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Abstract

Threshold-dependent networks which behave like piecewise smooth systems and belong to a class of systems with discontinuous right hand side
are studied with piecewise linear differential equations. At threshold values and their intersections, known as switching boundaries and surfaces,
the state of such networks is not defined because of singularity at such points. This study characterises, in terms of number, singular domains of
any order in a network and the total number of such domains; and also proposes new definitions for walls, using Filippov’s First Order Theory on
characterisation of (sliding) wall. The finding of this study is presented as propositions I, II and III respectively. In particular, using proposition II
the study identified two white walls previously considered transparent. Introducing monotonicity to definition of transparent wall is also seen to
affect qualitative dynamics like source, sink and cycles.
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1. Introduction

Differential equations with discontinuous right-hand-side
are applied in different areas of study [1, 2]. They include but
are not limited to control problems [3], neural networks [4] and
gene regulatory networks [5, 6]. Due to its importance, dif-
ferent types of solutions exist for this class of problems [5] of
which Filippov’s is the most widely invoked [6-12]. Threshold-
dependent networks from biology, such as gene regulatory net-
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works can be considered as piecewise linear differential model
with discontinuous right hand side [13]. The discontinuity ob-
served in this class of threshold-dependent networks results
from threshold boundaries known as the switching boundaries.
Switching boundaries can be of different orders depending on
the number of variables at play in the network. Intersection of
two or more different switching boundaries is known as switch-
ing surfaces. Due to the wide application and acceptance of Fil-
ippov’s approach to this class of problems, the threshold bound-
aries (or surfaces) are called Filippov’s boundary (or surface).
In biological networks, they represent variables’ concentration
levels (and may be referred to as concentration thresholds) and
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their intersections respectively. At these boundaries, the state
of the variable is assumed to change. For instance, above a cer-
tain concentration level (that is, threshold value) a variable may
be activated or deactivated depending on the effect of control of
the activity of all other variables regulating its function [14, 15].
These switching boundaries, which can also be called (switch-
ing) hyperplanes, partition the state space of the network or sys-
tems into rectangular boxes [16] and segments [17] when step
functions are used to describe the regulatory control resulting
from the threshold. Within these boxes, the state of the network
is known and can be defined as a linear function because of the
use of step functions. On the contrary, the state of the network
is considered not known at the threshold boundaries yielding
the discontinuity observed in networks of such nature.
One of the major challenges of this class of network is defin-
ing a solution along the switching boundary. Filippov’s ap-
proach is used to study the behaviour of this class of network
[7, 9, 10, 12], especially at the threshold boundary. One of the
results of Filippov is defining what is called sliding vector field
at a (sliding) threshold boundary, where discontinuity exists.
This provides an insight into the behaviour of solutions of the
system in the neighbourhood of the threshold boundary. Within
the vicinity of the threshold, a trajectory approaching a discon-
tinuity boundary can either glide through, move away from, or
slide on, it. This is how a threshold boundary is classified. Us-
ing Filippov approach, differential models with discontinuous
right hand side have been investigated for different qualitative
properties such as orbits [18-20], limit cycles [1] and sliding
motions and solutions on threshold boundaries [11, 13]. As
noted earlier, discontinuous boundaries have been selectively
investigated for existence of solutions due to a conventional
definition that is based on the flow of trajectory towards such
domains. For instance, Sari and Gouze in [13] conclude that
transparent walls are not candidate for sliding vector motion.
Their conclusion is premised on the direction of flow of solu-
tion trajectories towards the wall. However, they failed to in-
vestigate if such walls are actually transparent let all providing
a criterion for testing the transparency of a wall beyond direc-
tion of trajectories of focal points.

