
J. Nig. Soc. Phys. Sci. 1 (2019) 122–130

Journal of the
Nigerian Society

of Physical
Sciences

Original Research

Software Process Ontology: A case study of software
organisations software process sub domains

R. O. Oveh∗, O. Efevberha-Ogodo, F. A. Egbokhare

Department of Mathematics and Computer Science, Western Delta University, Oghara, Delta State, Nigeria

Abstract

In a domain like software process that is intensively knowledge driven, transforming intellectual knowledge by formal representation is an
invaluable requirement. An improved use of this knowledge could lead to maximum payoff in software organisations which is key. The purpose of
formal representation is to help organisations achieve success by modelling successful organisations. In this paper, Software process knowledge
from successful organisations was harvested and formally modelled using ontology. Domain specific knowledge base ontology was produced for
core software process subdomain, with its resulting software process ontology produced.

Keywords: Software Process, Software Process Ontology, Ontology, Knowledge, Formal Representation, Knowledge Representation

Article History :
Received: 06 June 2019
Received in revised form: 09 September 2019
Accepted for publication: 12 September 2019
Published: 17 December 2019

c©2019 Journal of the Nigerian Society of Physical Sciences. All Rights Reserved.
Communicated by: T. Latunde

1. Introduction

Software process is a knowledge driven and knowledge in-
tensive process that involves several other sub-processes. Soft-
ware process can be defined as the set of related activities that
are used in developing software. Knowledge in Software Engi-
neering (SE) is diverse and organizations have problems captur-
ing, retrieving, and reusing it. An improved use of this knowl-
edge is the basic motivation and driver for Knowledge Manage-
ment (KM) in SE [1-23].

Harvesting, representing and reusing knowledge within a
domain leads to maximum payoff, which is desirable in most
organisations [23]. Knowledge Management (KM) is defined
as an effort to capture critical knowledge and share it within an
organization [3, 17]. It capitalizes on the collective organiza-

∗Corresponding Author Tel. No: +2347036142579
Email address: omo_rich@yahoo.com (R.O.Oveh)

tional memory to improve decision making, enhance produc-
tivity, and promote innovation [18, 19].

It is also the process of transforming information and intel-
lectual assets into persisting value. KM connects people with
the knowledge that they need to take action, when they need it
[20]. Knowledge management involves the identification and
analysis of available and required knowledge [21] and helps an
organization to gain insight and understanding from its own ex-
perience. Specific knowledge management activities focus on
acquiring, storing and utilizing knowledge for problem solving,
dynamic leaning, strategic planning and decision making. This
prevents intellectual assets from decay, adds to a firm’s intelli-
gence and provides increased flexibility [22].

SE comprises several interrelated subdomains such as Re-
quirements, Design, Coding, Testing, Project Management, and
Configuration Management. There are several software process
models which describe the sequence of activities carried out in
developing software. These software process models are a stan-

122



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 123

dard way of planning and organizing a software process. The
major phases are requirement gathering, design and coding, im-
plementation and maintenance. It has been identified that there
are few works in literature that aim at developing ontologies
covering wide portions of the SE domain, such as [4-6].

A lot of SE domain ontologies model SE subdomains [7-
11]. Ref. [12] described these subdomain ontologies as weak
or not interrelated, and are often applied in isolation. Thus he
made an attempt to provide an integrated solution for better
dealing with KM-related problems in SE by means of a Soft-
ware Engineering Ontology Network (SEON). It was designed
with mechanisms for easing the development and integration
of SE domain ontologies, covering the main technical software
engineering subdomains (i.e requirements, design, coding and
testing). However, he only represented a small portion of soft-
ware engineering ontology. [7], identified that the combi-
nation of ontologies of all SE subdomains would result in an
ontology of the complete SE domain. He further stated that the
reality is that this goal is extremely laborious, not only due to its
size, but also due to the numerous problems related to ontology
integration and merging, such as overlapping concepts, diverse
foundational theories, and different representation and descrip-
tion levels, among others. He concluded that despite the chal-
lenges involved, an ontological representation covering a large
extension of the SE domain remains a desired solution. This
paper represents a software process ontology covering major
SE subdomains (i.e. requirement gathering, design and coding,
implementation and maintenance).

