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Abstract

The temperature and fluid profiles of flow inside tilted square cavities are analysed with two different cases of thermal boundary conditions,
(1) Isothermally cold sidewalls of the cavity and the hot bottom wall kept parallel to the insulated top wall, (2) Hot left wall, cold right wall,
insulated top and bottom walls. The Galerkin finite element method with penalty parameter is used to solve the nonlinear coupled system of
partial differential equations governing the flow and thermal fields. The method is further used to solve the Poisson equation for stream function.
The results are presented in terms of isotherms and streamlines. The Gaussian rule with the hybrid function formed from the block-pulse function
and Lagrange polynomial is implemented for the evaluation of the definite integrals present in the residual equations. Attempting to affix the
hybrid methods in the integration part for solving Finite Element Method (FEM) turned efficacious as the convergence is achieved for streamlines
and isotherms with the existing results. The tilted square cavities with inclination angles 0

◦

≤ φ ≤ 90
◦

and Rayleigh number ranging between
103 ≤ Ra ≤ 105 for Pr = 0.71 (air) are investigated. The source code for the finite element analysis is written in Mathematica. The results thus
obtained are found to be competent with those of COMSOL, the Software for Multiphysics Simulation.
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1. Introduction

The term ‘convection’ is derived from the Latin convectare,
which means to take to a place. During the transmission of heat,
convection can be defined as the drift of heat energy from or to
a solid because of nearby fluid in motion, in the existence of
a temperature gradient. Further classified into two major types
depending upon the source of the fluid motion: Forced con-
vection, where the fluid movement happens due to an external

∗Corresponding author tel. no: +914439931239
Email address: prabhakar.v@vit.ac.in (Prabhakar.V)

influence, such as a fan, extractor, pump etc. It is called as a
natural convection, when the fluid movement is solely due to
the characteristics of the fluid between two determined points
of the process. The fact that the velocity and the temperature
equations are solved all together makes the study of natural
convection seemingly complex. The natural convection within
a cavity plays important roles in many science and engineering
applications namely heat exchangers [1], solar stills [2], cooling
of electric and electronic components [3], nanoscience [4]-[6],
etc. Square cavity with obstacles, lid-driven, heated walls are
also in the scope of the researchers [7]-[16].
Navier stokes equations governs the fluid flow, whereas the en-
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ergy balance equations regulate the nature of the temperature.
Among the various methods utilized to handle square cavities,
FEM, a very competent method in dealing complex geome-
tries and unstructured domains, is employed in this work. As
the complexity increases, the integration process to calculate
the stiffness and mass matrix becomes more complicated. The
penalty finite element method [17] is involved in the nonlinear
system of dimensionless governing equations of the 2D flow
problem to waive the pressure constant. Two non-dimensional
numbers, Prandtl number (Pr), signifying how much heat is
carried away by how much fluid, transferring from one point
to another and Rayleigh Number (Ra), describing the relation-
ship between buoyancy and viscosity within the fluid, are ex-
plored for the convectional fluid flow. The tilted square cavi-
ties with inclination angles 0

◦

≤ φ ≤ 90
◦

and Rayleigh number
ranging between 103 ≤ Ra ≤ 105 for Pr = 0.71 (air) are inves-
tigated. The Rayleigh number above 103 will display a distinc-
tive change in the convective heat transfer rate as the inclination
angle is increased. At Ra = 103 and Ra = 105 gives the mini-
mum and maximum heat transfer rate as the angle increases [8].
Literature provides with various methods for solving ODEs and
PDEs and differential equations are solved using block meth-
ods, step points, numerical methods, etc., [18]-[22].In common
practice, Gaussian quadrature method is used for evaluating
the integrals present in the finite element equations. Among
the numerical methods available in the literature, a technique
based on the Hybrid function approximation for solving non-
linear initial-value problems with applications to Lane-Emden
type equations was suggested [23]. They made use of the prop-
erties of block-pulse functions and Lagrange interpolating poly-
nomials to reduce the nonlinear initial-value problem to a sys-
tem of non-algebraic equations to arrive at the accurate results.
The same method was also used to provide accurate results
for solving nonlinear integro-differential equations such as in
Volterrra’s population model [24] and Volterra-Fredholm equa-
tion, and also for variational problems. A comparative study of
quadrature rules based on Haar wavelet and Hybrid function of
block-pulse and Legendre polynomial, for finding the approx-
imate value of the definite integrals, was made and the proce-
dure was extended to the numerical solution of double and triple
integrals with variable limits [25, 26]. It was observed that
the hybrid method provides faster convergence when related to
Haar Wavelet and that the orders of the block-pulse function
and Legendre polynomial can be attuned to attain very precise
solution. Hybrid of Block-Pulse function using Lagrange poly-
nomial was considered for evaluation by [27] for the evalua-
tion of general double and triple integrals with variable limits
that shows better accuracy over Haar Wavelet. Solution of vari-
ational problems are also derived using the same [28]. Vari-
able weights are used for the study in contrast with the constant
weights considered in [25].
The square cavities inclined at angles 0

