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Abstract

In this research work, we focus on development of a numerical algorithm which is well suited as integrator of initial value problems of order
two. Exponential function is fitted into the Chebyshev polynomials for the formulation of this new numerical integrator. The efficiency, ingenuity
and computational reliability of any numerical integrator are determined by investigating the zero stability, consistency and convergence of the
integrator. Findings reveal that this algorithm is convergent. On comparison, the solutions obtained through the algorithm compare favourably
well with the analytical solutions.
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1. Introduction

The search for numerical methods to accurately integrate
ordinary differential equation is on the increase and of recent,
much effort has been concentrated on solving initial and bound-
ary value problems. Variety of tools (polynomials) have been
employed to develop numerical methods for integrating mathe-
matical problems and modelling, an important perspective which
cuts across all kind of mathematical problems.

Butcher [1], Lambert [2, 3] and Henrici [4] discussed exten-
sively the approach of reducing higher order ODEs to a system
of lower order, specifically, order one and then applying var-
ious methods available for solving the resulting system of rst
order IVPs. The increase in the number of equations result-
ing from this approach has been reported as its major setback
(see [5, 6]). Jator and Li [7] formulated block methods which

∗Corresponding author tel. no: +2348063307256
Email address: adeyefa@gmail.com (O. S. Esan)

directly solve higher order ordinary differential equations with-
out reducing the ODEs to system of first order equations. Re-
searchers such as [8-11] modelled series of algorithms which
on their implementation, solve first order initial value problems.
Enoch and Ibijola [12] developed a self-adjusting numerical in-
tegrator with an inbuilt switch for discontinuous initial value
problems.

The aim of developing new methods has always been to
introduce a new approach with a target to reduce the error of
approximation and thereby improve on the accuracy and effi-
ciency of existing methods hence, this research paper. In this
paper, we consider Chebyshev polynomial owing to its ele-
gant properties whereby exponential function shall be fitted into
Chebyshev polynomials to develop a direct integrator of second
order IVPs.
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2. Formulation of Exponentially fitted Chebyshev Method

This section describes the formulation of an algorithm which
directly integrate second order initial value problems. We set
out by considering a function of the form

f (x) = anTn(x) + ex (1)

where Tn(x) is a Chebyshev polynomial of first degree, ex is ex-
ponential function and an is a constant to be determined in the
interval [a, b] , xn = a + nh, n = 0, 1, 2, . . . and h is the step
size. We consider yn as numerical estimate to the theoretical
value y(xn) and fn represents f (xn, yn) with assumption that the
theoretical solution y(x) of a given ordinary differential equa-
tion can be locally represented in the interval [xn, xn+1] by the
interpolating function described above. Considering Tn(x) in
equation 1 for n = 0, 1, 2, . . ., we obtain

f (x) = a0 + a1x + a2(2x2 − 1) + ex (2)

where a0, a1 and a2 are constants and also real undetermined
coefficient. Interpolating equation 2 at point x, we obtain, for
x = xn

f (xn) = a0 + a1xn + a2(2x2
n − 1) + exn ≡ yn (3)

and for x = xn+1

f (xn+1) = a0 + a1(xn + h) + a2(2(xn +

h)2 − 1) + exn+h ≡ yn+1 (4)

where xn+1 = xn + h
Differentiating the interpolating function with respect to x

and obtaining the first, second and third derivatives of the func-
tion, we have

F
′

(xn) = a1 + 4a2x + ex = fn (5)

F
′′

(xn) = 4a2 + ex = f
′

n (6)

F
′′′

(xn) = ex = f
′′

n (7)

Thus, equations 5, 6 and 7 become

a1 + 4a2x + ex = fn ≡ d1 (8)

4a2 + ex = f
′

n ≡ d2 (9)

ex = f
′′

n ≡ d3 (10)

Subtracting equation 3 from equation 4 and simplifying yields

Y = a1(xn + h) + a2(2(xn + h)2 − 1) +

exn+h − a1xn − a2(2x2
n − 1) − exn (11)

where Y = yn+1 − yn, which gives

yn+1 = yn + a1(xn + h) + a2(2(xn + h)2 − 1) +

exn+h − a1xn − a2(2x2
n − 1) − exn (12)

Solving equations 8 and 9, the values coefficients a’s are
obtained and substituted in equation 2 to have

yn+1 = yn + (d1 − (d2 − ex)x − ex)(xn + h) +
1
4 (d2 − xx)(2(xn + h)2 − 1) +

exn+h − (d1 − (d2 − ex)x − ex)x −

ex)xn −
1
4 (d2 − ex)

(2x2
n − 1) − exn (13)

Equation 13 is therefore the new numerical integrator for
integrating second order initial value problems.

3. Analysis of the Method

The convergence of the scheme is investigated using Lips-
chitz Continuity theorem as discussed by Fatunla [13, 14] and
Lambert [2].

