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Abstract

This paper proposed a new Randomized Response Model (RRM) to estimate proportion of people characterizing a sensitive variable (S ) under
study. Simple random sampling with replacement and stratified simple random sampling scheme were adopted. Maximum likelihood and
Bayesian estimation procedures of the proposed model were developed and compared. The sampling distribution (expectation and variance) of
the proposed estimator under the two sampling techniques, efficiency comparison of the proposed model with some existing models, and numerical
illustration of all the compared models were also explored. The study found that the proposed model outperformed other existing RRMs in terms
of efficiency and it proved to be more protective in designing survey for sensitive related issues.

Keywords: Randomized response, proportion, sensitive variable, maximum likelihood estimator, sampling distribution.

Article History :
Received: 25 December 2019
Received in revised form: 15 February 2020
Accepted for publication: 17 February 2020
Published: 28 February 2020

c©2020 Journal of the Nigerian Society of Physical Sciences. All Rights Reserved.
Communicated by: T. Latunde

1. Introduction
Surveys usually collect responses to a large number of items
from each sample unit and many institutions use empirical ev-
idence from surveys to make their policies. Thus, surveys play
a prominent role in society, hence collecting and interpreting
survey data correctly is essential. One of the most obvious
problems in census or sample surveys is the inability of the re-
searcher to collect responses on some or all of the items for a
sampled unit or when some responses are deleted because they
fail to satisfy edit constraints [1]. In the vernacular of sample
survey, this is the problem of non-response. Non response can
arise for a variety of reasons, one of which is the sensitive na-
ture of the survey question.

Socially sensitive questions such as shoplifting, rash driving,
tax evasion, felony, false declaration of assets, expenditure on
addiction of various form (drug abuse), kidnapping, occult af-
filiation, psychosocial status, cheating in national examination;
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or health habits and sexual orientation related questions such
as HIV infection, induced abortion, masturbation, ravish, ho-
mosexuality, and other illegal, unethical, prohibited attitudes or
practices that receive disapproval by the society are thought to
be threatening to respondents [2-3]. When sensitive topics are
studied, respondents often react in ways that negatively affect
the validity of data by giving socially desirable answers to avoid
social embarrassment and to project a positive self-image [4-5].
The Randomized Response Model (RRM) also known as Ran-
domized Response Technique (RRT) or Randomized Response
Distribution/Design (RRD) is a survey method specifically de-
veloped to improve the participation and precision of answers
to sensitive questions because the frequency of socially unde-
sirable, disgraceful, embarrassing, incriminating, ignominious,
highly stigmatizing variable has been found usually underesti-
mated in surveys.

In the year 1965, Warner explained that the reluctance of the
respondents to elicit sensitive or probably harmful information
would diminish when respondents are convinced that their anonymity
be guaranteed, when incriminating answers could be covered
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even from the interviewer, the need to present oneself in a pos-
itive way would decrease and honest answering would increase
[6]. Following this assumption, [7] did the pioneering work
on a RRT which required the interviewee to give a “yes”or
“no”answer either to the sensitive question or to its negative de-
pending on the outcome of a randomizing device not revealed
to anybody including the interviewer. After [7] original RRM,
different authors developed various RR models including Unre-
lated Questioning Technique (UQT), Forced Randomized Re-
sponse Model (FRRM), stratification of new and existing mod-
els in Randomized Response (RR) surveys, calibration tech-
niques and so on. According to [8-9] ”FRRM and UQT with
known population prevalence of the innocuous attribute are the
best, a major setback is that it is not easy to come up with un-
related question with known prevalence and variance near zero,
hence, UQT seems harder to be adopted.” To circumvent this
problem, this study proposed a Modified Forced Randomized
Response Model (MFRRM) with a definite no response to the
unrelated question.

The structure of the paper is as follows: In section 2, litera-
tures that are related to the study are reviewed to identify all
existing works, their contributions and limitations. Section 3
introduces the newly proposed RRM namely modified forced
randomized response model. In the same section, Maximum
Likelihood (ML) and Bayesian Estimator (BE) of the proposed
RRM are explored, comprehensive treatment of statistical prop-
erties of the proposed estimator such as: unbiasedness, effi-
ciency comparison with existing models, and cost efficiency of
the proposed design are as well carried out. Section 4 presents
analysis of the simulated data sets, discussion of results, and the
concluding remarks. Tables and charts showing the results are
also presented in this section.

2. Existing Models
This section lucidly renders a vivid review of related previ-
ous studies, starting with Warner original model, via intermedi-
ate models to the current advanced stage of robust quantitative
RRM.

2.1. Warner Randomized Response Model
In Warner’s (1965) original design, respondents are provided
with a randomizer (say, spinner) and instructed to answer one
of two statements:

(i) I belong to the sensitive group (selected with probability
p).

(ii) I do not belong to the sensitive group (selected with prob-
ability 1 − p).

Respondents then in turn answer “true”or “not true”or “yes”or
“no”according to their status on sensitive question without re-
vealing to the interviewer which statement was selected by the
randomizer. The probability tree diagram below illustrates the

randomization procedure of [7] original randomized response
model.
From Figure 1 above, the probability of yes and no answers are
λ = pπs + (1 − p)(1 − πs) and 1 − λ = p(1 − πs) + (1 − p)πs,
respectively. Suppose no and n − no denote the total number of
“yes”and “no”answers in the sample of n respondents, follow-
ing the maximum likelihood principle, the likelihood function
to maximize is

P(λ, n) =

(
n
no

)
[pπs+(1−p)(1−πs)]no [p(1−πs)+(1−p)πs]n−no .(1)

Setting the derivative (w.r.t. πs) of the natural logarithm of
equation (1) to zero, Warner unbiased estimator of πs is

π̂s =

no
n − (1 − p)

2p − 1
=
λ̂ − (1 − p)

2p − 1
, p ,

1
2

(2)

with variance

Var(π̂s) =
πs(1 − πs)

n
+

p(1 − p)
n(2p − 1)2 (3)

where,
n = number of observed respondents’ (sample size),
p = probability of selecting (and answering) sensitive question,
and
πs = proportion of yes answers to the sensitive question.

Subsequently, both in theory and application, several other au-
thors have suggested various alternatives RR models including
[10-17] among many others. Recently, [18] used [7] RRM to
measure corruption among public bureaucrats in Bolivia, Brazil,
and Chile.