◦

≤ φ ≤ 90
◦

are studied
with the fluid (Pr = 0.71) flowing within a two dimensional,
steady and laminar flow across the calculation domain with two
different cases of thermal boundary conditions (BC),
(Case 1) Isothermally cold sidewalls of the cavity and the hot
bottom wall kept parallel to the insulated top wall,

Figure 1. Square tilted at angle (Case 1) φ

(Case 2) Hot left wall, cold right wall, insulated top and bottom
walls.
are featured in the present work. An endeavour is made to in-
corporate this hybrid method in the integration part for solv-
ing FEM turned efficacious as the convergence is achieved for
streamlines and isotherms with the existing results in the litera-
ture [10, 12]. The source code for the finite element analysis is
written in Mathematica and the results obtained are compared
with COMSOL. Mathematical Procedure involving the Govern-
ing Differential Equations (GDEs) and finite element formu-
lation is discussed in the first section, Hybrid method for the
numerical integration is explained in the next section, and the
results are detailed in the last section.

2. Methodology

2.1. Computational technique

The physical domain (D) of square cavity (PQRS) with
angles of inclination 0

◦

≤ φ ≤ 90
◦

for both thermal bound-
ary conditions is considered in the present study. The range
of Rayleigh’s Numbers falls between 103 ≤ Ra ≤ 105 for the
study. Figure 1, shows a clear picture of the geometry consid-
ered, incorporating case 1 boundary conditions.

Physical properties are kept constant during the calculation
except the density in buoyancy term, where change in den-
sity due to temperature variation is estimated using Boussi-
nesq approximation. The phenomena of thermal and fluid flow
inside the domain are governed by the energy balance and
Navier–Stokes equations, respectively. The governing equa-
tions for steady natural convection flow using conservation of
mass, momentum and energy in dimensionless form are given
below:

∂U
∂X

+
∂V
∂Y

= 0 (1)

U
∂U
∂X

+ V
∂U
∂Y

= −
∂P
∂X

+ Pr
(
∂2U
∂X2 +

∂2U
∂Y2

)
(2)
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U
∂V
∂X

+ V
∂V
∂Y

= −
∂P
∂Y

+ Pr
(
∂2V
∂X2 +

∂2V
∂Y2

)
+ Ra Pr θ (3)

U
∂θ

∂X
+ V

∂θ

∂Y
=
∂2θ

∂X2 +
∂2θ

∂Y2 (4)

The penalty finite element method [17] is used to eliminate
the pressure term by the inclusion of the penalty parameter (γ)
in the equations (2) and (3) with the following relationship in-
volving the incompressibility.

P = −γ

(
∂U
∂X

+
∂V
∂Y

)
(5)

Generally, (γ = 107) is considered for reliable solutions
[10]. Applying (5) to (2) and (3) yields

U
∂U
∂X

+ V
∂U
∂Y

= −γ
∂

∂X

(
∂U
∂X

+
∂V
∂Y

)
+ Pr

(
∂2U
∂X2 +

∂2U
∂Y2

)
(6)

U
∂V
∂X

+ V
∂V
∂Y

= −γ
∂

∂Y

(
∂U
∂X

+
∂V
∂Y

)
+ Pr

(
∂2V
∂X2 +

∂2V
∂Y2

)
+ Ra Pr θ (7)

The whole domain is discretized into bi-quadratic elements.
Galerkin finite element method is applied to solve the system
of governing differential equations (6), (7) and (4).