2. Related Literature

Ontologies have been widely recognized as a key enabling
technology for KM. They are used for establishing a common
conceptualization of the domain of interest to support knowl-
edge representation, integration, storage, search and communi-
cation [2]. A domain ontology identifies the key concepts, ob-
jects and entities that exist in some knowledge domain or area
of interest and the relationships between them [15, 16]. Ontolo-
gies play a significant role for knowledge sharing and as knowl-
edge models in instructional science, technology-enhanced learn-
ing, knowledge management and training [15, 14, 13]. On-
tologies consist of instances, properties and classes, where in-
stances represent specific project data, properties represent bi-
nary relations held among software engineering concepts/instances,
and classes represent the software engineering concepts inter-
preted as sets that contain specific project data [25]. [7], did an
extensive review of SE ontologies, where he classified them into
generic and specific ontology. Generic SE Ontologies, have the
ambitious goal of modeling the complete SE body of knowl-
edge; while Specific SE Ontologies, attempting to conceptual-
ize only part (a subdomain) of this discipline.

The management of knowledge and experience are key means
by which systematic software development and process improve-
ment occur. Within the domain of Software Engineering (SE),
quality continues to remain an issue of concern. Knowledge
Management (KM) gives organizations the opportunity to ap-

preciate the challenges and complexities inherent in software
development [24].

Successful organisations continuously improve their pro-
cesses. Like organisational standard process definition, system-
atic process improvement is more effective and efficient if it is
done guided by process quality models and standards. The pur-
pose of most standards is to help software organisations achieve
excellence by following the processes and activities adopted by
the most successful organisations [26].

3. Methodology

Two complementary methods were used for data collection.
They are: case study and interview methods. For the case study,
four (4) Software Development Organizations was studied. For
reason of privacy and confidentially, the organizations studied
are not referenced by their names. Table 1 shows the details of
the organisations.

From Table 4, the domain concept, the data value/property
and the instances are specified. For example the entity domain
expert in number 9 has the property: name that can take a data
value string, data property domain that can take a data value
string and a data property years of experience that can take a
data property integer. It also has instances of the class as: busi-
ness rules and directory of experts. Figure 6 shows the domain
concepts and their instances

4. Result

Four main subdomains were identified as knowledge enti-
ties in a typical software development process irrespective of
the life cycle model adopted: Requirements Definition, De-
sign & Coding, implementation and maintenance. These are
core human centric activities performed by developers that cre-
ate opportunities for sharing tacit knowledge during the soft-
ware development process. This research used both inductive
and deductive analysis by first identifying keywords related to
software development process and then grouping the keywords
into categories related to requirements definition, coding, im-
plementation and maintenance. For each process activity, a
Union of the useful themes obtained each case study was used
to determine the useful knowledge constructs for that activity.
That is, for each Process Activity (PA), Knowledge Harvested
(KH) for the software process is given as

KH(PA)=Case 1(PA)
⋃

Case 2 (PA)⋃
Case 3 (PA)

⋃
Case 4 (PA) (1)

5. Software Process Ontology

There is no globally accepted methodology for Ontology
construction [28] but the development is usually an iterative
process. A 5-step iterative process from [29, 30] was adopted
for the Ontology construction:

123



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 124

Table 1: Details of the organisations

Case Study Years of existence Software Area
1 15 Human resources systems, Payroll systems, and portal for schools.
2 22 Banking solutions, Human Resource management systems, Process

Control Systems, Payroll Systems, Security systems, Materials man-
agement systems

3 10 security solutions, and Web Development
4 12 Human resource Management Systems, Third Party Online Payment