In recent times this class of problem was considered as fast-
slow systems with delay [22-25]. To analyse the behaviour
of solution at the switching boundary regularisation approach
was adopted. In [21]the qualitative behaviour of the system is
analysed in the neighbourhood of the threshold boundary. In
the use of regularisation approach, two types of hyperplane are
considered, sewing and sliding manifolds. These definitions
were made using singular solution of the switching manifold
[23, 24]. From these studies, it is obvious that transparent walls
are not studied for sling vector field or motions because vector
field cannot be defined on them. Noted also is the fact that the
definition of the nature of these walls have not been reviewed
since its introductions. Encouraged by the definition of sewing
and sliding manifolds in [23, 24] with respect to singular so-
lution an attempt is made to redefine the nature of these walls
using focal points (as a limit solution) in the network.
If transparent walls are not candidates for sliding motion and
there is no concrete criterion for determining transparency as

noted earlier, then the need arises to provide for such. Sec-
ondly, if switching manifolds (walls) a more robust classifica-
tion of the nature of walls can be made using focal points which
are limit solutions. Within the limit of our knowledge, only reg-
ular domains have been characterised in terms of number in this
class of network; so, a need arises to characterise singular do-
mains in terms number. The objective of the study is to use Fil-
ippov’s first order theory to provide a criterion for transparency
and in addition introduce monotonicity to check behaviour of
variables at such transparent walls; derive new definitions that
shall capture some intrinsic behaviour in threshold-dependent
systems, especially biological systems where relapse is known
to occur and characterise singular domains in terms of num-
ber. To achieve its objective, the paper is organized as follows:
Introduction is contained in section 1 while the system under
study and the method of study are presented in section 2. In
section 3, the result of the network is presented as propositions.
Analysis of the results is verified in this section too to demon-
strate the usefulness and applicability of the study. Discussion
of the result of the study is done in section 4 whereas conclusion
of the work is in section 5.

2. Materials and Methods

This section is to introduce discontinuous system of the na-
ture to be considered in this work. Let

Σ = {x ∈ <n : h(x) = 0} (1)

and define a smooth function B : <n → < with the property
that Bx(x) , 0 on Σ, where x ∈ <n. Then consider a discontin-
uous system given as

x′(t) ∈ F(x(t)) (2)

with x0(0) = X0 ∈ <
n, where F(X(t)) satisfies

F(x) =

 f1(x) if x ∈ H1

f2(x) if x ∈ H2
(3)

and

H1 = {x ∈ <n : h(x) > 0} (4)

H2 =
{
x ∈ <n : h(x) < 0

}
(5)

.

Equation (1) defines the discontinuity boundary which par-
titions the state space into H1 , the upper half plane and H2 the
lower half plane. Equation (1) shall be referred to as hyperplane
or wall in this work. Equation (2) is known as differential inclu-
sion problem in control problems. Within H1 and H2, the state
of the system is known but not on Σ as defined in equation (1).
At the threshold boundary (that is, the wall), define

fw = c̄o{ f1(x), f2(x)} = (1 − α) f j + α fi (6)

where α ∈ [0, 1] and c̄o(V) is the smallest closed convex set
containing V [9, 10]. This is the nature of the class of problems
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to be discussed here.
Definition 1. ([9, 13]). An absolutely continuous function
xt : [0, τ) → <n is said to be the solution of equation (2) in
the sense of Filippov if for almost all t ∈ [0, τ) it holds that
x0(0) = x0 and x′t (t) ∈ F(x(t)), where F(x(t)) is the closed
convex hull defined as given in equation(6). The reader is
referred to [13] for more on this.
One of the many challenges of this class of problem is defining
a solution on the threshold hyperplane with respect to x0.
As a way out, closed convex hull defined as the smallest set
containing a set, which is equation (6), is proposed for defining
vector motion on the threshold hyperplane [13]. It uses convex
combination of f1(x) and f2(x) to make definition of a vector
field on the threshold hyperplane possible [12, 13]. When such
vector fields are defined, then the behaviour of its trajectory in
the neighbourhood of the hyperplane is used to characterise
the nature of the hyperplane. This characterisation determines
whether a hyperplane shall be investigated for existence of
solution or not. For instance, transparent walls are considered
asymptotically stable but not white walls. Black walls can be
stable or not [25, 26, 13].
The interest in this study is not on the stability of domains in
this network but characterisation of the threshold hyperplane
and singular domains respectively. However, the discussion of
the results shall make use of stability of domains to highlight
the importance of this study and to show that the findings of
this study, with respect to nature of walls, performs better than
existing ones in [13, 25]. Therefore, we refer to [13] (theorems
1 and 6) for stability of domains and [17] for stability of
regular steady point (RSP) and singular steady point (SSP).
The stability used in this paper is in line with stability in [13]