2.2. Forced Randomized Response Model (FRRM)
The forced response method otherwise referred to as UQT with
known πu was originated by [12] and later simplified by [19]
with the assumption that πu is a predetermined parameter. That
is, πu exists or must be known either from independent ad-hoc
studies or statistical abstracts. This assumption does not always
hold. Even though πu is available in any register or statistical
abstracts, cost of retrieving from records may be expensive. If
πu is known beforehand, solving for πs in [11] model, and re-
placing λ with its sample estimator

(
λ̂ = no

n

)
gives

π̂s =
1
p

[
λ̂ − (1 − p)πu

]
=

1
p

[no

n
− (1 − p)πu

]
(4)

with variance

Var(π̂s) =
πs(1 − πs)

n
+

(1 − p)
np

[πs(1 − πu) + πu(1 − πs)

+
(1 − p)πu(1 − πu)

p

]
. (5)

Estimating πs in this manner is termed “Forced Randomized
Response Model or Technique (FRRM or FRRT)”. Among ap-
plied researchers, FRRM is the most famous design. Illegal
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centering

Origin

First statement

∈ S yes
πs

< S no
1 − πs

p

Second statement

< S yes
1 − πs

∈ S no
πs

1 − p

Figure 1: Probability tree diagram of the Warner original RRM

waste disposal [9], prevalence of civilian cooperation with mil-
itant groups in southeastern Nigeria [20], vote choice regarding
a Mississippi abortion referendum [21], use of performance en-
hancing drugs [22], xenophobia and anti-Semitism in Germany
[23], illegal poaching among South African farmers [24], and
violation of regulatory laws by commercial firms [25] are few
evidences among numerous practical application of the Forced-
RR-UQT.

2.3. Mangat Improved Two Step Procedure
Alternative form of forced response model was developed by
[15] as an optimization of one of his earlier designs. Mangat’s
procedure requires all respondents that have sensitive attribute
(S ) to answer truthfully without use of randomizer. All respon-
dents who do not have the sensitive attribute are required to
use the randomizer to choose which from Warner’s statements.
This means that all no-answers are true negatives, and that only
the yes answers are contaminated. [15] estimator of πs is

π̂s =
1
p

(no

n
− 1 + p

)
=

1
p

(λ̂ − 1 + p) (6)

with variance

Var(π̂s) =
πs(1 − πs)

n
+

(1 − p)(1 − πs)
np

. (7)

Even though Mangat’s estimator is most efficient when com-
pared with the earlier similar estimators or models, his design
is unrealistic as respondents with the sensitive attribute will be
more inclined to lie, making the population estimates less valid,
and this causes the results and inferences of his procedure to be
less trustworthy [8], [26]. Recently, [27] modified and applied
[15] RRM to estimate two sensitive attributes simultaneously.

2.4. Stratified Warner’s Randomized Response
Model

[16] presented a stratified RRT of [7] original model using an
optimal allocation which is more efficient and cost effective

than using a proportional allocation of [2] technique. The max-
imum likelihood estimate of πs using [16] RRM is

π̂s =

L∑
h=1

Whπ̂sh =

L∑
h=1

Wh

 noh
nh
− (1 − ph)

2ph − 1


=

L∑
h=1

Wh

[
λ̂h − (1 − ph)

2ph − 1

]
(8)

and the minimal variance of π̂s is given by

Var(π̂s) =
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

ph(1 − ph)
(2ph − 1)2

} 1
2


2

(9)

where, Wh = Nh
N = stratum weight, λ̂h = noh

nh
= proportion of

yes-answer in a stratum h, ph = probability that a respondent
in the sample stratum h has a sensitive question (S) card, and
π̂sh =

λ̂h−(1−ph)
2ph−1 = proportion of respondents with the sensitive

trait in a stratum h, for h = 1, 2, · · · , L.

2.5. Mixed Stratified Randomized Response Model
[17] proposed mixed stratified RRM by taking two independent
samples of sizes n1 and n2. Also, two randomization devices
R1 and R2 were used in each sample to estimate Human Im-
mune Virus (HIV) seroprevalence rate in Kaduna State, Nigeria.
Following the same maximum likelihood estimation procedure,
an unbiased mixed stratified seroprevalence rates estimator is
given by

π̂s =

L∑
h=1

Whπ̂sh =

L∑
h=1

Wh

[
nh1

nh
π̂h1 +

nh2

nh
π̂h2

]
(10)

with variance given by

Var(π̂s) =

L∑
h=1

W2
h

nh1

n2
h

{
(1 − πsh)(ph1πsh + 1 − ph1)

ph1

}
38



Adeniran et al. / J. Nig. Soc. Phys. Sci. 2 (2020) 36–50 39

+
nh2

n2
h

{
(1 − πsh)(ph2πsh + 1 − ph2)

ph2

} (11)

where, π̂sh1 =
λ̂h1−(1−ph1)

ph1
, π̂sh2 =

λ̂h2−(1−ph2)
ph2

and π̂sh = nh1
nh
π̂h1 +

nh2
nh
π̂h2. If ph1 = ph2 = ph and nh1 = nh2 = noh, the above

estimator reduces to

π̂s =

L∑
h=1

Whπ̂sh =

L∑
h=1

Wh
2noh

nh

[
λ̂h − (1 − ph)

ph

]
(12)

with variance

Var(π̂s) =
1
n

 L∑
h=1

Wh {πsh(1 − πsh) (13)

+
(1 − ph)(1 − πsh)

ph

} 1
2


2

(14)

where, π̂sh = 2λ̂h

[
λ̂h−(1−ph)

ph

]
for h = 1, 2, · · · , L.

3. Methodology

3.1. Randomization Procedure
A simple random sampling with replacement (SRSWR) of n
respondents was selected from the population. An individual
respondent in the sample of size n was instructed to use the ran-
domization device (R) which consists of a sensitive question (S)
card selected with probability p (p , 1 is a pre-assigned value
set by the researcher) and unrelated question (U) card selected
with probability (1 − p). The paired unrelated or innocuous
question has a definite “no”response, for example

(i) S- Are you a member of the insurgence group?

(ii) U- Is this month of February (when research is conducted
in the month of September)?

In an applied research, the phrase inside bracket of the unre-
lated question must be excluded. After the researcher explained
the procedures, randomization procedure then followed. Each
subject was given a box1 (containing both cards) to select at
random a card and tick “yes”or “no”(based on his or her true
status, i.e., under the assumption that respondents answer truth-
fully) and return the ticked card through an opener in the box2.
Respondents were not placed in close proximity and instructed
not to let anyone (the investigator inclusive) see the card he or
she had drawn so as to maintain the integrity of the random-
ized response technique, and keep the individual respondent’s
privacy or anonymity protected. The probability tree diagram
below illustrates the proposed modified-FRRM:

3.2. Estimation Procedure: Classical Approach
Let

Xi =

0, if ith respondent says no
1, if ith respondent says yes.

