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Abstract

Intuitionistic fuzzy models are significant in resolving decision-making. Distance measures under intuitionistic fuzzy environment are reliable
techniques deployed to express the application of IFSs. Some approaches of estimating distances between IFSs have been explored by Szmidt and
Kacprzyk, where the complete parameters of IFSs are considered. Albeit, the distance operators lack reliability because of certain setbacks. In this
paper, we modified Szmidt and Kacprzyk’s distance operators between IFSs to enhance reliability in terms of applications. Some theorems are
given to substantiate the validity of the modified intuitionistic fuzzy distance operators. Futhermore, decision-making cases of pattern recognition
and disease identification are discussed using the Szmidt and Kacprzyk’s distances and their improved versions where information are represented
in intuitionistic fuzzy pairs. From the study, it is observed that the modified Szmidt and Kacprzyk’s distance operators between IFSs yield better
results compare to the Szmidt and Kacprzyk’s distance operators between IFSs.
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1. Introduction

Decision-making is a critical task enmeshed with vague-
ness. With the introduction of fuzzy sets by Zadeh [1], the
problem of vagueness has be considerably tackled to enhance
the solution of many decision-making problems including med-
ical diagnosis, career determination, pattern recognition among
others. Fuzzy set theory although relevant has a setback in the
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sense that it considers only the membership degree υ (MD) of
the case under consideration. Because of this setback, Atanassov
[2] proposed a generalized fuzzy set called intuitionistic fuzzy
set (IFS). IFS is described by membership degree υ, nonmem-
bership degree ν and intuitionistic fuzzy index $ with the prop-
erty that their sum is unity.

IFSs have been applied in sundry cases [3, 4, 5]. Chen et
al. [6] discussed fuzzy queries process based on intuitionistic
fuzzy social networks, De et al. [7] applied IFSs to medical
decision via composite relation, Ejegwa and Onasanya [8] im-
proved the intuitionistic fuzzy composite relation in [7] with ap-
plication to medical diagnosis, and Liu and Chen [9] presented
a group decision-making based on Heronian aggregation opera-
tors of IFSs. Several information measures have been studied to
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enhance the application of IFSs in real-life problems. Ejegwa
[10] proposed a new correlation coefficient of IFSs and applied
the measure to solve multi-criteria decision-making (MCDM)
problems. Many correlation coefficients of IFSs have been pro-
posed and applied to several decision-making problems [11, 12,
13, 14, 15]. Medical diagnostic problems were solved based
on intuitionistic fuzzy correlation coefficient as seen in [16, 17,
18]. Garg [19] presented a correlation coefficient under intu-
itionistic multiplicative environment with application in decision-
making process, and a new correlation coefficient of IFSs based
on the connection number of set pair analysis was studied with
application [20]. A robust technique of computing the corre-
lation coefficients of complex IFSs and their applications in
decision-making were discussed in [21]. TOPSIS method based
on correlation coefficient under intuitionistic fuzzy soft sets was
discussed and with application [22]. The idea of aggregation
operators has been applied in many cases of decision-making
[23, 24, 25, 26], and fuzzy soft set-valued maps has been intro-
duced and applied to homotopy [27].

Similarly, the concepts of similarity and distance measures
under intuitionistic fuzzy context have been discussed as re-
liable information measures. Boran and Akay [28] proposed
a biparametric similarity measure and applied the measure to
pattern recognition. A similarity measure of IFSs based on
transformation technique has been studied and applied to pat-
tern recognition [29]. In [30, 31], some similarity measures
of IFSs were introduced and applied to medical diagnostic rea-
soning. In addition, some similarity measures based on dice
and Jaccard approaches have been studied on expected intervals
of trapezoidal neutrosophic fuzzy numbers with application to
MCDM [32]. Burillo and Bustince [33] initiated the concept of
distances for IFSs and interval-valued fuzzy sets. Szmidt and
Kacprzyk [34] modified the distances in [33], and showed that
all the three parameters describing IFSs should be taken into ac-
count while calculating distances between IFSs. Hatzimichai-
lidis et al. [35] introduced a novel distance measure between
IFSs with application to cases of pattern recognition. Wang
and Xin [36] proposed a novel distance measure between IFSs
and its weighted version with application to the solution of pat-
tern recognition problem, Davvaz and Sadrabadi [37] revised
some existing distance measures and applied them to medical
diagnostic process, and other applications of distance measures
between IFSs have been studied [38, 39, 40, 41, 42].