2.1. Gene Regulatory Networks

Let Zi : <+ → [0, 1] be a regulatory function, where i =

1, 2, ..., n and suppose the system given below (see [32]) exists

ẋi(t) = gi(x,Z) = Fi(Z) −Gi(Z)xi (7)

where xi = (x1, x2, ..., xn)T ∈ <n represents the concentration of
the ith variable, Fi and Gi are bounded multilinear polynomial
functions defining the production and degradation rates respec-
tively. Most often, the regulatory function Z is used to define
the switching behaviour in gene regulatory networks. As such,
either step function is used as Z in which case Zi : <+ → {0, 1},
or a sigmoid function is used so that Zi : <+ → (0, 1). The
focus of this study is on the use of step function as switching
function. So, consider

Z(x, θ) =

1 if x > θ
0 if x < θ

(8)

where θ is a threshold for the variable x. With equation (8),
the discontinuity at the threshold boundary becomes clear. It
then follows that the hyperplane of interest coincides with the
threshold value of the variable of interest.
Definition 2 [8]: Let Ω = Ω1 ×Ω2 × ...×Ωn be the partitioning

of phase space of (7) by the threshold hyperplanes where Ωi =

{x ∈ <+ : 0 ≤ x ≤ maxi}. A domain D is defined to be a set
D = D1 × D2 × ... × Dn where Di is one of the following:

Di = {xi ∈ Ωi : 0 ≤ xi < θ
1
i } (9)

Di = {xi ∈ Ωi : θ j
i < xi < θ

j+1
i }, j = {1, 2, ..., pi − 1}(10)

Di = {xi ∈ Ωi : θpi
i < xi ≤ maxi} (11)

Di = {xi ∈ Ωi : xi = θi
j}, j = {1, 2, ..., pi} (12)

The threshold hyperplane partitions the state space of the net-
work into two different domains known as regulatory and
switching [8],or regular and switching [27]. Regulatory (or reg-
ular) domain refers to boxes where the state of the network is
known. This is given by any of equations (9) to (11). It then
follows that a domain is regulatory or regular if none of its vari-
ables’ concentration is at a threshold value which can be inter-
preted as

Di = {xi ∈ Ωi : xi , θi, }

or

Di = {xi ∈: Ωi : xi < θi, xi > θi}

Switching (or singular) domain, similarly, is where the state of
the network cannot be determined because at least one variable
assumes a threshold value. So, D is called a switching (or sin-
gular) domain of order k ≤ n, denoted Dk, if exactly k variables
have threshold values in Dk. xs in this case is called a switching
variable. This is an intersection of a box and hyperplane and
given by a combination of equation (12), with or without, any
or some of equations (9) to (11). Mathematically speaking, a
singular domain is defined as

D =
(
xs = θs, xr , θr

)
where subscripts s and r denote switching (or singular) and
regulatory (or regular) variables respectively.

Example 1
To illustrate these domains, consider a two dimensional net-
work (that is, a network with two variables only) whose vari-
ables have one threshold each. The state space of the network is
shown in Figure 1. There are four regular boxes in this network
given as Bi i = 1, 2.3, 4 These boxes are defined as follows

B1 = {x1 < θ1, x2 < θ2}

B2 = {x1 > θ1x2 < θ2}

B3 = {x1 > θ1, x2 > θ2}

B4 = {x1 < θ1, x2 > θ2}

The switching domains for example 1 are the following

D1
1 = {x1 < θ1, x2 = θ2}

D2
1 = {x1 > θ1x2 = θ2}
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D3
1 = {x1 = θ1, x2 < θ2}

D4
1 = {x1 = θ1, x2 > θ2}

D5
2 = {x1 = θ1, x2 = θ2}

As the superscript denotes, D1
1 to D1

4, known as walls, are of
order 1 because only one variable switch at a time in them
whereas D2

5 , called centre, is a switching domain of order two
because the two variables switch simultaneously. Total number
of regulatory domains in a network where each xi has mi thresh-
olds have been obtained for this class of network [28, 8]. It is
given as

n∏
i=1

(
mi + 1

)
The number of switching domains in this network has not been
given in literature and as such, it is one of the main result of this
study shall present in section 3.