Consider f (x, y)− f (x, y∗) =
∂ f (x,y)
∂y (x, y∗) and L = sup(x,y)∈Dom

∂ f (x,y)
∂y

where f (x, y) is defined for all points (x, y) in the region D =

{(x, y)|xo ≤ x ≤ xn,−∞ < y < ∞}, xo and xn are finite and L is
Lipschitz constant such that for L ≤ 0 ,

| f (x, y) − f (x, y∗)| ≤ L|y − y∗| (14)

f (x, y) − f (x, y∗) =
∂ f (x, y)
∂y

(15)

Equation 14 can be satisfied if we choose

L = sup
∂ f (x, y)
∂y

(16)

From equation 13 that is, the numerical scheme developed, we
have

yn+1 = yn +
(
d1 − 4

(
1
4 d2 −

1
4 ex

)
x − ex

)
(xn + h)

+
(

1
4 d2 −

1
4 ex

) (
2 (xn + h)2 − 1

)
+ exn+h

−
(
d1 − 4

(
1
4 d2 −

1
4 ex

)
x − ex

)
xn −(

1
4 d2 −

1
4 ex

) (
2x2

n − 1
)
− exn

By Lambert [2] and Fatunla [13] as mentioned above,

f (x, y) − f (x, y∗) =
∂ f (x, y)
∂y

(17)

L = sup(x,y)∈Dom
∂ f (x, y)
∂y

By Henrici [9], |φ (x, y∗; h) − φ (x, y; h)| ≤ L |y∗ − y| where x ∈
(a, b) , y ∈ (−∞,∞), a ≤ h ≤ ho; ho > 0. From equation 14,

yn+1 = yn +
(
d1 − 4

(
1
4 d2 −

1
4 ex

)
x − ex

)
(xn + h)

+
(

1
4 d2 −

1
4 ex

) (
2 (xn + h)2 − 1

)
+ exn+h
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−
(
d1 − 4

(
1
4 d2 −

1
4 ex

)
x − ex

)
xn −(

1
4 d2 −

1
4 ex

) (
2x2

n − 1
)
− exn

This is further simplified to have

yn+1 = yn + h [(d2 − ex) x + ex − d1 +
1
4 (d2 − ex) (2h + 4x)] + ex+h − ex (18)

Recall that

d1 = F(x, y) (19)

d2 = F
′

(x, y) (20)

Substituting equations 19 and 20 into 18 and simplifying the
resulting equation, we have

yn+1 = yn + h
[
2(x + h

2

) (
F
′

(x, y) − ex
)

+

ex − F (x, y)] + ex+h − ex (21)

We write the functional dependence yn+1 on the quantities xn,
yn and h in the form

φ (xn, yn; h) = [
(
F
′

(x, y) − ex
) (

2x + h
2

)
−

F (x, y) + ex] (22)

φ
(
xn, y∗n; h

)
= [

(
F
′

(x, y∗) − ex
) (

2x + h
2

)
−

F (x, y∗) + ex]

φ (xn, yn; h)− φ
(
xn, y∗n; h

)
= [

(
F
′

(x, y) − ex
)(

2x + h
2

)
− F (x, y) + ex] −

[
(
F
′

(x, y∗) − ex
)(

2x + h
2

)
− F (x, y∗) + ex] (23)

φ (xn, yn; h)− φ
(
xn, y∗n; h

)
= [[

(
F
′

(x, y∗) − ex
)

] −
(
F
′

(x, y) − ex
)
]
(
2x + h

2

)
+[

F (x, y∗) − F (x, y)
]

(24)

yn+1 = yn + hφ(xn, yn; h)
Applying equation 17, we have

F(xn, y∗n) − F(xn, yn) =
∂F(xn, yn)

∂y
(y∗n − yn) (25)

F
′

(xn, y∗n) − F
′

(xn, yn) =
∂F

′

(xn, yn)
∂y

(y∗n − yn) (26)

where L1 = sup(x,y)∈Dom
∂F(xn,yn)

∂yn
and

L2 = sup(x,y)∈Dom
∂F
′
(xn,yn)
∂yn

Putting equations 25 and 26 into 24, we have

φ (xn, yn; h)− φ
(
xn, y∗n; h

)
= [ ∂F

′
(xn,y)
∂y (y∗n − yn)

(2x + h
2 ] +

∂F(xn,y)
∂y (y∗n − yn)

[F(x, y∗) − F(x, y)] (27)

Putting L1 and L2 into equation 27 and letting P =
(
2x + h

2

)
, we

obtain

φ
(
xn, y∗n; h

)
− φ

(
xn, y∗n; h

)
=

[
(L1 + PL2)

(
y∗n − yn

)]
(28)

If L1+PL2 = L, equation 28 becomes φ
(
xn, y∗n; h

)
−φ

(
xn, y∗n; h

)
=

L
(
y∗n − yn

)
and

∣∣∣φ (
xn, y∗n; h

)
− φ

(
xn, y∗n; h

)∣∣∣ ≤ L
∣∣∣y∗n − yn

∣∣∣. This
shows clearly that the numerical scheme is convergent as it sat-
isfies the Lipschitz condition.

4. Numerical Experiments

Two test problems are considered here to implement the de-
rived scheme.

Example 1:

y
′′

= − 6
x y
′

− 4
x2 y, y(1) = 1, y

′

= 1; h = 0.1
32 .

Exact solution:
y(x) = 5

3x −
2

3x4 .

Example 2:

y
′′

= −y
′

, y(0) = 1, y
′

(0) = 1, h = 0.001.

Exact solution:
y(x) = cosx.

The graphical solutions of the examples above are shown below.

Figure 1: Comparison of the exact and numerical solutions for example
1.

4.1. Discussion of Results

We implement the constructed scheme on the two examples
considered in this work. In Figures 1 and 2, we compare the
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Figure 2: Comparison of the exact and numerical solutions for example
2.

accuracy of the proposed method with the exact solution. From
the graphs displayed, it is evident that the new scheme com-
pares favourably with the exact solutions.

5. Conclusion

We have developed a scheme to solve second order Ini-
tial Value Problems in Ordinary Differential Equations (ODE)
using Chebyshev polynomials with exponential function fitted
into it. Formulation of numerical integrator using the gener-
ated polynomials has been demonstrated. The scheme has been
implemented using two test problems. On comparison, the so-
lutions obtained through the numerical scheme recovers the an-
alytical solutions. We therefore recommend the technique for
numerical algorithm as we hope to extend the approach to solve
boundary value problems.
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