A numerical integration method involving hybrid functions
explained in the section 2.3 is used for obtaining the finite el-
ement solutions from the residual equations. The thermal (θ)
and the velocity components (U&V) are expanded through ba-
sis set

{∑9
j=1 N j

}
given in equation (8). N js are the shape func-

tions. The procedure to obtain N js are detailed in [29] and those
functions considered for this study is provided in the Appendix.

U ≈
9∑

j=1

U jN j(X,Y),V ≈
9∑

j=1

V jN j(X,Y),

θ ≈

9∑
j=1

θ jN j(X,Y) (8)

The residual equations for an element are obtained by using
(8) in the governing equations, resulting in the following system
of nonlinear residual partial differential equations.

R(1)
i =

9∑
j=1

U j ×

∫
D


 9∑

j=1

U jN j

 ∂N j

∂X
+

 9∑
j=1

V jN j

 ∂N j

∂Y

 NidXdY

+ γ

 9∑
j=1

U j

∫
D

∂Ni

∂X
∂N j

∂X
dXdY +

9∑
j=1

V j

∫
D

∂Ni

∂X
∂N j

∂Y
dXdY


+ Pr

9∑
j=1

U j

∫
D

(
∂Ni

∂X
∂N j

∂X
+
∂Ni

∂Y
∂N j

∂Y

)
dXdY

(9)

R(2)
i =

9∑
j=1

V j ×

∫
D


 9∑

j=1

U jN j

 ∂N j

∂X
+

 9∑
j=1

V jN j

 ∂N j

∂Y

 NidXdY

+ γ

 9∑
j=1

U j

∫
D

∂Ni

∂Y
∂N j

∂X
dXdY +

9∑
j=1

V j

∫
D

∂Ni

∂Y
∂N j

∂Y
dXdY


+ Pr

9∑
j=1

V j

∫
D

(
∂Ni

∂X
∂N j

∂X
+
∂Ni

∂Y
∂N j

∂Y

)
dXdY

− Ra Pr
9∑

j=1

θ j

∫
D

N jdXdY

(10)

R(3)
i =

9∑
j=1

θ j ×

∫
D


 9∑

j=1

U jN j

 ∂N j

∂X
+

 9∑
j=1

V jN j

 ∂N j

∂Y

 NidXdY

+

9∑
j=1

θ j

∫
D

(
∂Ni

∂X
∂N j

∂X
+
∂Ni

∂Y
∂N j

∂Y

)
dXdY

(11)

For nine-noded biquadratic element (Figure 2) with three
degrees of freedom, residual equations (9)− (11) consists of 27
unknowns in 27 equations.

2.2. Stream function

The stream function is used to display the fluid flow and is
acquired from velocity components U and V . The relationships
between stream function, ψ and velocity components for 2D
flows are

U =
∂ψ

∂Y
and V = −

∂ψ

∂X
(12)

On differentiating (12), the governing equation for stream
function is attained.

∂2ψ

∂X2 +
∂2ψ

∂Y2 =
∂U
∂Y
−
∂V
∂X

(13)

Expanding the stream function ψ using the basis set

ψ ≈

9∑
j=1

ψ jN j(X,Y) (14)

and the relation for U, V from (8), the residual equations
for (13) is,

R(ψ)
i =

9∑
j=1

ψ j

∫
D

(
∂Ni

∂X
∂N j

∂X
+
∂Ni

∂Y
∂N j

∂Y

)
dXdY −

∫
Γ

Nin.∇ψdΓ

+

9∑
j=1

U j

∫
D
∂Ni

∂N j

∂Y
dXdY −

9∑
j=1

V j

∫
D
∂Ni

∂N j

∂X
dXdY

(15)

Applying no-slip boundary condition (ψ = 0), ψ’s is ob-
tained from the linear system (15). Stream functions (ψ′s)
thus obtained might be positive or negative denoting the anti-
clockwise and clockwise circulation respectively.