Consider the piecewise linear model presented below

ẋi(t) = βiS ±(x, θ) − γixi (13)

where

S ±(x, θ) = 1 − S ∓(x, θ)

is same as equation (8). Within a box Bi, equation of motion
given by (7) becomes

ẋi = fiBi − γixi (14)

In vector form, equation (14) is given as

Ẋ = FB − ΓX (15)

where FB and Γ are diagonal matrices which give the produc-
tion and degradation rate function in the system.
Within a box, Bi, the solution of (14) is given as

xi(t) =
fi
γi

+
(
x0 −

fi
γi

)
e−γi(t−t0) (16)

and in finite time, t → ∞, the solution trajectory approaches

φBi
i =

fi
γi

(17)

which is called the focal point of the box Bi. The set of all focal
points in the network is given in vector form as

Φ = {φBi
i }

n
i=1

It is obvious from equation (16) that solution curves of
equation (14) are straight lines inside a box. These curves,
which are directed towards the focal point of their respective
boxes, originate from a different point on a threshold hyper-
plane and might show corners [29]. As observed earlier, if the
solution trajectory hits a threshold wall one may be at a loss for
what to do. Sequel to this, a threshold wall is said to be trans-
parent if solutions trajectory can be extended through it. That is
to say, if trajectory can cross through it. A threshold wall is said

Figure 1: Network Partitioned by two thresholds θ1 and θ2 for x1 and x2

respectively

to be white if solution trajectory rebounds from it while a wall is
said to be black if trajectories slide on it. These definitions are
good but fail to capture qualities such as relapse in biological
network, where a variable can regain or loss its position in the
curse of discharging its duty. For black walls, Filippov proposes
a way to define a vector field on it. This class of walls are con-
sidered stable [13]. But white walls are never stable. Though
the interest of this study is not in the stability or otherwise of
these classes of domains, it is important to note that a definition
that captures the actual happening within a threshold wall can
really affect the stability properties of walls. For results on sta-
bility (of box and wall), see Theorems 1 and 6 (respectively) in
[13].
The definition of the threshold hypeprlane, depending on the
behaviour of trajectory in the vicinity of the hyperplane, is of
any of the following

• if a threshold hyperplane is such that trajectories depart
from it and enter the adjacent boxes, then it is said to be
white

• if a threshold hyperplane is such that trajectories ap-
proach it from either adjacent box, then it is said to black

• a threshold wall that is neither black nor white is said to
transparent

As shall be shown later, this classification in a ’conventional
sense’ does not capture intrinsic behaviours in some systems,
and as a result, this study shall propose new definitions that can
capture such qualities.

2.2. Filippov’s First Order Theorem ([12])

Let x ∈ Σ and let n(x) be the normal to Σ at x. Let nT (x) f1(x)
and nT (x) f2(x) be the projections of f1(x) and f2(x) onto the
normal to the hypersurface Σ, where nT (x) is the transpose of
n(x) .
(a) Transversal intersection exists if, at x ∈ Σ ,

[nT (x) f1(x)][nT (x) f2(x)] > 0 (18)

(b) Sliding mode exists if, at x ∈ Σ ,

[nT (x) f1(x)][nT (x) f2(x)] < 0 (19)
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From equation (18), it is evident that either [nT (x) f1(x)] > 0
and [nT (x) f2(x)] > 0 or [nT (x) f1(x)] < 0 and [nT (x) f2(x)] < 0.
As explained in [14] the flow will enter H1 or H2 respectively
in each of those cases. For equation (19) to be satisfied, then

[nT (x) f1(x)] < 0 (20)

and

[nT (x) f2(x)] > 0 (21)

or

[nT (x) f1(x)] > 0 (22)

and

[nT (x) f2(x)] < 0 (23)