Among the distances between IFSs studied in literature, dis-
tances in [34] are prominent for their reliable interpretations.
Albeit, these distances show some limitations which needed to
be strengthened to enhance reliable outputs. Although Szmidt
and Kacprzyk [34] modified the intuitionistic fuzzy distance
measures in [33] with better rating, they do not take account
the number of the considered parameters, but just added the
hesitation margins to the methods introduced in [33]. This set-
back adversely influence the performance rating of Szmidt and
Kacprzyk’s distances [34]. The motivation for this work is to
propose modified Szmidt and Kacprzyk’s distances which have
better performance indexes compare to Szmidt and Kacprzyk’s
distances taking into account the number of the considered pa-
rameters to forestall inaccurate outputs. Specifically, the objec-

tives of this paper are to (i) revisit Szmidt and Kacprzyk’s dis-
tances between IFSs, (ii) propose modified versions of the dis-
tances between IFSs in [34], (iii) apply the modified distances
between IFSs to determine pattern recognition and disease di-
agnosis, and (iv) present comparison analyses of the modified
distances with the Szmidt and Kacprzyk’s distances in intuition-
istic fuzzy domain. The paper is outlined as follow; Section
2 presents the concept of IFSs and discusses the Szmidt and
Kacprzyk’s distances between IFSs [34], Section 3 introduces
the modified Szmidt and Kacprzyk’s distances between IFSs,
Section 4 discusses the applications of Szmidt and Kacprzyk’s
distances and their modified versions in pattern recognition and
disease diagnosis, and Section 5 concludes the paper with rec-
ommendations for future studies.

2. Preliminaries

This section presents the concept of IFSs and discusses the
Szmidt and Kacprzyk’s distances between IFSs.

2.1. Intuitionistic fuzzy sets

Numerous works on IFSs have been carried out [2, 43, 3].
Here, some basic concepts of IFSs are presented. Let us assume
that Y is a non-empty set throughout this paper.

Definition 2.1. [43] An intuitionistic fuzzy set C of Y is de-
fined by C = {〈y, υC(y), νC(y)〉 : y ∈ Y}, where the functions
υC , νC : Y → [0, 1] are the membership and non-membership
degrees of y ∈ Y , and 0 ≤ υC(y) + νC(y) ≤ 1. For a IFS C in
Y , $C(y) ∈ [0, 1] = 1 − υC(y) − νC(y) is the intuitionistic fuzzy
index or hesitation margin of C.

Definition 2.2. [3] Suppose C and D are IFSs in Y , then for all
y ∈ Y we have

(i) C = D iff υC(y) = υD(y), νC(y) = νD(y).
(ii) C ⊆ D iff υC(y) ≤ υD(y), νC(y) ≥ νD(y).

(iii) C = {〈y, νC(y), υC(y)〉 : y ∈ Y}.
(iv) C ∪ D = {〈y,max(υC(y), υD(y)),min(νC(y), νD(y))〉 : y ∈

Y}.
(v) C ∩ D = {〈y,min(υC(y), υD(y)),max(νC(y), νD(y))〉 : y ∈

Y}.

Definition 2.3. [3] Intuitionistic fuzzy pair (IFP) is character-
ized by the form 〈c, d〉 such that c + d ≤ 1 where c, d ∈ [0, 1].
IFP evaluate the IFS for which the components (c and d) are
interpreted as membership and non-membership degrees.

2.2. Distances between intuitionistic fuzzy sets

Distance measure is a soft computing tool use in the appli-
cations of IFSs. The definition of distance measure between
IFSs is a follows.

Definition 2.4. [34] If C and D are IFSs of Y , then the distance
between C and D denoted by φ(C,D) is a function φ : IFS ×
IFS → [0, 1] which satisfies

(i) 0 ≤ φ(C,D) ≤ 1
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(ii) φ(C,D) = 0 iff C = D
(iii) φ(C,D) = φ(D,C)
(iv) φ(C, E) ≤ φ(C,D) +φ(D, E), where E is also an IFS of Y .

When φ(C,D) reaches 0, it shows that C and D are more
close or related. Again, if φ(C,D) reaches 1 then C and D
are not related or close. For any two IFSs C and D in Y =

{y1, · · · , yn}, we present the following distances between them.