(15)

Elementary probability theory can then be used to get an un-
biased estimate of the prevalence (π̂s) of sensitive issues in the
population. The procedure followed thus: from Figure 2, the
probability of a yes and no response are λ = pπs and 1 − λ =

p(1 − πs) + (1 − p) = 1 − pπs, respectively. Therefore, the
likelihood function of πs is

L(πs) =

(
n
no

)
[pπs]no [p(1 − πs) + (1 − p)]n−no . (16)

where no is the total number of yes answers in the sample of
size n respondents. To estimate πs,

(
n
no

)
in (16) does not contain

πs, as a result, the study considers it to be constant. Hence, the
function to maximize reduces to

L(πs) = [pπs]no [p(1 − πs) + (1 − p)]n−no . (17)

Since logarithm is a monotone function, π̂s that maximizes the
likelihood function also maximizes its log-likelihood function.
Therefore, to facilitate computation, the natural logarithm of
(17) yield the log-likelihood function as

l(πs) = no ln[pπs] + (n − no) ln[p(1 − πs) + (1 − p)]. (18)

Differentiating (18) with respect to πs, the differential coeffi-
cient is

d
dπs

l(πs) =
no p
pπs

+
−(n − no)p

p(1 − πs) + (1 − p)
. (19)

Equating (19) to zero and simplifying the resulting algebraic
equation, the maximum likelihood estimator of πs which shall
be arbitrarily denoted in this study as πspropo is

π̂ spropo =
no

np
, p , 1. (20)

Remarks 1

(i) Putting p = 1 in either (16) or (20), the proposed MFRRM
reduces to the conventional method of direct questioning
and the proposed RRT estimator also becomes the tra-
ditional measure of proportion. The value of p = 1 is
absolute lack of protection, hence, p = 1 is impracticable
in any randomized response survey. When 0 < p < 1

2 or
1
2 < p < 1, the respondent gives partially useful but not
accurate information to which class (sensitive or not) he
or she belongs.

(ii) Like [11], [15] and [36], the proposed estimator π̂ spropo is
not admissible since the range of π̂ spropo is not a subspace
of (0, 1). In fact, if no

n > p, that is, observed proportion
of yes is greater than the pre-assigned randomization pa-
rameter, the proposed estimator produce estimate whose
value is greater than unity.
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Origin

Sensitive question

∈ S yes
πs

< S no
1 − πsp

Unrelated question U no1

1 − p

Figure 2: Probability tree diagram of the proposed MFRR model

3.2.1. Sampling Distribution of the Proposed Estimator (π̂spropo)

Theorem 3.1 (Unbiasedness of π̂ spropo). The proposed estima-
tor is an unbiased estimator of population proportion of the
sensitive attribute under survey.

proof 3.1. π̂ spropo is said to be unbiased of the population pa-
rameter πs if and only if E(π̂ spropo) = πs. Hence, we take expec-
tation of (20) as follows

E(π̂ spropo) = E
[

no

np

]
=

1
np

n∑
i=1

[E(Xi)] =
1

np
npπs

= πs, (21)

which proves the theorem.

Theorem 3.2 (Variance of π̂ spropo). The variance of the proposed
estimator is

Var(π̂ spropo) =
πs(1 − πs)

n
+

(1 − p)πs

np
. (22)

proof 3.2. This follows from taking the variance of (20) and
considering section 5.5 of [28],

Var(π̂ spropo) = Var
[

no

np

]
=

1
(np)2

n∑
i=1

Var(Xi)

=
npπs

[
p(1 − πs) + (1 − p)

]
(np)2

=
πs(1 − πs)

n
+

(1 − p)πs

np
.

The sample estimator of Var(π̂ spropo) is obtained by substituting
(20) in the preceding equation to have

V̂ar(π̂ spropo) =
π̂s(1 − π̂s)

n
+

(1 − p)π̂s

np
. (23)

Remark 2: Equation (23) consists of two parts. The first is the
variance of the population proportion of the sensitive attribute
if all the respondents are willing to imbibe direct questioning
approach. The second part is injected due to use of randomizer.
Putting πu = 0 in equation (4) and (5), the results coincident
with the proposed estimator in (20) and (22), respectively.

3.2.2. Stratified Sampling Strategy for the Proposed MFRRM

If in the proposed model, the population (P) is partitioned (us-
ing a suitable or appropriate stratification factor) into L strata,
and a sample nh(h = 1, 2, · · · , L) is selected by simple random

sampling with replacement in each stratum such that n =
L∑

h=1
nh.

To get the full benefit from stratification, the study assume that
Nh (the number of units in each stratum) is known. Following
the same randomization procedure of the proposed (SRSWR)
model, a respondent belonging to the sample in different strata
will perform different randomization devices, each having dif-
ferent preassigned probabilities ph. Under the assumption that
these respondents “yes”or “no”-reports are made truthfully and
ph , 1 is set by the researcher. The probability of a ”yes” and
”no” response from stratum h are Pr(Xih = 1) = λh = phπsh and
Pr(Xih = 0) = 1−λh = ph(1−πsh) + (1− ph) for h = 1, 2, · · · , L
respectively.
Suppose noh report “yes”and (nh − noh) report “no”to the sensi-
tive question in stratum h, the likelihood function of the sample
in stratum h is

L(πsh) = [phπsh]noh [ph(1 − πsh) + (1 − ph)](nh−noh) (24)

For computational convenience, the natural logarithm of the
likelihood function is

l(πsh) = nohln[phπsh]+(nh−noh) ln[ph(1−πsh)+(1−ph)](25)

To obtain the maximum likelihood estimator of πsh, the study
differentiate (25) with respect to πsh and equating the derivative
to zero to get

0 =
noh ph

phπsh
−

(nh − noh)ph

ph(1 − πsh) + (1 − ph)
(26)

solving the resulting equation (26) for πsh, the unbiased estima-
tors in terms of the responses of the respondent in stratum h is
given by

π̂sh =
noh

nh ph
=
λ̂h

ph
(27)

where λ̂h = proportion of ”yes”-answers in stratum h and π̂sh is
an unbiased estimate for πsh.

Variance of π̂sh: The variance of π̂sh is obtained by taking vari-
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ance of (27) as follows:

Var(π̂sh) = Var
[

noh

nh ph

]
=

1
(nh ph)2 Var(noh)

=
nh phπsh[ph(1 − πsh) + (1 − ph)]

(nh ph)2

=
phπsh(1 − πsh)

nh ph
+
πsh(1 − ph)

nh ph
.

Hence,

Var(π̂sh) =
πsh(1 − πsh)

nh
+
πsh(1 − ph)

nh ph
. (28)

Since selections in different strata are made independently, the
maximum likelihood estimate of πs is easily shown to be

π̂ stpropo =

L∑
h=1

Whπ̂sh =

L∑
h=1

Wh
λ̂h

ph
=

1
N

L∑
h=1

Nh
noh

nh ph
(29)

where N and Nh denote the number of subjects in the whole
population and in the stratum h, respectively. Wh (stratum weight)

= Nh
N , for h = 1, 2, · · · , L so that

L∑
h=1

Wh = 1.