The integrands of the definite integrals appearing in (9)-(11)
and (15) are functions of the global coordinates X and Y . Fig-
ure 2 shows the co-ordinate transformation for the discretized
elements from the X − Y plane to s − t the plane [11]. The
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Figure 2. Coordinate transformation of the discretized element form
X − Y to s − t plane

Table 1. Isotherms of Ra = 103 ; Pr = 0.71; PS & QR-cold; SR-adiabatic;
PQ-hot

φ Mathematica results COMSOL results

15
◦

45
◦

75
◦

integrals appearing in the transformed residual equations are
evaluated using hybrid function of block pulse function and La-
grange polynomial. The transformed residual equations solved
for every node in the domain provides the thermal and velocity
components. Finite element procedure to solve this is briefed
in the Appendix.

It was shown that hybrid function based on block-pulse and
Lagrange polynomial gives better accuracy than Haar wavelets
and other hybrid functions [26], with comparatively lesser
nodal points. Motivated by the accuracy of this method in solv-
ing the differential equations (both linear and nonlinear), an in-
tegration scheme based on hybrid functions for definite single,
double and triple integrals was presented by [27]. An attempt
has been made in applying hybrid functions to obtain the finite
element solutions. Details regarding the hybrid function and the
integration scheme are explained in the following section.

Table 2. Isotherms of Ra = 104 ; Pr = 0.71; PS & QR-cold; SR-adiabatic;
PQ-hot

φ Mathematica results COMSOL results

15
◦

45
◦

75
◦

Table 3. Isotherms of Ra = 105 ; Pr = 0.71; PS & QR-cold; SR-adiabatic;
PQ-hot

φ Mathematica results COMSOL results

15
◦

45
◦

75
◦

2.3. Hybrid Function
Definition 1: Block pulse functions: A set of block-pulse

function φ j(t), j = 1, 2, ...J defined on the interval [0, 1) are
denoted as

φ j(t) =

1, t j−1 ≤ t ≤ t j

0, otherwise
(16)

where J represent the number of partitions of [0, 1) or the order
234
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Table 4. Streamlines of Ra = 103 ; Pr = 0.71; PS & QR-cold; SR-adiabatic;
PQ-hot

φ Mathematica results COMSOL results

15
◦

45
◦

75
◦

Table 5. Streamlines of Ra = 104 ; Pr = 0.71; PS & QR-cold; SR-adiabatic;
PQ-hot

φ Mathematica results COMSOL results

15
◦

45
◦

75
◦

of the block pulse function in [0, 1).

Definition 2: Hybrid functions of block pulse and Lagrange
polynomial functions: A set of hybrid functions h jk(t), j =

1, 2, ...J,

Table 6. Streamlines of Ra = 105 ; Pr = 0.71; PS & QR-cold; SR-adiabatic;
PQ-hot

φ Mathematica results COMSOL results

15
◦

45
◦

75
◦

Table 7. Isotherms of Ra = 103 ; Pr = 0.71; PS-hot; QR - Cold; PQ and SR
-adiabatic;

φ Mathematica results COMSOL results

0
◦

30
◦

50
◦

k = 0, 1, ...K − 1 on the interval [0, 1) are denoted as

h jk(t) =

Lk(2Jt − 2 j + 1), t ∈
[

j−1
J , j

J

]
0, otherwise

(17)

where Lk(t) denoting the Lagrange polynomial of order K. As
the block pulse functions and Lagrange interpolating polynomi-
als are complete and orthogonal,

{
h jk

}
is a complete orthogonal

set in the Hilbert space L2 [23].
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Table 8. Isotherms of Ra = 104 ; Pr = 0.71; PS-hot; QR - Cold; PQ and SR
-adiabatic;

φ Mathematica results COMSOL results

0
◦

30
◦

50
◦

Table 9. Isotherms of Ra = 105 ; Pr = 0.71; PS-hot; QR - Cold; PQ and SR
-adiabatic;

φ Mathematica results COMSOL results

0
◦

30
◦

50
◦

2.3.1. Approximation of function of a single variable:
A function f (t) ∈ L2

[
0, 1

)
can be approximated, in terms

of the hybrid functions as

f (t) =

∞∑
j=1

∞∑
k=0

c jkh jk(t) (18)