Solutions, Payroll and other financial systems

Figure 1: Requirement Definition Sub-domain Ontology Visualization

• Step 1: Identify the key concepts of the domain
The first step in the Ontology building process is to iden-
tify the concepts and map them into the relevant knowl-
edge entities. To provide clarity and efficiency in the for-
mal representation of software process knowledge, the
concepts from the harvested knowledge were categorized
into the four main knowledge entities:

1. Knowledge-Creation
2. Knowledge-transfer
3. Knowledge-sharing
4. Knowledge-documentation.

Each concept (Table 2) connotes a software process ac-
tivity that describes a task, function, action, strategy, or
reasoning process. A Concept is a collection of objects. It
is the fundamental element of a domain and usually rep-
resents a group or class whose members share common
properties [30]

• Step 2: Organisation of the concepts into a hierarchy
The purpose of this categorization is to establish a sys-
tematic relationship between the knowledge entities and
the specific software development process activities. Com-
petency questions was used here in creating the ontol-
ogy. Competency questions as defined by some method-
ologies for ontology engineering describe what kind of
knowledge the resulting ontology is supposed to answer.
According to [27] one of the ways to determine the scope
of the ontology is to sketch a list of questions that a knowl-
edge based on the ontology should be able to answer. The
following competency questions were used:

1. Ethnographic study in requirements gathering in-
volves the study of?

2. What are the processes for gathering requirements
from stakeholders and end-users?

3. What are the processes of software development?
4. What are the physiological processes for blocks res-

olution during coding?
124



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 125

Figure 2: Design and Coding Sub-domain Ontology Visualization

Figure 3: Implementation Sub-domain Ontology Visualization

Figure 4: Maintenance Sub-domain Ontology Visualization

5. What are the appropriate approach to software de-
sign?

6. What are the people and processes involved in user
tasks?

7. What are the tools used in ethnographic study of
stakeholders and end-users?

8. What are the stages involved in implementation?
9. What does a deployed system need for maintenance?

10. Who can business rules be obtained from in a do-
main?

11. How can low bus factor issues be handled in cod-
ing?

12. How can code ownership issues be resolved in cod-
ing?

13. How can knowledge be shared in software process?
14. How can knowledge be transferred in software pro-

cess?
125



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 126

Figure 5: Software Process Ontology Visualization

• Step 3: Determine the properties of each class
Every objects have both data property and object prop-
erty. The object property shows the relationship between
classes or instances, and the data property shows the re-
lationship between instances and the data value. It pro-
vides a logical relationship between objects. Tables 3 and
4 present sample Object and Data property defined for
some objects in the software process ontology.

• Step 4: Add logical expressions
Axioms represent assertions formulated in a logical form
that together comprise the core knowledge that the ontol-
ogy describes in its domain of application. They are used
to model sentences that are always true. They provide a
powerful way to add logical expressions to ontology and
they are used to verify the consistency of the ontology.

Axioms are usually added by default in protege.

• Step 5: Create the ontology
Protégé 5.0 was then used to build the software process
knowledge ontology, with its subdomains.as shown in
Figure 1-5

6. Discussion

The requirements definition (figure 1) is the first stage in
software development process. It is a very critical phase. A
major finding from the organizations studied is that Ethnogra-
phy study was used to obtain the software requirements. It in-
volves studying the organization’s culture to understand the key
elements and observable patterns of behaviour. This usually re-
quires interaction between stakeholders from the software de-

126



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 127

Figure 6: Software Process Ontology showing concept, instances and their relationship

velopment organization and those from the user organization
in order to gain a better understanding of the problem. It was
observed from the study that quality time is dedicated to iden-
tifying and interacting with the end users during requirements
elicitation. These series of interactions provide opportunity for
the company to distinguish itself and to learn about how the
users’ tasks are performed. Users are asked to discuss their
routine tasks with the requirements elicitation team and they
are informed about the services to be provided by the proposed
system. This helps to prevent user resistance to the new soft-
ware system and provides opportunity for users to discuss their
daily routines with the developers in an informal way. Dur-
ing the process, apart from using informal interviews to gather
data, participant observation, questionnaires, documents review
and other suitable requirements elicitation techniques are also
used when necessary. Sometimes, the user’s expressions and
reactions send useful signals regarding what they expect in the
system. One of the organizations studied adopted the Agile
software Method were the initial requirements are quickly de-
veloped into the first build which is installed for the users and
additional features are reported as feedbacks for the next build.
Users e-mail addresses and phone numbers are collected. A
repository is created to store user complains and any additional
features requested.