3.2.3. Sampling Distribution of the Proposed Stratified
Estimator π̂stpropo

Theorem 3.3 (Unbiasedness of π̂ stpropo). The proposed strati-
fied estimator is an unbiased estimator of population propor-
tion of the sensitive attribute under study.

proof 3.3. π̂ stpropo is said to be unbiased of the population pa-
rameter πs if E(π̂ stpropo) = πs. Hence, we take expectation of
(29) and provided that π̂sh is unbiased for πsh,

E
(
π̂ stpropo

)
= E

 L∑
i=1

Whπ̂sh

 =

L∑
h=1

WhE(π̂sh) =

L∑
h=1

Whπsh = πs.(30)

Theorem 3.4 (Variance of π̂ stpropo). The variance of π̂ stpropo is

Var(π̂ stpropo) =
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

} 1
2


2

.(31)

proof 3.4. This follows from taking the variance of (29) and
from corollary 1 in section 5.9 of [28], since each unbiased
estimator π̂sh has its own variance, the variance of π̂ stpropo is

Var
(
π̂stpropo

)
= Var

 L∑
h=1

Whπ̂sh

 =

L∑
h=1

W2
h Var(π̂sh). (32)

Substituting (28) into (32), we have

Var(π̂ stpropo) =

L∑
h=1

W2
h

nh

[
πsh(1 − πsh) +

πsh(1 − ph)
ph

]
.(33)

Recall, simple random sampling scheme asserts that Var(ȳ) =

(1 − f )
S 2

y

n . Similarly,

Var(π̂sh) = (1 − fh)
S 2
πsh

nh
=

(
1 −

nh

n

) S 2
πsh

nh
. (34)

[28] established that when sampling with replacement, the sam-
pling fraction is ignorable as n −→ N relative to nh, nh

n −→ 0
and 1 − fh = 1 − nh

n −→ 1. Therefore, equation (34) reduces to

Var(π̂sh) =
S 2
πsh

nh
, (35)

making S πsh subject of relation from equation (35) and substi-
tuting equation (28) into the resulting expression produces

S πsh =

[
πsh(1 − πsh) +

(1 − ph)πsh

ph

] 1
2

. (36)

However, by optimum allocation the sample sizes are defined
to minimize variance with a given cost. For fixed cost, by the
Cauchy-Schwarz inequality the sample size nh to minimize Var(π̂stpropo)
is given by

nh =
nWhS πsh

L∑
h=1

WhS πsh

. (37)

The optimal allocation of n to n1, n2, · · · , nL−1, nL to derive the

minimum variance of π̂s subject to n =
L∑

h=1
nh is obtained by

substituting (36) into (37) to give

nh =
nWh

[
πsh(1 − πsh) +

πsh(1−ph)
ph

] 1
2

L∑
h=1

Wh

[
πsh(1 − πsh) +

πsh(1−ph)
ph

] 1
2

. (38)

The minimal variance of π̂stpropo is then obtained by substituting
(38) into (33), so that

Var(π̂ stpropo) =

L∑
h=1

W2
h

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

}

÷


nWh

{
πsh(1 − πsh) +

πsh(1−ph)
ph

} 1
2

L∑
h=1

{
πsh(1 − πsh) +

πsh(1−ph)
ph

} 1
2

 (39)

Var(π̂ stpropo) =

L∑
h=1

W2
h

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

}

×

L∑
h=1

{
πsh(1 − πsh) +

πsh(1−ph)
ph

} 1
2

nWh

{
πsh(1 − πsh) +

πsh(1−ph)
ph

} 1
2

. (40)

Further simplification of (40) yields

Var(π̂ stpropo) =
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

} 1
2


2

.

The unbiased minimal variance of π̂stpropo follows on replacing
n by (n − 1) in equation (31) to get
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V̂ar(π̂ stpropo) =
1

n − 1

 L∑
h=1

Wh {πsh(1 − πsh)

+
πsh(1 − ph)

ph

} 1
2


2

. (41)

Although, if n is large, the difference between equation (31) and
(41) is negligible. If ph = p for h = 1, 2, · · · , L, (31) reduces to

Var(π̂ stpropo) =
1
n

 L∑
h=1

Wh {πsh(1 − πsh)

+
πsh(1 − p)

p

} 1
2


2

(42)

To facilitate computation of Var(π̂ stpropo), let {πsh(1 − πsh)

+
πsh(1−ph)

ph

} 1
2 be replaced by φsh in equation (31) so that

Var(π̂ stpropo) =
1
n

 L∑
h=1

Whφsh

2

. (43)

3.3. Efficiency Comparison
The efficiency of the proposed model with Warner’s original
model, Boruch’s FRRM and Mangat’s improved two step pro-
cedure is judged by Mean Square Error (MSE) criterion. It
should be noted that since the existing and the proposed estima-
tors are unbiased, then the criterion for judging the performance
of the proposed estimator is now limited to variance compari-
son.

3.3.1. Efficiency comparison with Warner’s (1965) Original
RRM

In this study, we arbitrarily denote variance under Warner de-
sign as Var(π̂ sw) and the proposed model as Var(π̂ spropo). Re-
call from equations (3) and (22)

Var(π̂s warner) =
πs(1 − πs)

n
+

p(1 − p)
n(2p − 1)2

and
Var(π̂s propo) =

πs(1 − πs)
n

+
(1 − p)πs

np

The proposed modified FRRM is more efficient than Warner’s
RRM if Var(π̂s warner) − Var(π̂s propo) ≥ 0. That is,{

πs(1 − πs)
n

+
p(1 − p)

n(2p − 1)2

}
−

{
πs(1 − πs)

n
+

(1 − p)πs

np

}
≥ 0

This implies that

p2 − (2p − 1)2πs ≥ 0 ∀p ∈ [0, 1] (44)

The inequality (44) always holds. Therefore, the proposed model
is more efficient than [7] original model.

3.3.2. Efficiency Comparison with Boruch (1971) Original
FRRM

Recall from equation (5), the Boruch’s variance estimator of πs

which is subjectively denoted here as Var(π̂ s.boruch) is

Var(π̂ s.boruch) =
πs(1 − πs)

n
+

(1 − p)
np

[πs(1 − πu) + πu(1 − πs)

+
(1 − p)πu(1 − πu)

p

]
. (45)

The proposed MFRRM is more efficient than Boruch’s FRRM
if Var(π̂ s.boruch) − Var(π̂ spropo) ≥ 0. That is,

πs(1 − πs)
n

+
(1 − p)

np
[πs(1 − πu) + πu(1 − πs)

+
(1 − p)πu(1 − πu)

p

]
−

{
πs(1 − πs)

n
+

(1 − p)πs

np

}
(46)

which implies

πs(1 − πu) + πu(1 − πs) +
(1 − p)πu(1 − πu)

p
− πs

and further simplification gives

πs ≤
1 − πu(1 − p)

2p
. (47)

If the condition in (47) is satisfied then the proposed MFFRM
is more efficient than [12] original FRRM.