Equations (18), (20) and (21), and (22) and (23) are used to
characterise the hyperplane Σ as transparent, black and white
respectively. Transparent hyperplane is same as transverse in-
tersection given by equation (18), equations (20) and (21) gives
the condition that guarantee a hyperplane to be black known
as sliding hyperplane and equations (22) and (23) produces
white wall called repulsive sliding hyperplane, see [14]. On
the threshold hyperplane, Filippov’s convex function has been
defined as follows [12, 13]

fw = (1 − α) f j + α fi (24)

where

α(x) =
nT (x) f j(x)

nT (x)( f j(x) − fi(x))
(25)

and 0 ≤ α(x) ≤ 1. w stands for wall, i : xi < θi and j : x j > θ j

Filippov’s First Order Theory shall be used to propose new
characterisation or definition for the nature of threshold hy-
perplanes in networks that exhibit the properties under study.
These definitions shall focus on the existence of convex con-
stant α(x) given by equation (25) which is verifiable rather than
the definitions presented earlier in subsection 2.1.

3. Result and Analysis

This section presents the result of this study. The results
come in the form of proposition that will give new characterisa-
tion of walls and their nature. Examples of these walls are the
threshold hyperplane, x1 = θ1 and x2 = θ2 shown in Figure 1
and defined as before. Sequel to the presentation shall be anal-
yses of some networks (using the new results from this study)
to expose the weakness in the existing definitions thereby high-
lighting the significance of our study.

3.1. Proposition I: Nature of switching hyperplane
A characterisation of switching hyperplane (that is wall) is

presented using the vector field equation (14) in the boxes adja-
cent to the dswitching hyperplane with the assumption that nT

as defined in subsection 2.2 is non-negative.
Let B j = {x ∈ Xn : xi < θi} and Bk = {x ∈ Xn : xi > θi} be

two boxes adjacent to a threshold wall xi = θi. Given that the
conditions contained in equations (24) and (25) are satisfied by
(20) at the threshold hyperplane Σ where xi = θi, then the nature
of the hyperplane Σ can be defined as any of the following

• Σ is said to be transparent if

f B j

i = f Bk
i (26)

• Σ is said to be white if

f B j

i > f Bk
i (27)

• Σ is said to be black if

f B j

i < f Bk
i (28)

where f Bτ
i refers to vector field equation (14) for xi in the box

τ = i, j

3.2. Proposition II: Nature of walls
Another way of characterising a switching hyperplane using

the focal points of boxes adjacent to the hyperplane is presented
here.
Let Σ be a hyperplane where only one variable, xi, is singular
(that is where xi = θi) and B j = {x ∈ Xn : xi < θi} and Bk =

{x ∈ Xn : xi > θi} be two boxes adjacent to Σ with φ j and φk the
respective focal points of the boxes adjacent to Σ. Then

• Σ is said to be transparent if

xi < θi ⇒ φ j > θi and xi > θi ⇒ φk > θi (29)

or

xi < θi ⇒ φ j < θi and xi > θi ⇒ φk < θi (30)

In the event of (29), the new definitions which this study
proposes is that the wall is transparently increasing
while for (30) it is said to be transparently decreasing.

• Σ is said to be white if

xi < θi ⇒ φ j < θi and xi > θi ⇒ φk > θi (31)

• Σ is said to be black if

xi < θi ⇒ φ j > θi and xi > θi ⇒ φk < θi (32)

3.3. Proposition III: Number of switching hyperplanes
The stability of network of the nature considered here

has been discussed [30, 31, 13]. The equilibrium of this
network revolves around the focal points in the two domains
- regulatory and switching respectively [13, 30]. The total
number of regulatory domains has been obtained [28]. If the
stability of this system can be discussed with respect to its
switching domain, it will not be out of place to characterise
singular domains of all orders. So, this subsection is for such
result. First, number of walls is presented followed by pencils,
centres and number of regulatory domains where k variables
switch.
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3.3.1. Walls
Let (13) be such that only one variable out of n variable

switch at a time, where each variable has mi thresholds. Then
the number of walls belonging to xi = θi is

mi

n−1∏
j=1

(
m j + 1

)
(33)

where j = 1, 2, · · · , i − 1, i + 1, · · · , n
The total number of walls in such network is given

n∑
i=1

[
mi

n−1∏
j=1

(
m j + 1

)]
(34)