Figure 2 shows the approach to design and coding. For de-
sign it should be broken down into mathematical process and
made modular. Approaches to coding should include: pairwise
coding, avoiding code ownership, code review, and encourage
knowledge retention. Bus factor issue should be resolved by

creating clean code and documenting codes. Blocks which are
dead ends during coding should be resolved by going to: senior
and experienced programmers, problem domain, back to defi-
nition and design, physical objects like games, and interactive
blogs like stack overflow or stack exchange.

Implementation in figure 3 should adopt phased change over
approach instead of a holistic approach. It should be done incre-
mentally. Maintenance in figure 4 requires the system to be first
deployed, and further requirements obtained from stakeholders
and end users based on their usage. Figure 5 is the various sub-
domain put together to form the software process ontology.

7. Conclusion

Software process knowledge is a knowledge driven process
with sub-processes. This knowledge is latent and could be lost
if not formally harvested and documented. An improved use
of this knowledge could lead to maximum payoff in software
organisations. This is the heart of knowledge management,
which focuses on knowledge capturing and sharing. This pa-
per presents a generic software process domain ontology, cov-
ering the main technical software engineering subdomains of
requirements definition, design & coding, implementation and
maintenance.

Acknowledgments

We thank the referees for the positive enlightening com-
ments and suggestions, which have greatly helped us in making

127



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 128

Table 2: Knowledge Entities and software process Concepts

Knowledge Entities Software Process Concept
Knowledge Creation Ethnographic study

Stakeholders
-New requirement
- Users comment

Exit interviews
Domain experts
-Business rules
Questionnaire

Document Review
Block resolution

Users Request
Knowledge Transfer Knowledge Retention

Business rules
User Training

Mentoring
Pair wise coding

Code review
Interactive blogs

Knowledge Sharing Experienced programmers
Team interaction

Bus factor
User tasks

Code ownership
Version control

What-is
Who-is
How-is

Knowledge Documentation Directory of experts
Requirements document

Code repository

improvements to this paper.

References

[1] I. Rus and M. Lindvall, “Knowledge Management in Software Engineer-
ing” IEEE Software 19 (2002) 26.

[2] D. O’Leary, “Using AI in knowledge management: knowledge bases and
ontologies”, IEEE Intelligent Systems, 13 (1998) 34.

[3] T. H. Davenport and L. Prusak, Working Knowledge - How Organizations
Manage What They Know. Harvard Business School Press, Boston, Mas-
sachusetts (1998).

[4] O. Mendes and A. Abran, Issues in the Development of an Ontology for an
Emerging Engineering Discipline. First Workshop on Ontology, Concep-
tualizations and Epistemology for Software and Systems Eng. (ONTOSE),
Alcala Henares, Spain (2005)

[5] M. A. Sicilia, J. J. Cuadrado, E. Garcia, D. Rodriguez and J.R. Hilera,
“The Evaluation of Ontological Representation of the SWEBOK as a Re-
vision Tool. In: 29th Int. Computer Software and Application Conference
(COMPSAC)”, Edinburgh, UK. (2005) 26

[6] P. Wongthongtham, E. Chang, T. Dillon, and I. Sommerville, “Develop-
ment of a Software Engineering Ontology for Multisite Software Devel-
opment. IEEE Transactions on Knowledge and Data Engineering”, 21
(2009) 1205

[7] C. Calero, F. Ruiz and M. Piattini, “Ontologies for Software Engineering
and Soft-ware Technology”, Springer Science & Business Media (2006)

[8] E.F. Souza, R.A.Falbo and N.L.Vijaykumar, “Using Ontology Patterns
for Building a Ref-erence Software Testing Ontology. In: 17th IEEE

Int. Enterprise Distributed Object Computing Conference Workshops
(EDOCW)”, Vancouver (2013) 21.