3.3.3. Efficiency Comparison with Mangat’s (1994) Improved
Two-Step Procedure

From equation (7), the variance of πs under Mangat design is

Var(π̂ s) =
πs(1 − πs)

n
+

(1 − p)(1 − πs)
np

.

The proposed MFRRM is more efficient than Mangat’s improved
two-step procedure if Var(π̂s mangat) − Var(π̂s propo) ≥ 0. That is,{
πs(1 − πs)

n
+

(1 − p)(1 − πs)
np

}
−

{
πs(1 − πs)

n
+

(1 − p)πs

np

}
≥ 0.

After simplification,

1 − 2πs ≥ 0, =⇒ πs ≤
1
2

(48)

The inequality (48) holds ∀πs ≤
1
2 . Hence, the proposed MFRRM

is more efficient than Mangat’s improved two step procedure if
and only if πs ≤

1
2 .
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3.3.4. Efficiency Comparison with Kim and Warde Strati-
fied Model

Recall, variance of πs under Kim and Warde literally repre-
sented as Var(π̂ skw) and proposed stratified MFRRM are

Var(π̂ skw) =
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

ph(1 − ph)
(2ph − 1)2

} 1
2


2

and

Var(π̂ stpropo) =
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

} 1
2


2

,

respectively. The proposed stratified MFRRM is more efficient
than the [16] stratified model if the relative efficiency (RE) =

Var(π̂ skw)
Var(π̂ stpropo) ≥ 1. That is, Var(π̂ skw) − Var(π̂ stpropo) ≥ 0. Using
this condition,

1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

ph(1 − ph)
(2ph − 1)2

} 1
2


2

−
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

} 1
2


2

≥ 0.

(49)

The above inequality is true if for each stratum h, h = 1, 2, · · · , L
we have[
πsh(1 − πsh) +

ph(1 − ph)
(2ph − 1)2

] 1
2

−

[
πsh(1 − πsh) +

πsh(1 − ph)
ph

] 1
2

≥ 0

which implies

ph(1 − ph)
(2ph − 1)2 −

πsh(1 − ph)
ph

≥ 0

Multiplying the preceding inequality throughout by ph(2ph−1)2

1−ph

gives

p2
h−(2ph−1)2πsh ≥ 0 ∀ ph ∈ (0, 1) and ∀ πsh ∈ (0, 1)(50)

The LHS of (50) is always non-negative, hence the proposed
stratified MFRRM is more efficient than [16] stratified random-
ized response model.

3.3.5. Efficiency Comparison With Usman and Oshungade
Mixed Stratified RRM

[17] invented Mixed Stratified RRM for HIV sero-prevalence
survey with Var(π̂s) as

Var(π̂ s) =
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

(1 − ph)(1 − πsh)
ph

} 1
2


2

.

The proposed stratified Modified FRRM is more efficient than
the [17] mixed stratified RRM if the relative efficiency (RE) =
Var(π̂s usman)
Var(π̂ stpropo) ≥ 1. That is, Var(π̂s usman)−Var(π̂ stpropo) ≥ 0. There-

fore,

1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

(1 − ph)(1 − πsh)
ph

} 1
2


2

−
1
n

 L∑
h=1

Wh

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

} 1
2


2

≥ 0(51)

The inequality (51) holds if for each stratum h (h = 1, 2, · · · , L)
we have

{
πsh(1 − πsh) +

(1 − ph)(1 − πsh)
ph

} 1
2

−

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

} 1
2

≥ 0

(52)

which reduces to
(1 − ph)(1 − πsh)

ph
−
πsh(1 − ph)

ph
≥ 0. (53)

Multiplying the above inequality (53) through by ph
1−ph

yields

1 − 2πsh ≥ 0. (54)

The inequality (54) holds ∀ πsh ≤
1
2 . That is, the proposed

model is more efficient than the [17] mixed stratified RR model
if πsh ≤

1
2 for h = 1, 2, · · · , L.

3.3.6. Cost and Efficiency of Stratification

It is essential to think about more than two or three strata cases
in terms of efficiency. [28] showed that the variance for the
mean of a stratified random sample decreases as the number
of strata increases. So, this section explore the behaviour of
Var(π̂ stpropo) as the number of strata increases. Suppose L strata
of equal sizes are created such that Wh = 1

L , substituting Wh = 1
L

in equation (31) produces

Var(π̂ stpropo) =
1

nL2

 L∑
h=1

{
πsh(1 − πsh) +

πsh(1 − ph)
ph

} 1
2


2

.(55)

Let f (L) = 1
L2

[
L∑

h=1

{
πsh(1 − πsh) +

πsh(1−ph)
ph

} 1
2

]2

where L is a pos-

itive integer, We want to show that f (L) − f (L + 1) ≥ 0 for

L(πsh, ph) =
{
πsh(1 − πsh) +

πsh(1−ph)
ph

} 1
2 .

f (L) − f (L + 1) =
1
L2

 L∑
h=1

L(π̂sh, ph)

2

−
1

(L + 1)2

L+1∑
h=1

L(π̂sh, ph)


2

=

 1
L

L∑
h=1

L(π̂sh, ph)

2

−


 1

L + 1

L+1∑
h=1

L(π̂sh, ph)




2
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=

 1
L

 L∑
h=1

L(π̂sh, ph)

 +
1

L + 1

L+1∑
h=1

L(π̂sh, ph)


× 1

L

 L∑
h=1

L(π̂sh, ph)

 − 1
L + 1

L+1∑
h=1

L(π̂sh, ph)


 .

As the number of strata increases, it may be possible to divide a
heterogeneous population into sub-populations, each of which
is more homogeneous. So we may get 1

L

 L∑
h=1

L(π̂sh, ph)

 − 1
L + 1

L+1∑
h=1

L(π̂sh, ph)


 ≥ 0. (56)

By this assumption, f (L) is a monotone decreasing function
of L. Therefore, the variance of the proposed estimator gets
smaller as the number of strata increases.