2.2.1. Burillo and Bustince’s distances between IFSs
By extending the distances between fuzzy sets as presented

in [44], Burillo and Bustince [33] proposed the following dis-
tances under intuitionistic fuzzy environment:

φ1(C,D) =
1
2

Σn
i=1

(
|υC(yi) − υD(yi)| + |νC(yi) − νD(yi)|

)
(1)

φ2(C,D) =
(1
2

Σn
i=1
(
(υC(yi)−υD(yi))2+(νC(yi)−νD(yi))2)) 1

2 (2)

φ3(C,D) =
1

2n
Σn

i=1

(
|υC(yi)− υD(yi)|+ |νC(yi)− νD(yi)|

)
(3)

φ4(C,D) =
( 1
2n

Σn
i=1
(
(υC(yi)−υD(yi))2+(νC(yi)−νD(yi))2)) 1

2 (4)

The denominator in Eqs. (1-4) depicts the number of parame-
ters of IFSs considered similar to the approach in [44] where the
denominator is unity because fuzzy set considers only member-
ship function. The limitation of these approaches [33] is that
the hesitation margin is not considered in the computations.

2.2.2. Szmidt and Kacprzyk’s distances between IFSs
Because of the limitation in [33], Szmidt and Kacprzyk [34]

proposed the some distances by incorporating hesitation margin
of the considered IFSs. For simplicity sake, let υC(yi) = υC ,
νC(yi) = νC , $C(yi) = $C , υD(yi) = υD, νD(yi) = νD, $D(yi) =

$D. The distances are as follow:

φ̂1(C,D) =
1
2

Σn
i=1

(
|υC − υD| + |νC − νD| + |$C −$D|

)
(5)

φ̂2(C,D) =
(1
2

Σn
i=1
(
(υC−υD)2+(νC−νD)2+($C−$D)2)) 1

2 (6)

φ̂3(C,D) =
1

2n
Σn

i=1

(
|υC − υD| + |νC − νD| + |$C −$D|

)
(7)

φ̂4(C,D) =
( 1
2n

Σn
i=1
(
(υC−υD)2+(νC−νD)2+($C−$D)2)) 1

2 (8)

Though the distances in [34] captured the three parameters of
IFSs, the denominators in each equations do not depict the num-
ber of parameters of the considered IFSs. These omissions will
lead to information loss and thus, affect the interpretations.

3. Modified Szmidt and Kacprzyk’s Distances between IFSs

To enhance reliable outputs and avoid information loss, we
modified the Szmidt and Kacprzyk’s distances between IFSs
[34] using the same hypotheses in Subsubsection 2.2.2 as fol-
low:

φ̃∗(C,D) =
(1
3

Σn
i=1
(
|υC−υD|

r+|νC−νD|
r+|$C−$D|

r)) 1
r (9)

φ̃∗∗(C,D) =
( 1
3n

Σn
i=1
(
|υC−υD|

r+|νC−νD|
r+|$C−$D|

r)) 1
r (10)

for r ≤ 2. If r = 1, we get

φ̃1(C,D) =
1
3

Σn
i=1

(
|υC − υD| + |νC − νD| + |$C −$D|

)
(11)

φ̃2(C,D) =
1

3n
Σn

i=1

(
|υC −υD|+ |νC − νD|+ |$C −$D|

)
(12)

If r = 2, we get

φ̃3(C,D) =
(1
3

Σn
i=1
(
(υC−υD)2+(νC−νD)2+($C−$D)2)) 1

2 (13)

φ̃4(C,D) =
( 1
3n

Σn
i=1
(
(υC−υD)2+(νC−νD)2+($C−$D)2)) 1

2 (14)

Proposition 3.1. Suppose C and D are IFSs of Y = {y1, . . . , yn},
then we have (i) φ̃1(C,D) = nφ̃2(C,D) (ii) φ̃3(C,D) =

√
nφ̃4(C,D).

Proof. Given that φ̃2(C,D) =
1

3n
Σn

i=1

(
|υC − υD| + |νC − νD| +

|$C −$D|
)
. Then it implies that

φ̃2(C,D) =

1
3

Σn
i=1

(
|υC − υD| + |νC − νD| + |$C −$D|

)
n

=
φ̃1(C,D)

n
.

