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Abstract

The goal of this research is to compare multiple linear regression coefficient estimation technique with multicollinearity. In order to quantify
the effectiveness of estimations by the mean of average mean square error, the ordinary least squares technique (OLS), modified ridge regression
method (MRR), and generalized Liu-Kejian method (LKM) are compared with the Average Mean Square Error (AMSE). For this study, the
simulation scenarios are 3 and 5 independent variables with zero mean normally distributed random error of variance 1, 5, and 10, three correlation
coefficient levels; i.e., low (0.2), medium (0.5), and high (0.8) are determined for independent variables, and all combinations are performed with
sample sizes 15, 55, and 95 by Monte Carlo simulation technique for 1,000 times in total. As the sample size rises, the AMSE decreased. The
MRR and LKM both outperformed the OLS. At random error of variance 10, the MRR is the most suitable for all circumstances.
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1. Introduction

Multiple linear regression (MLR), a widely used and well-
known statistical technique, is now applied in a variety of fields
[1,2]. This method is a statistical strategy that predicts the val-
ues of a response by combining many predictors (independent
variables). MLR’s purpose is to identify the optimal model
for describing the linear relationship between predictor and re-
sponse variables. After obtaining the best subsets of predictors,
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MLR’s main objective is to estimate coefficients, find the most
fitting estimates, and minimize errors. The least squared ap-
proach has long been used as a tool for estimating. It is a com-
mon and acceptable approach. However, this technique has a
multicollinearity constraint, which is a major MLR roadblock.

Literatures on ridge regression are concerned with the prob-
lem of finding a better substitute to the least square estimator.
Common methods in dealing with multicollinearity include but
not limited to ridge regression [3]. Estimation procedures are
obtained using some specific assumptions such as the random
vector ε should be independent and identically distributed ran-
dom variables. But when these assumptions are violated, these
methods do not yield the desirable results and leads to problems
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such as heteroscedasticity and autocorrelation [4]. Li, & Yang
[5,7] suggested Jackknifed Modified Ridge Estimator (JMRE)
and it was shown that it superior to other models.

Giacalone et al, [7] define multicollinearity as a condition
were regressor variables in multiple linear regression model is
almost linearly dependent. This condition causes the variance
of least squares estimator tends to be large and the estimator be-
comes unstable. Hence, this condition will result in a reduced
explanation of the result of the regression model and ridge re-
gression is used to address these difficulties.

Ref. [7] introduce the Lpmin method to determine and ad-
dress the multicollinearity problem. The major advantage of
the approach is that it produces more efficient estimates of the
model’s parameters than the ordinary least squares method. Ref.
[8] proposed a new collinearity diagnostic test. Monte Carlo
simulation study conducted to compare the existing and pro-
posed tests. It is based on coefficient of determination and ad-
justed coefficient of determination on auxiliary regression of
regressors while Ref. [9] examined estimators which are re-
sistant to the combined problems of multicollinearity and non-
normal disturbance distributions. Can the ridge estimator and
some robust estimation technique be combined to produce a ro-
bust ridge regression estimator?
An algorithm that uses the α-level estimation method to evalu-
ate the parameters of the ridge fuzzy regression model was pro-
posed by Ref. [10]. Parameter bias, Type I and Type II error,
and variance inflation factor (VIF) values produced by multi-
ple regressions with two, four, and six predictors under vari-
ous multicollinearity circumstances were examined [11]. Mul-
ticollinearity is not linked to Type I error, but it does increase
Type II error, according to the findings. Multicollinearity ap-
pears to enhance the variability in parameter bias while result-
ing in overall parameter underestimate. VIF is also increased by
collinearity. Increasing the number of predictors, on the other
hand, interacts with multicollinearity in all diagnostics to exac-
erbate difficulties.
An extended conventional semi-parametric partial linear regres-
sion model was introduced [12]. The effectiveness of the pro-
posed method is then illustrated through two numerical exam-
ples including a simulation study. They also compared with
some common fuzzy multiple regression models with fuzzy
predictors and fuzzy responses. In the method of ridge regres-
sion, a constant bias ridge k was added to X′X matrix. This
work illustrates the use of Restricted Ridge Regression method
in disabling the multicollinearity in regression model. The method
was developed by using the prior information of the parameter
β [13].

2. Materials and Methods

Ridge regression is suited to deal with the problem of mul-
ticollinearity, especially when the predictors are highly corre-
lated. In 1970, [14] proposed the ridge regression estimator,
which included a scalar multiplication, the product of a pos-
itive real number and the identity matrix, within the inverse
component of the least square estimator. This yielded more ac-
curate ridge parameter estimations than least square estimates,

and its variance and mean square errors are frequently lower
than least square estimates. The following is a comparison of
the three approaches for estimating multiple linear regression
coefficients: Least Squares Method (OLS), Modified Ridge Re-
gression Method (MRR), and Liu Kejian Method (LKM):

2.1. Ordinary Least Square Method (OLS)

The best linear unbiased estimator is a method for estimat-
ing multiple linear regression coefficients that is unbiased and
has the least variation of estimation (BLUE). The estimated
value is expressed as

β̂OLS =
(
X′X

)−1X′Y (1)

where X is the n × p predictors matrix, Y is the n × 1 obser-
vation vector, β̂OLS is the vector of coefficients estimates. The
mean square error of β̂OLS is σ2tr (X′X)−1.