3.4. Bayesian Estimation Approach
In making generalization, conclusion or prediction about un-
known population parameter(s) the trend is to distinguish be-
tween classical method of estimating the population parame-
ter(s) whereby inferences are based strictly on information ob-
tained from a random sample and a Bayesian one which uti-
lizes prior subjective knowledge about the probability distribu-
tion in conjunction with the information provided by the sample
data. [29] and [30] estimated Warner’s RRM using Bayesian
approach with binomial likelihood and beta prior as

π̂ bw =

(a+no)
(a+b+n) − (1 − p)

(2p − 1)
(57)

with posterior variance defined as

Var(π̂bw) =
nπs(1 − πs)
(a + b + n)2 +

np(1 − p)
(2p − 1)2(a + b + n)2 . (58)

Similarly, the model for the proposed sensitive random variable
X conditional on unknown parameter λ popularly called likeli-
hood function is the density function f (x|λ) = L(λ) given as

L(λ) = f (no|λ) =

(
n
no

)
λno (1 − λ)n−no

=

(
n
no

)
(pπs)no [p(1 − πs) + (1 − p)]n−no . (59)

The parameter λ = pπs is considered a random variable which
has a distribution g(λ) called the prior distribution otherwise
known as prior predictive which describes uncertainty about the
parameter before data are observed. A more convenient family
of densities for a proportion λ is the beta with kernel propor-
tional to g(λ) ∝ λa−1(1 − λ)b−1, 0 < λ < 1. Hence,

g(λ) =
1

β(a, b)
λa−1(1 − λ)b−1

=
1

β(a, b)
(pπs)a−1[p(1 − πs) + (1 − p)]b−1,

0 < λ < 1 (60)

where the hyper-parameters a and b are chosen to reflect the
user’s prior beliefs about λ. Our goal is to start with this prior
information and update it using the data to make the best pos-
sible estimator of λ. Multiplying this beta prior with the likeli-
hood function gives the joint density function h(no, λ) as

h(no, λ) = f (no|λ)g(λ)

=

(
n
no

)
β(a, b)

(pπs)a+no−1[p(1 − πs) + (1 − p)]b+n−no−1.(61)

The marginal distribution (m(no)) can be obtained by integrat-
ing out parameter λ from the joint distribution as

m(no) =

∫
�

h(no, λ)dλ =

∫
�

f (no|λ)g(λ)dλ

=

∫ 1

0

(
n
no

)
β(a, b)

(pπs)a+no−1[p(1 − πs) + (1 − p)]b+n−no−1d(pπs)

=

∫ 1

0

(
n
no

)
β(a, b)

(pπs)a+no−1(1 − pπs)b+n−no−1d(pπs).

Therefore,

m(no) =

(
n
no

)
β(a, b)

β(a + no, b + n − no). (62)

Combining this beta prior with the likelihood function, one can
find f (λ| no), called the posterior distribution/density for λ given
X = no as

f (λ| no) =
f (no|λ)g(λ)∫

�
f (no|λ)g(λ)dλ

=
h(no, λ)
m(no)

=

(
n
no

)
β(a, b)

(pπs)a+no−1[p(1 − πs) + (1 − p)]b+n−no−1

×
β(a, b)(

n
no

)
β(a + no, b + n − no)

which gives

f (λ| no) =
(pπs)a+no−1(1 − pπs)b+n−no−1

β(a + no, b + n − no)

=
(λ)a+no−1(1 − λ)b+n−no−1

β(a + no, b + n − no)
. (63)

Like g(λ), f (λ| no) also follows beta-distribution with updated
parameters a + no and b + n − no. This is an example of a con-
jugate analysis where the prior and posterior densities have the
same functional form. The prior g(λ) is said to be a conjugate
with respect to f (no|λ) [31, 32].

The Bayes estimator of h(λ) under the squared error loss is a
ratio of integrals

ĥλ =

∫
�

h(λ)π(λ| no)dλ =

∫
�

h(λ) f (no|λ)g(λ)dλ∫
�

f (no|λ)g(λ)dλ
(64)
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Following from (64) above, the posterior mean λ̂ is

λ̂ =

∫ 1

0
λ f (λ|no)dλ =

∫ 1

0
λ
λ(a+no)−1(1 − λ)(b+n−no)−1

β [(a + no)(b + n − no)]
dλ

p̂πs =
1

β[(a + no)(b + n − no)]

∫ 1

0
λ(a+no+1)−1(1 − λ)(b+n−no)−1dλ

=
1

β[(a + no)(b + n − no)]
β[(a + no + 1)(b + n − no)]

=
Γ(a + b + n)

Γ(a + no)Γ(b + n − no)
×

Γ(a + no + 1)Γ(b + n − no)
Γ(a + b + n + 1)

By definition, Γ(α) = (α − 1)!. So, the up equation yields

π̂s =
a + no

p(a + b + n)
. (65)

The variance of Bayesian estimator of the proposed RRM fol-
lows by taking the variance of (65) as

Var(π̂s) = Var
[

a + no

p(a + b + n)

]
=

1
[p(a + b + n)]2 npπs[p(1 − πs) + (1 − p)].

(66)

After some algebraic operations, equation (66) gives

V̂ar(π̂s) =
nπs(1 − πs)
(a + b + n)2 +

n(1 − p)πs

p(a + b + n)2 . (67)

For large n, the influence of a and b in equations (65) and
(67) become negligible because the weight n

a+b+n → 1. Con-
sequently, the posterior mean and variance are getting closer
to classical (maximum likelihood) estimators in equations (20)
and (23), respectively.

4. Results and Discussion
This section presents analysis of the simulated data of different
sample sizes that are binomially distributed (with parameters
(n, p)) to validate the developed model. [33] established that the
best average value of p across RR studies is 0.7. However, this
study considered values of p within the range [0.6, 0.8] at equal
step of 0.1. The proposed model was estimated and variance
comparison was done to examine its performance with some
other existing models using [34](R-software version 3.6.0) and
”LearnBayes” package in R-software authored by [35]. The
tables and figures showing the results are presented below and
the results discussion follows:

4.1. Discussion
In terms of minimum variance, column (2) and column (6) of
Tables 4, 5 and 6 show that the proposed RR model is more ef-
ficient and precise than [7] original RRM. In a situation where
πu , 0 and πs in the neighbourhood of 0.6 and below, columns
4 and 6 of Tables 4, 5 and 6 reveal that the proposed MFRRM
is more efficient than [12] original FRRM. In addition, Table
7 depicts that if πu = 0, [12] and the proposed model produce

same results not only for Var(π̂s) but also π̂s across different
sample sizes regardless of pre-assigned randomization parame-
ter (p). Mangat’s procedure is more efficient but less effective
when compare with the earlier similar estimators (models). The
proposed model is more protective than [15] RRM. Moreover,
the results demonstrate that it is more efficient given the follow-
ing condition: when πs assume values ≤ 1

2 . This condition is
already established in equation (48). A more detailed insight
of the results is given in columns 5 and 6 of Tables 4, 5 and
6 that showed conditional efficiency of the two designs. When
πs >

1
2 , Mangat is more efficient (see Table 6).

Like [11] model, especially if the sensitive variable under study
is highly rampant, the proposed estimator has tendency to pro-
duce estimate whose value is greater than unity. Tables 1, 2
and 3 confirmed this possibility. Second column of Table 9
also show that Kim and Warde Warner’s stratified RRM has the
same property of producing proportion greater than unity.

Furthermore, Bayesian estimation of both Warner’s and the pro-
posed MFRRM provide relatively more precise estimators than
their classical (maximum likelihood) estimators, conditional on
the sample size (n) and total of yes-responses (no). But in
large samples, Bayesian estimator asymptotically approaching
the classical estimators (refer to columns 3 and 4, 7 and 8 of Ta-
ble 1 through 3; columns 2 and 3, 6 and 7 of Table 4 through 6
for details). To update the user’s prior knowledge about πs, the
study considers posterior of immediate sample size as a new
prior in the subsequent sampling to generate a new posterior
which produce Figure 3. Figure 3 above reveals that the poste-
rior density compromises between the initial prior beliefs and
the information in the data.