[9] C. Gonzalez-Perez and B. Henderson-Sellers, “An Ontology for Soft-
ware Development Methodologies and Endeavour”, (2006). In: [7]
A.C.Bringuente, R.A. Falbo and G. Guizzardi, “Using a Foundational
Ontology for Reengineering a Software Process Ontology. Journal of In-
formation and Data Management”, 2 (2011) 511.

[10] R. F. Calhau and R.A. Falbo, “An Ontology-based Approach for Seman-
tic Integration. In: 14th IEEE International Enterprise Distributed Object
Computing Conference, Vitória, Brazil. Los Alamitos: IEEE Computer
Society”, (2010) 111.

[11] F. Borges Ruy, R. de Almeida Falbo, M. Perini Barcellos, S. Dornelas
Costa and G. Guizzardi “SEON: A Software Engineering Ontology Net-
work” (2016). In: E. Blomqvist , P. Ciancarini, F. Poggi and F. Vitali (eds)
“Knowledge Engineering and Knowledge Management. EKAW 2016.
Lecture Notes in Computer Science”, Springer, Cham (2016) 10024.

[12] A. Zouaq and R. Nkambou, “Evaluating the generation of do-
main ontologies in the knowledge puzzle project. IEEE Trans-
actions on Knowledge and Data Engineering”, 21 (2009) 1559.
http://dx.doi.org/10.1109/TKDE.2009.25

[13] M. D. Kickmeier-Rust and D. Albert, “The ELEKTRA ontology model:
A learner-centered approach to resource description. Advances in Web
Based Learning - ICWL 2007”, Lecture Notes in Computer Science.
Berlin: Springer 4823 (2008) 78.

[14] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?”, International Journal of Human-Computer Studies
43 (1995) 907. http://dx.doi.org/10.1006/ijhc.1995.1081

[15] A. Zouaq and R. Nkambou, Building domain ontologies from text for
educational purposes. IEEE Transactions on Learning Technologies 1
(2008) 49 http://dx.doi.org/10.1109/TLT.2008.12

[16] M. Alavi and D. E. Leidner, “Knowledge management and knowledge
management systems: Conceptual foundations and research issues”, MIS
Quarterly, 25 (2001) 107.

[17] R. K Taluja, C. K. Tewari and A. Kaur, “Concept of Knowledge Manage-
ment and Its Usage in Higher Learning Institutions”, VSRD-TNTJ. I 4
(2010) 255.

[18] E. Perez, “Knowledge Management in the Library-Not. Database Maga-
zine” 22 (1999) 75.

[19] K. M. Kidwell, L. Vander and S.L. Johnson, “Applying corporate knowl-
edge management practices in higher education”, Journal of Educause
Quarterly 4 (2000) 28.

[20] Firestone “Key Issues in Knowledge Management, Knowledge and Inno-
vation”, Journal of the KMCI; 1(3) (2001) 8-38.

[21] A. P. J. Abdul-Kalam, “Digital Library and its multidimensions”,
President of India’s speech at the “Inauguration of International
Conference on Digital Libraries (ICDL) retrieved 16/9/18 from:
http://www.presidentofindia.nic.in/scripts/sllatest1.jsp?id=282 (2004)

[22] R. O. Oveh and F.A. Egbokhare, “Harvesting and Informal Represen-
tation of Software Process Domain Knowledge”, Intelligent Computing
Conference, 2 (2019) 936. Springer Nature Switzerland