Hence (i) holds.
Similarly,

φ̃4(C,D) =
( 1
3n

Σn
i=1
(
(υC − υD)2 + (νC − νD)2 + ($C −$D)2)) 1

2

=

(1
3

Σn
i=1
(
(υC − υD)2 + (νC − νD)2 + ($C −$D)2)) 1

2

√
n

=
φ̃3(C,D)
√

n
,

and so (ii) holds.

Proposition 3.2. If C and D are IFSs in Y, then the following
hold:
(i) φ̃∗(C,D) = φ̃∗(D,C) (ii) φ̃∗(C,D) = φ̃∗(C,D).
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Proof. For the proof of (i), we have

φ̃∗(C,D) =
(1
3

Σn
i=1

(
|υC − υD| + |νC − νD| + |$C −$D|

)) 1
r

=
(1
3

Σn
i=1

(
|υD − υC | + |νD − νC | + |$D −$C |

)) 1
r

= φ̃∗(D,C).

Hence (i) holds. The proof of (ii) is similar.

Similarly, we have the following proposition.

Proposition 3.3. Suppose C and D are IFSs in Y, then the fol-
lowing hold:
(i) φ̃∗∗(C,D) = φ̃∗∗(D,C) (ii) φ̃∗∗(C,D) = φ̃∗∗(C,D).

Theorem 3.4. Suppose C, D and E are IFSs in Y, then the
function φ̃∗(C,D) satisfies

(i) 0 ≤ φ̃∗(C,D) ≤ 1
(ii) φ̃∗(C,D) = 0 iff C = D

(iii) φ̃∗(C,D) = φ̃∗(D,C).

Proof. The proof of (i) is straightforward. Recall that

φ̃∗(C,D) =
(1
3

Σn
i=1
(
|υC − υD|

r + |νC − νD|
r + |$C −$D|

r)) 1
r
.

To proof (ii), suppose that φ̃∗(C,D) = 0. Then

|υC − υD|
r = 0, |νC − νD|

r = 0, and |$C −$D|
r = 0,

and thus,
υC = υD, νC = νD and $C = $D,

hence C = D. The converse is easy to see, so omitted. The
proof of (iii) is the same as (i) of Proposition 3.2.

From Theorem 3.4, we have the following result.

Theorem 3.5. If C, D and E are IFSs in Y, then the function
φ̃∗∗(C,D) satisfies

(i) 0 ≤ φ̃∗∗(C,D) ≤ 1
(ii) φ̃∗∗(C,D) = 0 iff C = D

(iii) φ̃∗∗(C,D) = φ̃∗∗(D,C).

Theorem 3.6. Suppose C, D and E are IFSs in Y and C ⊆ D ⊆
E. Then we have

(i) φ̃∗(C, E) ≥ φ̃∗(C,D),
(ii) φ̃∗(C, E) ≥ φ̃∗(D, E),

(iii) φ̃∗(C, E) ≥ max[φ̃∗(C,D), φ̃∗(D, E)].

Proof. If C ⊆ D ⊆ E, then |υC − υE |
r ≥ |υC − υD|

r, |νC − νE |
r ≥

|νC − νD|
r and |$C −$E |

r ≥ |$C −$D|
r. Thus

|υC − υE |
r + |νC − νE |

r + |$C −$E |
r

≥ |υC − υD|
r + |νC − νD|

r

+ |$C −$D|
r.

So, φ̃∗(C, E) ≥ φ̃∗(C,D), which proves (i). By the same logic we
see that φ̃∗(C, E) ≥ φ̃∗(D, E), so (ii) holds. Combining (i) and
(ii), it follows that φ̃∗(C, E) ≥ max[φ̃∗(C,D), φ̃∗(D, E)], which
proves (iii).

By consequence, we have Theorem 3.7.

Theorem 3.7. Suppose C, D and E are IFSs in Y and C ⊆ D ⊆
E. Then we have

(i) φ̃∗∗(C, E) ≥ φ̃∗∗(C,D),
(ii) φ̃∗∗(C, E) ≥ φ̃∗∗(D, E),

(iii) φ̃∗∗(C, E) ≥ max[φ̃∗∗(C,D), φ̃∗∗(D, E)].

4. Experimental Examples

In this section, we apply both the Szmidt and Kacprzyk’s
distances and their modified versions to problems of pattern
recognition and medical diagnosis to determine which of the
approaches are better in terms of performance indexes.