Again, using information from Table 8, the numerical illustra-
tion shows that the proposed stratified MFRRM is more effi-
cient than Kim and Warde Warner’s stratified RRM as Var(π̂ stpropo) =

0.0007313622 < Var(π̂ skw) = 0.002960187 (compare column
4 of Tables 10 and 14). In addition, the proposed model is less
efficient when compared with mixed stratified RRM of [17] (see
column 4 of Tables 12 and 14). Both Warner’s stratified and
mixed stratified RRMs have tendency to produce negative es-
timate of π̂sh which has a seeming distance from reality. The
possibility of negative stratum proportion is well known from
their theoretical results particularly when λ̂h + ph < 1 (see first
row, second column of Table 11). Theoretically and empiri-
cally, the proposed stratified RRM can not produce negative π̂sh

(refer to equation (27) and Table 13 for confirmation).

5. Concluding Remarks
This study proposed a modified version of FRRM for designing
surveys that will elicit response to sensitive issues from sam-
ple units. Although extant models such as [7] original RRM,
[12] original FRRM, and [15] FRRM among others have fo-
cused on improving response in RR surveys exists in the lit-
erature. However, designs of some of these models are not
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Table 1: Estimate of πs for the proposed model and some existing models when p = 0.6, πu = 0.75, a = 10.2 and b = 27.4

n no Warner RRM Boruch Mangat Proposed MFRRM
π̂mle π̂ bayesian π̂mle π̂mle π̂mle π̂ bayesian

200 118 0.950000 0.6978114 0.4833333 0.3166667 0.9833333 0.8992705
400 244 1.050000 0.9044790 0.5166667 0.3500000 1.0166667 0.9681597
600 362 1.016667 0.9187578 0.5055556 0.3388889 1.0055556 0.9729193
800 476 0.975000 0.9023400 0.4916667 0.3250000 0.9916667 0.9674467
1000 591 0.955000 0.8970702 0.4850000 0.3183333 0.9850000 0.9656901
10000 5949 0.974500 0.9684387 0.4915000 0.3248333 0.9915000 0.9894796
100000 60303 1.015150 1.0145265 0.5050500 0.3383833 1.0050500 1.0048422
1000000 600418 1.002090 1.0020281 0.5006967 0.3340300 1.0006967 1.0006760

Table 2: Estimate of πs for the proposed model and some existing models when p = 0.7, πu = 0.75, a = 10.2 and b = 27.4

n no Warner RRM Boruch Mangat Proposed MFRRM
π̂mle π̂ bayesian π̂mle π̂mle π̂mle π̂ bayesian

200 135 0.9375000 0.7777778 0.6428571 0.5357143 0.9642857 0.8730159
400 275 0.9687500 0.8793419 0.6607143 0.5535714 0.9821429 0.9310525
600 416 0.9833333 0.9211104 0.6690476 0.5619048 0.9904762 0.9549202
800 557 0.9906250 0.9429322 0.6732143 0.5660714 0.9946429 0.9673898
1000 699 0.9975000 0.9587510 0.6771429 0.5700000 0.9985714 0.9764291
10000 6958 0.9895000 0.9855244 0.6725714 0.5654286 0.9940000 0.9917282
100000 70104 1.0026000 1.0021962 0.6800571 0.5729143 1.0014857 1.0012550
1000000 700007 1.0000175 0.9999772 0.6785814 0.5714386 1.0000100 0.9999870

Table 3: Estimate of πs for the proposed model and some existing models when p = 0.8, πu = 0.75, a = 10.2 and b = 27.4

n no Warner RRM Boruch Mangat Proposed MFRRM
π̂mle π̂ bayesian π̂mle π̂mle π̂mle π̂ bayesian

200 151 0.9250000 0.7974186 0.7562500 0.6937500 0.9437500 0.8480640
400 308 0.9500000 0.8785801 0.7750000 0.7125000 0.9625000 0.9089351
600 470 0.9722222 0.9218946 0.7916667 0.7291667 0.9791667 0.9414210
800 624 0.9666667 0.9286055 0.7875000 0.7250000 0.9750000 0.9464542
1000 785 0.9750000 0.9439733 0.7937500 0.7312500 0.9812500 0.9579800
10000 7977 0.9961667 0.9928801 0.8096250 0.7471250 0.9971250 0.9946601
100000 80061 1.0010167 1.0006851 0.8132625 0.7507625 1.0007625 1.0005138
1000000 800137 1.0002283 1.0001952 0.8126712 0.7501713 1.0001712 1.0001464

Table 4: Performance comparison of the proposed model with some existing models when p = 0.7, πs = 0.1, πu = 0.75, a = 10.2 and b = 27.4

n Warner RRM Boruch Mangat Proposed MFRRM
V(π̂mle) V(π̂ bayesian) V(π̂mle) V(π̂mle) V(π̂mle) V(π̂ bayesian)

200 0.0070125000 4.968668e-03 2.122194e-03 2.378571e-03 6.642857e-04 4.706760e-04
400 0.0035062500 2.929599e-03 1.061097e-03 1.189286e-03 3.321429e-04 2.775174e-04
600 0.0023375000 2.069939e-03 7.073980e-04 7.928571e-04 2.214286e-04 1.960828e-04
800 0.0017531250 1.599262e-03 5.305485e-04 5.946429e-04 1.660714e-04 1.514961e-04
1000 0.0014025000 1.302696e-03 4.244388e-04 4.757143e-04 1.328571e-04 1.234028e-04
10000 0.0001402500 1.392012e-04 4.244388e-05 4.757143e-05 1.328571e-05 1.318637e-05
100000 0.0000140250 1.401446e-05 4.244388e-06 4.757143e-06 1.328571e-06 1.327573e-06
1000000 0.0000014025 1.402395e-06 4.244388e-07 4.757143e-07 1.328571e-07 1.328472e-07

effective and their estimators are not efficient. Based on the
simulated results and other evidence from variance compari-
son, the proposed MFRRM outperformed some of these mod-
els. In terms of efficiency, the proposed model is preferred to
[7] RRM as it portents or exhibits minimal variance. In compar-

ison with [12] FRRM, the proposed MFFRRM is more efficient
and also more flexible as it does not requires prior knowledge
of πu unlike Boruch’s original FRRM. To some extent, the pro-
posed model is more efficient than [15] RRM. Its practicability
trascends Mangat’s as it is wholly stochastic in procedure thus
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Table 5: Performance comparison of the proposed model with some existing models when p = 0.7, πs = 0.4, πu = 0.75, a = 10.2 and b = 27.4

n Warner RRM Boruch Mangat Proposed MFRRM
V(π̂mle) V(π̂ bayesian) V(π̂mle) V(π̂mle) V(π̂mle) V(π̂ bayesian)