For an interval [0, 1) divided into J partitions and K internal

Table 10. Streamlines of Ra = 103 ; Pr = 0.71; PS-hot; QR - Cold; PQ and SR
-adiabatic;

φ Mathematica results COMSOL results

0
◦

30
◦

50
◦

Table 11. Streamlines of Ra = 104 ; Pr = 0.71; PS-hot; QR - Cold; PQ and SR
-adiabatic;

φ Mathematica results COMSOL results

0
◦

30
◦

50
◦

nodes in each partition, f (t) is taken in the form

f (t) ≈
J∑

j=1

K−1∑
k=0

c jkh jk(t) (19)

Considering K nodes in the jth partition
[

j−1
J , j

J

]
, denoted

by r jk, it can be shown that c jk = f (r jk) [26].
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Table 12. Streamlines of Ra = 105 ; Pr = 0.71; PS-hot; QR - Cold; PQ and SR
-adiabatic;

φ Mathematica results COMSOL results

0
◦

30
◦

50
◦

2.3.2. Approximation of function of two variables:
Extending the function approximation of a single variable

in terms of hybrid functions, the function f (t, u) defined in
[0, 1) × [0, 1) can be approximated as

f (t, u) ≈
J′∑

j=1

K′−1∑
k=0

J∑
j=1

K−1∑
k=0

c jklmh jk(t)hlm(u) (20)

by considering J partitions and K internal nodes in each
partition for [0, 1) in the t-direction, and J′ partitions and K′

internal nodes in each partition for [0, 1) in the u-direction. It
can be shown that

c jklm = f
(
r jk, rlm

)
(21)

where Gaussian nodes along the t and u directions are and r jk

and rlm respectively [25].

2.3.3. Integration scheme for the integrals in residual equa-
tions:

Using the function approximation from equations (19) and
(20), the integrals (both single and double) of the residual
equations can be easily evaluated as follows.

∫ 1

0
f (t)dt =

J∑
j=1

K−1∑
k=0

c jkw jk (22)

where w jk =
∫ 1

0 h jk(t)dt are the weights. As the hybrid function
h jk(t) is a polynomial, its weight can be easily calculated.

Similarly,

∫ 1

0

∫ 1

0
f (t, u)dtdu =

J′∑
j=1

K′−1∑
k=0

J∑
j=1

K−1∑
k=0

c jklmw jkwlm (23)

where w jk =
∫ 1

0 h jk(t)dt and wlm =
∫ 1

0 hlm(u)du are the weights.
For single integral J = 1 and K = 2; for double integrals J = 2,
K = 4, J′ = 3 and K′ = 5 are well accommodated for the
integrals present in the residual equations.

3. Results and discussion

We consider a two dimensional, steady and laminar flow
across the inclined square cavity (PQRS) under two different
thermal boundary conditions as mentioned in section 1. The
physical domain (D) of square cavity with angle of inclination
(φ), inclined with the X-axis within the acute angles of 15

◦

, 45
◦

and 75
◦

for case 1 and 0
◦

, 30
◦

and 50
◦

for case 2 thermal
boundary conditions is considered for the present study.
Pr = 0.7, and Ra varied from 103 to 105 for both the boundary
conditions are investigated. In order to assess the accuracy of
our numerical procedure, we have tested our algorithm for the
results presented in [10] for 28 × 28 elements and found to be
exactly matching. In this paper, however, we restrict our study
considering 20 × 20 elements (Figure 3) with the grid size of
51 × 51, which were also found to be in good agreement with
the isotherms and streamlines reported in [10]. Distributions of
isotherms and streamlines of case (1) are portrayed in Tables
1-3 and 4-6 respectively; Similarly Tables 7-9 and 10-12
illustrates the heat and fluid contours of case (2).

Observing the isotherms for case (1), when Ra is 103,
however inclined the square cavity is, there is not much
disruption, indicating heat transfer through conduction as
depicted in Table 1, whereas, when Ra is increased, isotherms
are concentrated at the hot and cold walls. Both clockwise and
anticlockwise circulations seen in all the Rayleigh numbers
are pondered at φ = 15

◦

. When Ra is 103, the secondary cells
are comparatively lesser in size but when it is 104 the cells
are slightly bigger and when the value of Ra is 105 the two
axisymmetric flow exquisitely occupies the entire cavity. As φ
increases to 45

◦

, the strength of anticlockwise circulation cells
increases (Table 5). As the angle of inclination increases, there
is a significant push of isotherms towards the right wall. At
φ = 75

◦

, the isotherms are found to be qualitatively similar to
those of φ = 45

◦

as the temperature contours are piling towards
the right wall (Tables 2 and 3). The overall amount of heat
transfer along the right wall increases with inclination angle
and decreases along the left wall.