3.3.2. Pencils
Let equation (13) be such that each variable xi has mi thresh-

olds at which it interacts with other variables in the network.
The number of pencils in such a network where k variables
switch at a time is

k∏
s=1

ms

n∏
r=k+1

(
mr + 1

)
(35)

The total number of such pencils is

n∑
i=1

[ k∏
j=1

m j

n−k∏
j=k+1

(
m j + 1

)]
(36)

3.3.3. Centres
The number of centres in a network with n variables is

n∏
s=1

ms (37)

3.3.4. Regular Domains where k variables switch
The total number of regular domains in a network where k

variables switch at a time is
n−k∏
i=1

(
mi + 1

)
(38)

3.4. Verification of Results

Three networks to illustrate the effectiveness and advan-
tage of our results over existing results are presented here. To
achieve this, the following network examples from [25, 30, 32]
are considered. The walls of the network from [32] agrees com-
pletely with our result on the definition of walls. The second ex-
ample from [25] showed a wall as decreasing instead of increas-
ing which changes and affects the qualitative properties of the
network. In the third example [32], two new non-transparent
walls were discovered. These were obtained from the result of
this study.

3.4.1. Example Networks
The three example networks are as follows

Example 2 [28]

ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1

ẋ2 = 1 − Z1Z2 − γ2x2

Example 3 [26]

ẋ1 = k1Z̄2Z3 − γ1x1

ẋ2 = k2Z2Z3 − γ2x2

ẋ3 = k3(Z̄1 + Z2 − Z̄1Z2) − γ3x3

Example 4 [13, 27]

ẋ1 = k1Z1
1 + k3Z2

2 − x1

ẋ2 = k2Z2
1 + k4Z2

2 − x2

Example 2 is a network that has two variables with a thresh-
old associated with each of the variables. Using the result of
equation (33), the number of thresholds walls associated with
these thresholds is 1(1 + 1) × 1(1 + 1) = 4. This is as shown in
Figure 1. The network of this example has no pencil and just a
centre. With the use of equation (8) in this example, the vector
equation and their focal points inside the boxes Bi, i = 1, 2, 3
and 4 as defined by equations (14) and (17) respectively are as
given below.

B1 : ẋ1 = −γ1x1; ẋ2 = 1 − γ2x2 and (0, γ−1
2 ) (39)

B2 : ẋ1 = 1 − γ1x1; ẋ2 = 1 − γ2x2 and (γ−1
1 , γ−1

2 ) (40)

B3 : ẋ1 = −γ1x1; ẋ2 = −γ2x2 and (0, 0) (41)

B4 : ẋ1 = 1 − γ1x1; ẋ2 = 1 − γ2x2 and (γ−1
1 , γ−1

2 ) (42)

Threshold hyperplanes (walls) of this network as described in
example 1 has the following characterisations:

D1
1 = {x1 < θ1, x2 = θ2} is transparent.

D2
1 = {x1 > θ1x2 = θ2} is black.

D3
1 = {x1 = θ1, x2 < θ2} is white.

D4
1 = {x1 = θ1, x2 > θ2} is black.

D1
1 is described as transparent in [32]. The focal points of

the switching variable x2 in boxes adjacent to D1
1 ,which are B1

and B4, given by equations (40) and (41) satisfies propositions
I and II. For instance, x2 has the same focal points (which is
greater than zero) in each of the said boxes. Inside B1 , x2 < θ2
but φ2 > θ2 (see [32] for the value of the constant) satisfy-
ing proposition II. Again, the production function for x2, the
switching variable, in the two boxes are the same (1 in each
case). This satisfies Proposition I as well. The same analy-
sis can be carried out for all the other threshold hyperplanes,
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D2
1,D3

1 and D1
1 to see that the proposition is effective in char-

acterizing threshold hyperplanes.
Example 3 has three (3) variables with a threshold each. The
use of proposition III shows that there are a total of twelve (12)
threshold hyperplanes in the network. Each of the thresholds
for the variable has four (4) walls associated with it. When the
result of monotonicity of transparent walls is applied to these
walls, it contradicts the result presented in [25].To see this, we
refer to Figure 2 shown below.