4.1. Case I

Pattern recognition is the process of identifying patterns by
using machine learning method. The idea of pattern recognition
is important because of its application potential in diverse areas.
Assume there are three patterns P1, P2, P3 denoted with IFPs
in Y = {y1, y2, y3}. If there is an unknown pattern Q denoted
with IFP in the same feature space Y . The intuitionistic fuzzy
representations of these patterns are in Table 1.

Table 1: Intuitionistic fuzzy representations of patterns

Feature space
IFPs y1 y2 y3

υP1

νP1

$P1

0.1000
0.1000
0.8000

0.5000
0.1000
0.4000

0.1000
0.9000
0.0000

υP2

νP2

$P2

0.5000
0.5000
0.0000

0.7000
0.3000
0.0000

0.0000
0.8000
0.2000

υP3

νP3

$P3

0.7000
0.2000
0.1000

0.1000
0.8000
0.1000

0.4000
0.4000
0.2000

υQ

νQ

$Q

0.4000
0.4000
0.2000

0.6000
0.2000
0.2000

0.0000
0.8000
0.2000

Take SKD as Szmidt and Kacprzyk’s distance and MSK as
Modified Szmidt and Kacprzyk’s distance.

The task is to determine which of the patterns can the sam-
ple Q be associated with. Table 2 contains the distances using
the Szmidt and Kacprzyk’s distances while Table 3 contains the
distances based on the modified Szmidt and Kacprzyk’s dis-
tances.

From Tables 2 and 3, the sample Q can be classified with
pattern P2 since the distances between them are the smallest.
Tables 2 and 3 can be represented by the following figures to
show the superiority of the modified Szmidt and Kacprzyk’s
distances over the Szmidt and Kacprzyk’s distances.
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Table 2: Results using Szmidt and Kacprzyk’s distances

Distances (P1,Q) (P2,Q) (P3,Q)
φ1 1.0000 0.4000 1.3000
φ2 0.3333 0.1333 0.4333
φ3 0.5745 0.2449 0.7348
φ4 0.3317 0.1414 0.4243

Table 3: Results using modified Szmidt and Kacprzyk’s distances

Distances (P1,Q) (P2,Q) (P3,Q)
φ̃1 0.6667 0.2667 0.8667
φ̃2 0.2222 0.0889 0.2889
φ̃3 0.4690 0.2000 0.6000
φ̃4 0.2708 0.1155 0.3464

Table 4: Intuitionistic fuzzy representations of diagnostic process

Clinical manifestations
IFSs s1 s2 s3 s4 s5

υV

νV

$V

0.4000
0.0000
0.6000

0.3000
0.5000
0.2000

0.1000
0.7000
0.2000

0.4000
0.3000
0.3000

0.1000
0.7000
0.2000

υM

νM

$M

0.7000
0.0000
0.3000

0.2000
0.6000
0.2000

0.0000
0.9000
0.1000

0.7000
0.0000
0.3000

0.1000
0.8000
0.1000

υT

νT

$T

0.3000
0.3000
0.4000

0.6000
0.1000
0.3000

0.2000
0.7000
0.1000

0.2000
0.6000
0.2000

0.1000
0.9000
0.0000

υS

νS

$S

0.1000
0.7000
0.2000

0.2000
0.4000
0.4000

0.8000
0.0000
0.2000

0.2000
0.7000
0.1000

0.2000
0.7000
0.1000

υC

νC

$C

0.1000
0.8000
0.1000

0.0000
0.8000
0.2000

0.2000
0.8000
0.0000

0.2000
0.8000
0.0000

0.8000
0.1000
0.1000

υP

νP

$P

0.6000
0.1000
0.3000

0.5000
0.4000
0.1000

0.3000
0.4000
0.3000

0.7000
0.2000
0.1000

0.3000
0.4000
0.3000

Table 5: Results using Szmidt and Kacprzyk’s distances

Distances (V, P) (M, P) (T, P) (S , P) (C, P)
φ1 1.4000 1.5000 1.9000 2.2000 2.7000
φ2 0.5568 0.6557 0.7810 0.9644 1.1091
φ3 0.2800 0.3000 0.3800 0.4400 0.5400
φ4 0.2490 0.2933 0.3493 0.4313 0.4960