2.2. Modified Ridge Regression (MRR

The ridge estimation for multiple linear regression coeffi-
cients is

β̂Ridge = (X
′

X + kIn)
−1X′Y, k > 0, (2)

where β̂Ridge is p × 1 ridge estimator, k is a positive real number
also known as a constant bias ridge, In is an identity matrix of
size n. The approximation of the linear regression coefficients
is more accurate and closer to the real values when historical
data is used with the ridge regression approach. The modified
ridge regression (MRR) approach is as follows:

β̂MRR =
(
X
′

X + kIn

)−1
(X

′

Y + kJ) (3)

where J is p× 1 historical observation vector, J = (
∑p

i=1
β̂OLS

p )1,
1 is p × 1 vector of ones where every element is equal to one.
From equation (3), β̂MRR = β̂OLS when k = 0
The estimation of k is considered using the following two cases:
1. σ2 is known,

k̂ =


pσ2(̂

βOLS−J
)′ (̂
βOLS−J

)
−σ2tr(X′X)−1 ,

i f
(̂
βOLS − J

)′ (̂
βOLS − J

)
− σ2tr(X′X)−1 > 0

pσ2(̂
βOLS−J

)′ (̂
βOLS−J

) , otherwise

2. σ2 is unknown,

k̂ =


pσ̂2(̂

βOLS−J
)′ (̂
βOLS−J

)
−σ̂2tr(X′X)−1 ,

i f
(̂
βOLS − J

)′ (̂
βOLS − J

)
− σ̂2tr(X′X)−1 > 0

pσ̂2(̂
βOLS−J

)′ (̂
βOLS−J

) , otherwise

where σ̂2 =

(
Y−Xβ̂OLS

)′(
Y−Xβ̂OLS

)
n−p is an unbiased estimator of σ2.

The mean square of β̂MRR is σ̂2tr
((

X
′

X + k̂In

)−1
(X′X)

(
X
′

X + k̂In

)−1
)
+

k̂2
(̂
βOLS − J

) (
X
′

X + k̂In

)−2 (̂
βOLS − J

)
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2.3. Generalized Liu Kejian Method (LKM)

In the situation of a multiple-relationship between the inde-
pendent variables, this is a method for estimating the multiple
linear regression coefficient. The advantages of the Ridge Re-
gression approach and the Stein method are combined. The
Generalized Kejian Method is the name of this method, and the
form of the multiple linear regression coefficient estimator is

β̂LKM =
(
X′X + In

)−1
(
X′Y + dβ̂OLS

)
, 0 < d < 1 (4)

when d = 1, β̂LKM = β̂OLS and

β̂LKM =
(
X′X + In

)−1
(
X′Y + Dβ̂OLS

)
=

(
X′X + In

)−1
(
X′Y + D)̂βOLS

)
=

(
In −

(
X′X + In

)−2(In − D)
)
β̂OLS

=
(
In −

(
X′X + In

)−2(In − D)2
)
β̂OLS (5)

where D = diag (d1, d2, . . ., dp), 0 < di < 1, i = 1, 2, . . ., p
and the estimates of di is

d̂i = 1 −
σ̂ (λi + 1)√
λiβ̂

2
OLS i

+ σ̂2

The mean square error of β̂LKM is (In− ∆2) (X′X)−1(In− ∆2)σ2+

∆2ββ′∆2, where ∆ = (X′X + In)−1(In − D)

2.4. Monte Carlo Simulation

A Monte Carlo simulation scenario with three and five in-
dependent variables was developed by [8], the properties were
zero mean normally distributed random error of variance 1, 5,
and 10, and three correlation coefficients levels; i.e., low (0.2),
medium (0.5), and high (0.8) are determined for independent
variables, and all combinations are performed with sample sizes
15, 55, and 95 by Monte Carlo simulation. The steps for carry-
ing out the simulation are:

1. The random error (ε) is simulated as ε ∼ N (0, σ2
εIn),

where σ2
ε = 1, 5, 10.

2. An observation matrix, X, is simulated from X ∼ Nn(0, IN)
with different levels of polynomial relations such that ρ =

0.2, 0.5, 0.8.
3. Generate response values of Y from the model with mul-

tiple linear regression coefficient β.
4. Multiple linear regression coefficients are estimated for

all methods. The step in 1-3 are repeated 1,000 times in
each scenario.

5. Then calculate the mean of the mean square error of mul-
tiple linear regression, AMS E = 1

1000
∑1000

i=1 MS E), the
method with lowest AMSE is selected as the best method
for the scenario involved.

Table 1. The best method of all scenarios from 1000-Monte Carlo simulations
Predictors σ ρ n=15 n=55 n=90

3 1 0.3 MRR MRR MRR
3 1 0.6 MRR MRR MRR
3 1 0.9 MRR MRR MRR
3 5 0.3 MRR MRR MRR
3 5 0.6 MRR MRR MRR
3 5 0.9 MRR MRR MRR
3 10 0.3 LKM MRR MRR
3 10 0.6 LKM LKM MRR
3 10 0.9 LKM MRR MRR
5 1 0.3 MRR MRR MRR
5 1 0.6 MRR MRR MRR
5 1 0.9 MRR MRR MRR
5 5 0.3 LKM MRR MRR
5 5 0.6 MRR MRR MRR
5 5 0.9 MRR MRR MRR
5 10 0.3 LKM MRR MRR
5 10 0.6 LKM LKM MRR
5 10 0.9 LKM LKM LKM

3. Conclusion

The optimum multicollinearity MLR coefficients estimation
approach for each simulation circumstance is shown in Table 1.
Clearly, the OLS is not suited in every application. MRR and
LKM are the best approaches for determining MLR coefficients
when multicollinearity exists. MRR is appropriate for all sam-
ple sizes and data with low predictor correlation degrees and
small to moderate error variance. The Generalized Liu Kejian
Method is well suited to small datasets with a high degree of
predictor correlation and a large error variance. LKM outper-
forms MRR as the number of predictors grows, however the
more predictors, the greater the risk of multicollinearity.
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