The use of (29) or (30) on these walls given as the
edges of the cube in Figure 2 reveals that the wall be-
tween the box B2 := x1 < θ1, x2 > θ2, x3 < θ2 and
B3 := x1 > θ1, x2 > θ2, x3 < θ2 is not increasing in nature as
shown in the flow diagram in [26]. Our result shows that the
wall is actually transparently decreasing which produces Figure
2. From this it can be seen that the box (node), indicated as a
source in [26] is not so. This node is the box B2 represented
as (010) on the flow diagram shown in Figure 2. The node
that is a source from the result of this study is the box B3
represented as (110) on Figure 2. To see clearer the usefulness
of the results of this study, consider the focal point of these
two boxes obtainable as (0, 0, k3γ

−1
3 ). This means that the two

boxes have the same focal point. From this focal point one
sees that x1 < θ1 ⇒ φ1 = 0 < θ1 and x1 > θ1 ⇒ φ1 = 0 < θ1
which satisfies equation (30) and shows that the said wall is
transparently decreasing. Again, the focal point of the box
B2 defined as a source by the flow diagram of [25] is 0 and
contradicts that box as a source because the switching variable
x1 is trapped within that box at all times. The box B3 , on the
other hand, has the focal points of all the variables exiting the
domain in finite time as each variable switch, showing that the
said box is a source indeed. The focal points of these boxes as
obtained agree quite well with those reported in [13] as well.

Finally, example 4 is a two-dimensional network whose
variables have two thresholds each. The phase space diagram
of the network is presented in Figure 3. As is evident from Fig-
ure 3, this network has eight boxes denoted B1 to B9. There
are twelve one-dimensional domains (that is, walls) which are
the edges of the corresponding boxes bounded by the thresh-
old values, θ1 and θ2 respectively. The intersection points of
the thresholds, (θi

1,θi
2) where i = 1, 2, is the centre and there are

four of these centres in the network presented in example 4. See
Figure 3. This can be verified using equations (36) and (37) of
proposition III. Each threshold has three walls associated with
it while each variable has six walls associated with it. Testing
these walls to characterize them as black, white or transparent,
using proposition I, revealed that there are two walls previously
considered transparent in [13] which are actually white in na-
ture. These are the walls between B3 and B4 on one side, and B7
and B8 on the other. To see this, observe that the vector motion
for x2 which switches between the boxes B3 and B4 in these
boxes are respectively

ẋ2 = k2 + k4 − x2; ẋ2 = k2 − x2 (43)

while for the wall belonging to x1 between the boxes B7 and B8

Figure 2: Flow Diagram of Example 3 Network

Figure 3: Phase Space Diagram of Example 4 Network

the vector equations are respectively

ẋ1 = k1 + k3 − x1; ẋ1 = k1 − x1 (44)

Using proposition I shows f B4
2 − f B2

2 = k4 and k4 , 0, meaning
that the walls is not transparent. As such α defined by equation
(25) can be found such that equation (24) can be defined on the
wall. Similar thing can be conducted on equation (44) to show
that the wall is not transparent. This notwithstanding, Proposi-
tion II can be used to characterize the said wall.
For this, the focal point of x1 in the boxes of interest are

φB8
1 = k1 + k3; φB7

1 = k1 (45)

Apply proposition II to equation (45) to see that x1 < θ1
1 ⇒

φB7
1 = k3 < θ1

1 and x1 > θ1
1 ⇒ φB7

1 = k1 + k3 > θ1
1, (see

[28, 27] for details on the relationship between rate constants
and threshold values). Thus, a conclusion can be reached that
the wall is white and not transparent.
These walls though white can have Filippov vector motion de-
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fined on them using equations (24) and (25). This non-unique
vector motion can be obtained as follows

W1 : (ẋ1, ẋ2) = (0, k4 − x2) (46)

W2 : (ẋ1, ẋ2) = (k4 − x2, 0) (47)

Using the characterisation in propositions II, the flow dia-
gram shown in Figure 4 is obtained.