4.2. Case II

Diagnosis of diseases is challenging due to embedded fuzzi-
ness in the processes. Here, we present a scenario of mathemat-
ical approach of diagnosing a patient medical status using the
Szmidt and Kacprzyk’s distance and the modified Szmidt and

Table 6: Results using modified Szmidt and Kacprzyk’s distances

Distances (V, P) (M, P) (T, P) (S , P) (C, P)
φ1 0.9333 1.0000 1.2667 1.4667 1.8000
φ2 0.4546 0.5354 0.6377 0.7874 0.8200
φ3 0.1867 0.2000 0.2533 0.2933 0.3600
φ4 0.2033 0.2394 0.2852 0.3521 0.4050

Kacprzyk’s distance, where the symptoms or clinical manifesta-
tions of the diseases are represented as IFPs using hypothetical
case.

Suppose we have a set of diseases namely; viral fever (V),
malaria (M), typhoid fever (T), Stomach ulcer (S) and chest
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Figure 1: Distances using Eqs. (5) and (11)
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Figure 2: Distances using Eqs. (6) and (13)
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problem (C) represented by IFPs, and a set of symptoms S =

{s1, s2, s3, s4, s5} where s1 = temperature, s2 = headache, s3 =

stomach pain, s4 = cough, s5 = chest pain. These symptoms are
the clinical manifestations of the mentioned diseases. Assume a
patient P manifests symptoms as mentioned above, represented
by IFPs. Table 4 contains intuitionistic fuzzy information of the
diseases and patient P with respect to the symptoms.

Now, we find which of the diseases has the smallest distance
with the patient with respect to the symptoms by deploying the
Szmidt and Kacprzyk’s distances and their modifications. Ta-

Figure 3: Distances using Eqs. (7) and (12)
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Figure 4: Distances using Eqs. (8) and (14)
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bles 5 and 6 contain the results.
From Tables 5 and 6, it is inferred that the patient is suffering
from viral fever since the distance between the patient and viral
fever is the smallest. Tables 5 and 6 can be represented by the
following figures to show the supremacy of the modified Szmidt
and Kacprzyk’s distances over the Szmidt and Kacprzyk’s dis-
tances.

From Figs. 1–8, it is observed that the modified Szmidt and
Kacprzyk’s distances outperformed the Szmidt and Kacprzyk’s
distances in terms of accuracy because while the modified Szmidt
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Figure 5: Distances using Eqs. (5) and (11)
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Figure 6: Distances using Eqs. (6) and (13)
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and Kacprzyk’s distances take cognizance of the average of the
differences among the three parameters of IFSs, the Szmidt and
Kacprzyk’s distances do not consider the average of the differ-
ences. Since distance measure lies between 0 and 1, we con-
clude that φ1, φ2, φ̃1 and φ̃2 are not reliable distances.

5. Conclusion

In this paper, we have studied the Szmidt and Kacprzyk’s
distances between IFSs and noticed a setback with the distance

Figure 7: Distances using Eqs. (7) and (12)
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Figure 8: Distances using Eqs. (8) and (14)
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measures. Because of this setback, modifications of the Szmidt
and Kacprzyk’s distances between IFSs were proposed to en-
hance accuracy of measure. It was verified mathematically that
the modified Szmidt and Kacprzyk’s distances between IFSs
satisfied the conditions for distance measure. Both the Szmidt
and Kacprzyk’s distances and their modified versions were ap-
plied to determine pattern recognition and diagnostic medical
reasoning where information were represented as IFPs. From
the work, it is observed that the modified Szmidt and Kacprzyk’s
distances outperformed the Szmidt and Kacprzyk’s distances
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in terms of accuracy because while the modified Szmidt and
Kacprzyk’s distances take account of the number of the con-
sidered parameters, the Szmidt and Kacprzyk’s distances just
added the hesitation margins to the methods introduced in [33].
In nutshell, the contributions of the paper includes; (i) mod-
ifications of the distance measures in [34] for better perfor-
mance rating (ii) characterizations of the novel distance mea-
sures (iii) comparative analysis to show the edge of the novel
approaches overs the approaches in [34] (iv) applications of
the distances in pattern recognition and disease diagnosis. The
modified Szmidt and Kacprzyk’s distances could be extended
to TOPSIS method as viable information measures to tackle
multi-attributes decision-making problems. These novel dis-
tance measures of IFSs can be studied in other variants of fuzzy
sets with minimal modifications.
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