In Table 6 at 45
◦

, strong primary anticlockwise circula-
tion cells occupy almost the entire part of cavity except top
corner of the wall QR. As inclination angle φ further increases
to 75

◦

, the primary circulation cells span the entire cavity
whereas secondary circulation cells completely disappear. It is
interesting to observe that the centre of left vortex for the fluid
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circulations is pushed towards the bottom wall and centre of
right vortex is pushed towards the top wall due to enhanced
tangential components of buoyancy force along the bottom
wall which tends to impose an anticlockwise fluid circulation.

Exploring case (2), the temperature contours exhibit a
gentle migration from left to right side of the calculation
domain for all the investigated. In Table 7, dealing with the
Ra = 103 , the contours are observed to exhibit an elegant
protuberance toward the right wall as there is a surge in the
inclination angles. Streamlines in these conditions are not
much varied but are laminar in nature as in Tab.12. With
increase in Ra, heat transfer due to convection is clearly
visible (Table 9). The difference is observed as φ is gradually
amplified. The fluid flow is more unruffled than in the case 1.
Only when Ra = 105 and φ = 0

◦

, the centre of the vortex is
not circular in shape as in Table 12. The flow in the circulation
cells are almost circular in shape near the core and further,
they swell and take the shape of the cavity near the walls due
to strong convection only increasing the angle of inclination.
From what is seen in the isotherms the convection mode of heat
transfer dominates over the conduction, as the inclination angle
increases. Evident picture of the conduction effect can be seen
in the contour for temperature. The movement of fluid backs
up the convection, due to the bulk movement of air triggers the
convective heat transfer moves the constant temperature line in
the direction of its motion.

Hence, the circulation cells are strained along these walls,
prevailing in the sizeable portion of the central region. The
temperature layer in the core breaks down because of the
good mixing occurring in the core. The inclined square is
the calculation domain, hence the effect of tangential and
normal components of buoyancy force relative to hot wall
gains importance for flow and thermal phenomena. Stronger
anticlockwise fluid circulations are witnessed when increasing
the angle of inclination as the buoyancy force along the hot
wall also grows. Results indicate that the fluid circulations,
isotherms are strongly dependent on the inclination angle of
the square cavity. The heat and the flow contours obtained by
using the hybrid function are in good agreement with [10] for
case (1) and [12] for case (2) where the FEM with traditional
Gaussian quadrature were used to carry out the calculation.

3.1. Comparison using COMSOL
The COMSOL Model Wizard was used to create a station-

ary, 2D Multiphysics model. The computation was carried out
in a physical machine with Intel i7 64-bit processor with 8 GB
of memory and SSD for storage, loaded with Windows 10 Op-
erating system. The time taken for computation for a partic-
ular Pr and various Ra is 20 seconds. The 2D geometry is
mathematically extended to infinity in both directions along the
z-axis, assuming no variation along that z − axis. A square
with 1metre on all sides is built, inclined to specific angles for
needed cases. Different components with different inclination
angles are created in the same model. ‘Parameters’ nodes are
present under global definitions, that are used for creating and

Figure 3. 20 × 20 meshing of the domain

defining the values of the non-dimensional temperature bound-
ary conditions for hot, cold and adiabatic walls, Rayleigh Num-
ber, Prandtl Number and the reference pressure.

Coupling of the fields are at ease even with more than one
physics interface. All applicable fields that can be used as in-
puts in one physics interface is spontaneously found in the other
physics interface’s Settings. Laminar flow (sp f ) takes care of
fluid properties, initial conditions, volume force and the pres-
sure of the fluid. Heat Transfer in Fluids (ht) handles the nature
of the heat transfer and the temperature boundary conditions.
The Mesh nodes are generated by meshing the domain, which
enables the discretization of the geometry into mesh elements.
The parameter Ra varied is listed for the given range using Aux-
iliary sweep. The set-up is computed. COMSOL Multiphysics
generates plot windows for displaying convergence results and
isothermal contours and streamlines. The results from COM-
SOL are compared with those of Mathematica for every bound-
ary condition and Ra found to be in good agreement.

