µ, τ) − ψµµ − 2ψψµ + (ϕψ)µ = 0 (34)

with

ϕ(µ, 0) = eµ

ψ(µ, 0) = eµ (35)

5
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Operating the ST on both sides of (34), and employing ST’s
differential property, we obtain

S
[
ϕ(µ, τ)

]
= ϕ(µ, 0) + ωδS

[
ϕµµ + 2ϕϕµ − (ϕψ)µ

]
,

S
[
ψ(µ, τ)

]
= ψ(µ, 0) + ωγS

[
ψµµ + 2ψψµ − (ϕψ)µ

]
(36)

Implementing with the inverse ST to (36), we have

ϕ(µ, τ) = eµ + S−1
(
ωδS

[
ϕµµ + 2ϕϕµ − (ϕψ)µ

])
,

ψ(µ, τ) = eµ + S−1
(
ωγS

[
ψµµ + 2ψψµ − (ϕψ)µ

])
(37)

Assume that

ϕ(µ, τ) =

∞∑
n=0

pnϕn(µ, τ) (38)

ψ =

∞∑
n=0

pnψn (39)

ϕϕµ =

∞∑
n=0

pnHn (40)

ψψµ =

∞∑
n=0

pnKn (41)

(ϕψ)µ =

∞∑
n=0

pnGn (42)

By applying the HPM, and substituting (38)-(42) in (37), we
get

∞∑
n=0

pnϕn(µ, τ) = eµ + pS−1
(
ωδS

[
∂2

∂µ2

[ ∞∑
n=0

pnϕn

]
+2

∞∑
n=0

pnHn −

∞∑
n=0

pnGn

])
,

∞∑
n=0

pnψn(µ, τ) = eµ + pS−1
(
ωγS

[
∂2

∂µ2

[ ∞∑
n=0

pnψn

]
+2

∞∑
n=0

pnKn −

∞∑
n=0

pnGn

])
(43)

We get the following set of equations by comparing the terms
with comparable powers of p:

P0 : ϕ0(µ, τ) = eµ,

: ψ0(µ, τ) = eµ

P1 : ϕ1(µ, τ) = S−1
(
ωδS

[
∂2ϕ0

∂µ2 + 2H0 −G0

])
: ψ1(µ, τ) = S−1

(
ωγS

[
∂2ψ0

∂µ2 + 2K0 −G0

])
P2 : ϕ2(µ, τ) = S−1

(
ωδS

[
∂2ϕ1

∂µ2 + 2H1 −G1

])

: ψ2(µ, τ) = S−1
(
ωγS

[
∂2ψ1

∂µ2 + 2K1 −G1

])
P3 : ϕ3(µ, τ) = S−1

(
ωδS

[
∂2ϕ2

∂µ2 + 2H2 −G2

])
: ψ3(µ, τ) = S−1

(
ωγS

[
∂2ψ2

∂µ2 + 2K2 −G2

])
...

Then, we have

P0 : ϕ0(µ, τ) = eµ,

: ψ0(µ, τ) = eµ

P1 : ϕ1(µ, τ) = S−1
(
ωδS

[
eµ + 2e2µ − 2e2µ

])
: ψ1(µ, τ) = S−1

(
ωγS

[
eµ + 2e2µ − 2e2µ

])
= S−1(ωδeµ) =

τδ

Γ(δ + 1)
eµ

= S−1(ωγeµ) =
τγ

Γ(γ + 1)
eµ

P2 : ϕ2(µ, τ) = S−1
(
ωδS

[ τδ

Γ(δ + 1)
eµ

+2
τδ

Γ(δ + 1)
e2µ − 2

τγ

Γ(γ + 1)
e2µ

])

: ψ2(µ, τ) = S−1
(
ωγS

[ τγ

Γ(γ + 1)
eµ

+2
τγ

Γ(γ + 1)
e2µ − 2

τδ

Γ(δ + 1)
e2µ

])
(44)

= S−1(ω2δeµ + 2ω2δe2µ − 2ωδ+γe2µ)
= S−1(ω2γeµ + 2ω2γe2µ − 2ωδ+γe2µ)
=

τ2δ

Γ(2δ + 1)
eµ + 2

τ2δ

Γ(2δ + 1)
e2µ − 2

τδ+γ

Γ(δ + γ + 1)
e2µ

=
τ2γ

Γ(2γ + 1)
eµ + 2

τ2γ

Γ(2γ + 1)
e2µ − 2

τδ+γ

Γ(δ + γ + 1)
e2µ

...

Thus, the outcome of (34) is given by

ϕ(µ, τ) = eµ
[
1 −

τδ

Γ(δ + 1)
+

τ2δ

Γ(2δ + 1)
. . .

]
+e2µ

[
2

τ2δ

Γ(2δ + 1)
− 2

τδ+γ

Γ(δ + γ + 1)
. . .

]
ψ(µ, τ) = eµ

[
1 −

τγ

Γ(γ + 1)
+

τ2γ

Γ(2γ + 1)
. . .

]
+e2µ

[
2

τ2γ

Γ(2γ + 1)
− 2

τδ+γ

Γ(δ + γ + 1)
. . .

]
6
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(45)

Setting δ = γ in (45), we obtain

ϕ(µ, τ) = eµ
[
1 −

τδ

Γ(δ + 1)
+

τ2δ

Γ(2δ + 1)
. . .

]
= Eδ(−τδ)eµ

ψ(µ, τ) = eµ
[
1 −

τγ

Γ(γ + 1)
+

τ2γ

Γ(2γ + 1)
. . .

]
= Eγ(−τγ)eµ (46)

The (46) is close to the form ϕ(µ, τ) = ψ(µ, τ) = eµ−τ for δ =

γ = 1 , which is the precise solution of (34) for δ = γ = 1.

5. Conclusion

The Sumudu homotopy perturbation approach was effec-
tively used in this work to discover approximate solutions to
time-fractional partial differential equations. The analytical ap-
proach generates a convergence analysis that fast converges to
the optimal solution. The simplicity and high precision of the
analytical method are clearly illustrated, solving equations in-
cludes linear and nonlinear fractional PDEs and a nonlinear sys-
tem of fractional PDEs.
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