200 0.0077625000 5.500077e-03 2.550765e-03 2.485714e-03 2.057143e-03 1.457577e-03
400 0.0038812500 3.242926e-03 1.275383e-03 1.242857e-03 1.028571e-03 8.594088e-04
600 0.0025875000 2.291323e-03 8.502551e-04 8.285714e-04 6.857143e-04 6.072242e-04
800 0.0019406250 1.770306e-03 6.376913e-04 6.214286e-04 5.142857e-04 4.691493e-04
1000 0.0015525000 1.442021e-03 5.101531e-04 4.971429e-04 4.114286e-04 3.821506e-04
10000 0.0001552500 1.540891e-04 5.101531e-05 4.971429e-05 4.114286e-05 4.083520e-05
100000 0.0000155250 1.551333e-05 5.101531e-06 4.971429e-06 4.114286e-06 4.111194e-06
1000000 0.0000015525 1.552383e-06 5.101531e-07 4.971429e-07 4.114286e-07 4.113976e-07

Table 6: Performance comparison of the proposed model with some existing models when p = 0.7, πs = 0.6, πu = 0.75, a = 10.2 and b = 27.4

n Warner RRM Boruch Mangat Proposed MFRRM
V(π̂mle) V(π̂ bayesian) V(π̂mle) V(π̂mle) V(π̂mle) V(π̂ bayesian)

200 0.0077625000 5.500077e-03 2.501020e-03 2.057143e-03 2.485714e-03 1.761239e-03
400 0.0038812500 3.242926e-03 1.250510e-03 1.028571e-03 1.242857e-03 1.038452e-03
600 0.0025875000 2.291323e-03 8.336735e-04 6.857143e-04 8.285714e-04 7.337293e-04
800 0.0019406250 1.770306e-03 6.252551e-04 5.142857e-04 6.214286e-04 5.668888e-04
1000 0.0015525000 1.442021e-03 5.002041e-04 4.114286e-04 4.971429e-04 4.617653e-04
10000 0.0001552500 1.540891e-04 5.002041e-05 4.114286e-05 4.971429e-05 4.934253e-05
100000 0.0000155250 1.551333e-05 5.002041e-06 4.114286e-06 4.971429e-06 4.967692e-06
1000000 0.0000015525 1.552383e-06 5.002041e-07 4.114286e-07 4.971429e-07 4.971055e-07

Table 7: Comparison of original FRRM and the Proposed MFRRM when p = 0.7 and πu = 0

Boruch original FRRD Proposed MFRRD
n no π̂mle V(π̂mle) π̂mle V(π̂mle)
200 135 0.9642857 2.514286e-03 0.9642857 2.514286e-03
400 275 0.9821429 1.257143e-03 0.9821429 1.257143e-03
600 416 0.9904762 8.380952e-04 0.9904762 8.380952e-04
800 557 0.9946429 6.285714e-04 0.9946429 6.285714e-04
1000 699 0.9985714 5.028571e-04 0.9985714 5.028571e-04
10000 6958 0.9940000 5.028571e-05 0.9940000 5.028571e-05
100000 70104 1.0014857 5.028571e-06 1.0014857 5.028571e-06
1000000 700007 1.0000100 5.028571e-07 1.0000100 5.028571e-07

Table 8: Samples and strata sizes

Strata Nh nh ph noh Wh λ̂h

1 876 69 0.4 27 0.08981852 0.3913043
2 2412 118 0.6 51 0.24730852 0.4322034
3 3012 279 0.7 115 0.30882805 0.4121864
4 3453 288 0.8 102 0.35404491 0.3541667
Total 9753 754 1.00

Table 9: Computational procedure of Kim and Warde Warner’s stratified RRM

Strata π̂sh Whπ̂sh φ̂sh Whφsh

1 1.0434783 0.09372367 2.440211 0.2191762
2 0.1610169 0.03982086 2.476911 0.6125613
3 0.2804659 0.08661575 1.230571 0.3800348
4 0.2569444 0.09096987 0.797100 0.2822092
Total 0.3111302 1.493982
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Figure 3: The Prior, the Likelihood and the Posterior for n = 200 and n = 400

Table 10: Summary of Kim and Warde Warner’s stratified RRM

N n π̂s Var(π̂s) 95% CI
9753 754 0.3111302 0.002960187 0.2044932, 0.4177671

Table 11: Computational procedure of mixed stratified RRM

Strata π̂sh Whπ̂sh φ̂sh Whφsh

1 -0.40831758 -0.03667448 1.2399337 0.1113690
2 0.04639471 0.01147381 0.8246085 0.2039327
3 0.13211914 0.04080210 0.6975762 0.2154311
4 0.13650174 0.04832774 0.5777054 0.2045337
Total 0.06392917 0.7352665

Table 12: Summary of mixed stratified RRM

N n π̂s Var(π̂s) 95% CI
9753 754 0.06392917 0.0007169984 0.01144755, 0.1164108

Table 13: Computational procedure of the proposed stratified MFRRM

Strata π̂sh Whπ̂sh φ̂sh Whφsh

1 0.9782609 0.08786594 1.2201057 0.1095881
2 0.7203390 0.17814597 0.8256372 0.2041871
3 0.5888377 0.18184960 0.7031834 0.2171628
4 0.4427083 0.15673863 0.5978250 0.2116569
Total 0.6046001 0.7425948

Table 14: Summary of proposed stratified MFRRM

N n π̂ stpropo Var(π̂ stpropo) 95% CI
9753 754 0.6046001 0.0007313622 0.5515954, 0.6576048

avoiding any posiible identification of individual status. The
motivation for adopting existing RRT in sensitive related sur-
vey is protection of respondents’ privacy, and for the fact that
the proposed MFRRM is more efficient, flexible and practical

over some of the leading RRT, the study suggest its adoption.

The proposed model argues that majority of people have a wrong
intuition of the concepts of probabilities. This ignorance was
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used to the advantage of the survey under consideration by mak-
ing the subjective privacy protection larger than the true statis-
tics privacy protection. Though, the proposed design is still
in accordance with the principle of RRT, since the identity of
the respondent is not required and the randomization process
makes it impossible to know or even guess the response of a
particular respondent. It is imperative to recall that RRT was
introduced to protect respondents’ privacy and encourage them
to divulge truthful answers rather than trapping them with prob-
ability or mathematical techniques to trace their real status on
the sensitive issue(s) understudy as suggested by [37-38], and
the proposed model. The study however suggests further quest
for more robust RRM in view of the possibility that respondents
can subsequently assimilate the randomization process thereby
increasing false or evasive response, or at worst refusal to par-
ticipate in such survey.
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