4. Conclusion

In this paper, we considered a two dimensional, steady and
laminar flow across the tilted square cavity under two different
thermal boundary conditions: case (1) Isothermally cold side-
walls of the cavity and the hot bottom wall kept parallel to the
insulated top wall and case (2) Hot left wall, cold right wall, in-
sulated top and bottom walls. In case 1, it is found that two ax-
isymmetric flows dwell in the entire cavity, whereas, as the an-
gle of inclination increases, the primary circulation cells occupy
the entire cavity and the secondary circulation cells disappear
completely. In case 2, only at Ra = 105, the streamlines are cir-
cular only on enlarging inclination of the square cavity. In both
the cases as inclination increases, buoyancy force along the hot
wall gradually increases leading to stronger anticlockwise fluid
circulations corresponding to the Rayleigh number. Results in-
dicate that the streamlines and isotherms are strongly depen-
dent on the inclination angle of the cavity. An attempt has been
made to evaluate the definite integrals of the residual equations
of the finite element equations using Gaussian quadrature with
Hybrid functions of block-pulse function and Lagrange poly-
nomial as orthogonal polynomials, and the results are found
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to be in accordance with [10] for case (1) and [12] for case
(2). With hybrid functions, desired accuracy can be achieved
with the flexibility of choosing the orders of block pulse func-
tion and Lagrange polynomial independently. Finite element
results presented with Wolfram Mathematica were found to be
in good agreement with COMSOL Multiphysics. The model
can be applied for a field problem like plastic injection mould
flow, porous media flow etc., by varying the variables such as
fluid temperature, fluid velocity, mass weight and flow rate.
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APPENDIX

A.Notations used:

X =
x
L

,Y =
y
L

, (X and Y - distance in dimensionless form)

U =
uL
α
,Y =

vL
α

, (U and V - velocity components in dimen-
sionless form)

θ =
T − Tc

Th − Tc
(θ - temperature component in dimensionless

form; Th&Tc-Temperature at hot and cold)

P =
pL3

ρα2 (P - pressure in the dimensionless form)

Pr =
ν

α
(Pr - Prandtl number)

Ra =
gβ(Th − Tc)L3Pr

ν
(Pr - Rayleigh number)

α =
k
ρCp

(α - Thermal diffusivity)

B.The shape functions of the transformed residuals from
X − Y to s − t plane with reference to the local numbering
in the Figure 2.

N1 = (1 − 3s + 2s2)(1 − 3t + 2t2);
N2 = (1 − 3s + 2s2)(4t − 4t2);
N3 = (1 − 3s + 2s2)(−t + 2t2);
N4 = (4s − 4s2(1 − 3t + 2t2);
N5 = (4s − 4s2)(4t − 4t2);
N6 = (4s − 4s2)(−t + 2t2);
N7 = (−s + 2t2)(1 − 3t + 2t2);
N8 = (−s + 2t2)(4t − 4t2);
N9 = (−s + 2t2)(−t + 2t2);

C.The nonlinear residual equations (9) - (11) are solved by
the following procedure

Grouping the co-efficient of
∑9

j=1 U j from all three residues

s11 =

∫
D


 9∑

j=1

U jN j

 ∂N j

∂X
+

 9∑
j=1

V jN j

 ∂N j

∂Y

 NidXdY

+ γ

∫
D

∂Ni

∂X
∂N j

∂X
dXdY + Pr

∫
D

(
∂Ni

∂X
∂N j

∂X
+
∂Ni

∂Y
∂N j

∂Y

)
dXdY

(C.1)

s12 = γ

∫
D

∂Ni

∂Y
∂N j

∂Y
dXdY (C.2)

s13 = 0 (C.3)