4. Discussion

A regulatory domain (that is, box) in piecewise linear mod-
els of the nature discussed here can be stable or not. It is said to
be asymptotically stable if its focal point is contained in the box
as t → ∞, otherwise it is said to be unstable. The same concept
was adopted in [13] to study the stability of non-transparent
walls. That is, a threshold wall is said to be stable if the fo-
cal point of the vector defining motion on it belongs to the
set defined by the closed convex hull of equation (6) in finite
time. If it is such that it resides on the wall as t → ∞, then
it is asymptotically stable. Based on this, it is expected that
the qualitative properties of the network in example 3 should
change due to the wrong classification of the walls described
above. The stability analysis of the walls of the network which
depends on the nature of walls is seen to be greatly affected.
This will in turn affect cycles and some other properties of the
network. It then follows that the definition proposed in this net-
work is better and should be preferable as it can actually bring
out some hidden qualities in the networks. From these qualita-
tive properties, one can study the behaviour of the variables.

As seen from the result some walls were defined in a way
that does not capture the intrinsic behaviour associated with bi-
ological regulatory networks. Such behaviours include relapses
in elements involved in the regulatory activities. This is one of
the reasons the two walls in example 4 previously thought to
be transparent were not but white. Our conjecture in this case
is that the focal point of the switching variable could not attain
the threshold boundary let alone crossing it. As it approaches
the threshold vicinity, relapse occurs in the production activity
which decreases rise in variable’s concentration that result in
failure to stimulate switching which caused its focal point to
drift away from the wall. Knowledge of such properties can
help in identifying where there should be search for failures in
such systems

The implication of equation (26) which is one of the results
of this work is that if no α exists with respect to the wall of in-
terest such that equation (24) holds, then the wall is transparent,
a criterion for searching for transparent walls. Also by provid-
ing equation (35), one can know switching domain of any order
k < n, in terms of number.

The study as presented used step function as threshold func-
tion which is limiting because it is a crude approximation of
happenings within the vicinity of thresholds. Smooth functions
such as Hill function is known to be better in studying systems
with steep behaviour. We limited this study to step function be-
cause of the interest of the work which is to classify the thresh-
old hypeplanes. It is the reason we proposed new definition

Figure 4: Flow Diagram across the Walls of Example 4 Network

based on the position of focal points in adjacent boxes to thresh-
old walls to take care of relapses and rebounds in the vicinity of
the threshold. One of the questions that arise from this study is
how the new definition affects stability of singular solutions at
threshold boundaries. For instance, solutions are not expected
to stay on transparent wall. The two walls identified as white
here were not studied for stability in [13]. Also the qualitative
properties too have to change. Currently a work on the devel-
opment of the propositions into theorems that can take care of
stability and related qualitative properties is under way. Fur-
thermore, with knowledge of how many singular domains are
obtained in a network, one can study the stability of the entire
system by investigating the relationship between the stability of
regular and singular domains.

5. Conclusion

The work presented in this paper is piecewise linear models
of threshold dependent networks. Such network is associated
with rectangular regions bounded by the threshold hyperplane
of the network. Dynamics of the system inside these rect-
angular regions can be given by piecewise linear differential
equations (PLDE). These threshold hyperplanes as defined
before failed to capture the real behaviour of the network
in their vicinity. By using Filippov’s method we proposed
a definition which identified correctly some hyperplanes not
properly defined before. The consequence of our condition for
transparent walls is that the first task in walls analysis should
be to test for transparency or not. By so doing, one can then
know which walls to investigate for qualitative properties.
Classifying transparent wall as decreasing or increasing reveals
the behaviour of variable in the vicinity of threshold walls.
This classification means that one can easily identify which
variable is gaining or losing in function at the walls and as such
take appropriate decision on what to do to obtain a better result
at such places.

The characterisation of nature of walls presented in propo-
sition I and II is considered from the point of view of focal
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point and vector field of regulatory domains adjacent to the
wall respectively. It is derived from Filippov’s first order theory
presented in section two. Furthermore, the result on switching
domain obtained has not been given before to the best of our
knowledge. It then follows that the results presented in this
work, which is novel and applicable to real life problem, can
be used with ease by non-mathematics researcher.
Again, Proposition III can be used to easily check the number
of switching domains of order k = 1, 2, ..., n involved in the
network to have a guide on how to about the required analysis.

It is our hope that the results obtained in this work shall
guide researchers in this area to obtain less spurious results.
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