[23] J. Ward and A. Aurum, “Knowledge Management in Software Engineer-
ing - Describing the Process”, Proceedings of the 2004 Australian Soft-
ware Engineering Conference (ASWEC’04) (2004)

[24] P. Wongthongtham, N. Kasisopha, E. Chang and T. Dillon, “A Software
Engineering Ontology as Software Engineering Knowledge Representa-
tion”, International Conference on Convergence and Hybrid Information
Technology. IEEE. (2008) 668

[25] R. A. Falbo and G. Bertollo, “A software process ontology as a common
vocabulary about software processes”, International Journal of Business
Process Integration and Management 4 (2009) 239

[26] M. Gruninger and M. S. Fox, “Methodology for the design and evalua-
tion of ontologies”, In IJCAI95 Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal (1995)

[27] N. F. Noy and D. L. McGuiness, “Ontology Development 101: A Guide to
Creating Your First Ontology”, Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical
Report SMI-2001-0880 (2001).

[28] B. Kapoor and S. Sharma, “A Comparative Study Ontology Building
Tools for Semantic Web Applications”, International Journal of Web and
Semantic Technology, 1 (2010) 1.

[29] A. F. Sawsaa, Ontological Engineering Approach of Developing

128



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 129

Table 3: Object Property

s/n Object Property Domain Range
1 Identifies Ethnographic study Stakeholders, Users tasks
2 Todetermine Users tasks Who is, What is, How is
3 Require Maintenance Deployed system
4 ToObtain Domain experts Business rules
5 Through Implementation Incremental Software Process,

Phased changeover
6 Using Design Modular design, Mathematical

process
7 With Modular design Data flow diagram
8 ByGoingTo Block Resolution Senior and experienced program-

mers, Problem domain, Physical
objects, Interactive blogs, Defi-
nition and design, User require-
ments

9 ObtainedFrom Deployed System Users comments, Stakeholders
10 RequirementElicitationThrough Stakeholders and Endusers Observation, Interview, Doc-

ument review, Brainstorming,
Questionnaire

11 TransfersKnowledgeThrough Coding Code review, Pairwise coding

Table 4: Data Property

S/N Domain Concept Property/Data Value Instances
1 Ethnographic study Purpose(string), target(string),

finding(string)
Stakeholders and EndUsers, User
tasks

2 Coding Title (String), Phase(string) Code Review, Knowledge Reten-
tion, Generic application, Unique
code, Pairwise coding, Block res-
olution

3 Design Name(string), Model (string) Modular design, Mathematical
Process

4 Users tasks Name(string), specifica-
tion(string)

Domain experts, Who is, What is,
How is

5 Maintenance Date(date), details(string) Deployed System
6 Implementation Title(string), purpose(string),

finding(string) Name(string)
User Training, File conversion,
Incremental Software Process,
Phased changeover

7 Deployed system (integer), date(date) New Requirement, Users com-
ments

8 Incremental Software Process process no(string), date(date) Next increment, Phased build,
Complaint request repository

9 Domain Experts Name(string), domain(string),
years of experience (integer)

Business rules, Directory of ex-
perts

10 Stakeholders and end users Name(string), organisation
(string), portfolio (string), do-
main (string)

Observation, Interview

11 Block resolution Definition and design (string),
problem domain (string), experi-
ence programmers (string), inter-
active blogs (string), physical ob-
jects (string)

Document review, brainstorming,
senior and experienced program-
mers, problem domain, physical
objects, interactive blogs, defini-
tion and design

Ontology of Information Science, Anchor Academic Publishing.
https://books.google.com.ng/books?isbn=3954894483 (2015)

[30] O. Corcho and A. Gomez-Perez, “A Roadmap to Ontology Specifica-
tion Languages”, in Rose Dieng and Olivier Corby (eds.), Knowledge

129



Oveh et al. / J. Nig. Soc. Phys. Sci. 1 (2019) 122–130 130

Engineering and Knowledge Management. Methods, Models and Tools, Springer, Berlin, (2000) 80.

130