Grouping the co-efficient of
∑9

j=1 V j from all three residues

s21 = γ

∫
D

∂Ni

∂Y
∂N j

∂X
dXdY (C.4)

s22 =

∫
D


 9∑

j=1

U jN j

 ∂N j

∂X
+

 9∑
j=1

V jN j

 ∂N j

∂Y

 NidXdY

+ γ

∫
D

∂Ni

∂Y
∂N j

∂Y
dXdY + Pr

∫
D

(
∂Ni

∂X
∂N j

∂X
+
∂Ni

∂Y
∂N j

∂Y

)
dXdY

(C.5)

s23 = −Ra Pr
9∑

j=1

θ j

∫
D

N jdXdY (C.6)

Grouping the co-efficient of
∑9

j=1 θ j from all three residues

s31 = 0 (C.7)

s32 = 0 (C.8)

s33 =

∫
D


 9∑

j=1

U jN j

 ∂N j

∂X
+

 9∑
j=1

V jN j

 ∂N j

∂Y

 NidXdY

+

∫
D

(
∂Ni

∂X
∂N j

∂X
+
∂Ni

∂Y
∂N j

∂Y

)
dXdY

(C.9)

Rewriting the governing equations, with the above substitu-
tions, in matrix form

R(1)
i

R(2)
i

R(3)
i

 =

9∑
j=1


si, j

11 si, j
12 si, j

13
si, j

21 si, j
22 si, j

23
si, j

31 si, j
32 si, j

33




U j

V j

θ j

 (C.10)

{
Ri

}
=

[
ki j

] {
U j

}
, 1 ≤ i ≤ 9 (C.11)

The integrands, which leads to the element stiffness matrix,
are functions of the global coordinates X and Y . The functions
N j can be expressed in terms of the local coordinates s and t.
Figure 2 gives an idea of co-ordinate transformation for the dis-
cretized elements in the X − Y plane to the s − t plane.

X =

9∑
j=1

x jN j and Y =

9∑
j=1

y jN j (C.12)

The integrand contains not only functions but also deriva-
tives with respect to the global coordinates (x j, y j). There-
fore, ∂N j

∂X and ∂N j

∂Y must be related to ∂N j

∂s and ∂N j

∂t . Applying
the shape functions to equation (C.10), the transformed finite
element equation is obtained. Element stiffness matrices thus
obtained are assembled using the element connectivity (Table
13) resulting in a global stiffness matrix.

The global stiffness matrix is solved to get the thermal and
the velocity components. On applying of the boundary condi-
tions to the walls, matrix reduces to 9 nodes (internal), i.e., 27
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Table 13. Element connectivity involving Nodes (N) and Elements (E)

NE 1 2 3 4
1 1 3 11 13
2 2 4 12 14
3 3 5 13 15
4 6 8 16 18
5 7 9 17 19
6 8 10 18 20
7 11 13 21 23
8 12 14 22 24
9 13 15 23 25

Figure 4. Isotherms contour of 4 elements inclined φ = 15
◦

; Ra =

104; Pr = 0.71 obtained from Mathematica

unknowns and equations, for the entire domain discretized to
for 2 × 2. The temperature contours of 4 elements for a tilted
square cavity with Ra = 104; Pr = 0.71 is displayed in Figure
4.
The values of the velocity (U ,V) and thermal components (θ)
for the internal nodes of the discretized domain with 2 × 2 (4
elements) are given below.
U7 = −0.0000228252,V7 = −0.0000176029, θ7 = 0.414016,
U8 = 4.69382E-6,V8 = −1.88969E-6, θ8 = 0.208614,
U9 = 0.0000131575,V9 = −1.06333E-6, θ9 = 0.121948,
U12 = −0.0000119197,V12 = −0.000053752, θ12 = 0.575621,
U13 = 0.0000149714,V13 = −0.0000638262, θ13 = 0.271557,
U14 = 0.0000157566,V14 = −0.000030133, θ14 = 0.171982,
U17 = 1.58957E-6,V17 = −0.000024564, θ17 = 0.414017,
U18 = 1.69972E-6,V18 = −0.0000310296, θ18 = 0.208615,
U19 = −1.65325E-6,V19 = −0.0000198665, θ19 = 0.121949.

The discretization was gradually increased until the con-
vergence was obtained at 20 × 20.
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