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Abstract

Tetragonality occurs as a result of stretching the crystal structural lattice of perovskite along one of its lattice vectors such that the three axes
are mutually perpendicular with two of the axes having equal lengths. This tetragonality distortion easily triggers functional properties such as
pyroelectricity, ferroelectricity, capacitance, and piezoelectricity among others, while synthesizing functional ceramics for a particular application.
This work addresses and circumvents the challenges of experimental stress involved in functional ceramics synthesis by developing a Newtonian
search-based support vector regression (GSB-SVR) model for perovskite tetragonality prediction using dopants concentration and ionic radii
as the model predictors. The performance of the proposed GSB-SVR model is compared with the existing Kelvin & Rick model and better
performance of 35.82% improvement based on mean absolute percentage error (MAPE) and 36.44% improvement based on mean absolute error
(MAE) is obtained. The influence of lanthanides and zirconium incorporation on functional ceramics on the material tetragonality is also modeled
by the developed GSB-SVR model. The metal in the lanthanide series considered includes lanthanum (La), praseodymium (Pr), Neodymium
(Nd), and samarium (Sm). The obtained variation in their tetragonality follows the same trend as their variation in atomic numbers. Maximum
distortion occurs between concentrations of 0.05 and 0.1, and each of the examined tetragonality distortions has a parabolic tetragonality distortion
variation. Titanium and zirconium dopants were incorporated into the crystal lattice structure of Pb0.9Ba0.1(ZrxTi1−x)O3 and Pb0.9Ba0.1(Zrx−1Tix)O3.
The tetragonality distortion in Pb0.9Ba0.1(ZrxTi1−x)O3 was observed to be minimum while Pb0.9Ba0.1(Zrx−1Tix)O3 perovskite show maximum
tetragonality distortion. The observed tetragonality distortion can be utilized to enhance the functional properties of perovskite. The precision of
the developed model, its easily fetched predictors, and its pre-laboratory ability to effectively and efficiently model the perovskite tetragonality
are of high importance in tailoring and enhancing functional properties of materials for desired applications.
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1. Introduction

The science of materials is basically centered on dealing
with relationships between structure and property, with ma-
terials’ composition being an important processing parameter
[1]. Perovskites belong to a large structural family of com-
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pounds with crystal structures that are similar to calcium ti-
tanate (CaTiO3). They are chemically represented as ABX3,
where A and B are cations with A having a larger atomic ra-
dius than B and X is an anion which can be an oxide or a
halogen. The presence of (XB2A4) coordination, cuboctahe-
dral coordination (AX12), and octahedral (BX6) coordination
shells is defined by assuming that the number of bonds between
cation-anion and anion-cation are equal in any particular struc-
ture of a given perovskite. [2]. Perovskite compounds are ex-
tensively applied in modern devices because their variability in
composition and structure produces several important proper-
ties such as ferroelectricity, superconductivity, piezoelectrics,
pyroelectrics, and spin-dependent transport [3, 4, 5, 6]. These
important functional properties of perovskite can be easily in-
duced by tetragonality distortion. Tetragonality occurs as a re-
sult of stretching a cubic lattice along one of its lattice vectors
such that the three axes are mutually perpendicular and two of
the axes have equal lengths. The tetragonal unit cell is charac-
terized by a four-fold symmetry axis around which the atoms
align with their initial positions by rotating the unit cell at an
angle of 90◦. Designing materials with special properties such
as ferroelectrics, piezoelectrics, high-temperature superconduc-
tors, high-K capacitors, and pyroelectrics for many applications
premises on the precise measurement of tetragonality distor-
tion [6, 7]. This work aims to address the challenges associ-
ated with experimental stress in functional ceramics synthesis
through the development of a Newtonian search-based intel-
ligent model that allows for the prediction of tetragonality in
perovskites using dopants concentrations and ionic radii of the
perovskite constituents as the model predictors. Aside from the
superiority of the proposed hybrid gravitational searched-based
support vector regression (GSB-SVR) model as compared with
the existing model in the literature [1], the developed GSB-SVR
model can be implemented using easily fetched descriptors and
foster pre-laboratory modeling.

Support vector regression (SVR) is a mathematical learning
theory derived from Vapnik-Chervonenskis theory of statistical
learning [8]. SVR makes use of a collection of training data that
includes predictor variables and their respective experimental
targets to adequately construct a predictive model. With the aid
of only predictors, the strength of SVR extends to prediction
of future data. Because this model does implement input data
probabilistic distribution for obtaining exact data, it is referred
to as a nonparametric process. Using kernel function, the in-
put data is reorganized and mapped into feature space where
high precision modeling and simulation are performed. Sup-
port vector regression (SVR) gains wider applicability as a data
mining algorithm to solve both linear and nonlinear problems
[9]. Hyper-parameters of the SVR algorithm play crucial roles
in actualizing a robust model as they are optimized using opti-
mization algorithm that is based on Newtonian mechanics.

Rashedi, Nezamabadi-pour, and Saryazdi [10] introduced
gravitational search algorithm based on gravity in 2009. It is
an algorithm that is inspired by Newton’s second law of motion
as well as the law of gravity. It relies on the universal assump-
tion of recognizing three kinds of mass namely: active/ pas-
sive gravitational mass and inertial mass [11]. In GSA, every

agent is considered to be an object and the mass of each agent
determines the individual performance of that agent. Each ob-
ject possesses four pieces of information namely: passive/active
gravitational mass, position, and inertial mass; all masses obey
Newton’s second law and the law of gravity [12]. Gravita-
tional force compels the objects to attract one another and also
makes every object with a lighter mass to be attracted in the di-
rection of objects with greater masses [10] which represents a
more promising solution [13]. The performance of every object
within the algorithm is measured based on its mass. Better so-
lutions are represented by heavier masses and they move more
slowly than lighter masses [14].

2. Gravitational Search Algorithm

Gravitational Search Algorithm (GSA) is a type of swarm
algorithm created from Newton’s second law of motion and the
law of gravity [10]. The basic mathematical principle of the
gravitational principle is:

F = G
M1M2

R2 . (1)

F is force of gravitation, G is constant of gravitational, the
masses of the objects are denoted by M1 and M2, and R is the
separation between objects. In this algorithm, objects are con-
sidered as agents and every object’s performance is evaluated
from their individual masses. The gravitational force makes
objects to attract one another, forcing all objects to gravitate in
the direction of objects with higher masses. This is because
objects with heavy masses have better fitness values and pro-
vide better solutions to problems and their movement is not as
fast as the objects with lighter masses [15]. Each object in the
GSA is identified by its position, its inertial mass (Mii), active
gravitational mass (Mai), and passive gravitational mass (Mpi).
GSA search process starts by creating a population of N indi-
viduals at random in the search space. We begin the algorithm
by defining the position of the jth agent as:

X j =
(
x1

j . . . xd
j . . . xn

j

)
for j = 1, 2, . . . ,N (2)

The space dimension of the problem is n and xd
j illustrates

agent’s jth position with dth dimension. Force acting on mass j
from mass k at a given time t is defined, according to Newton’s
gravitational theory, as:

Fd
jk(t) = G(t)

M j(t) × Mk(t)
R jk(t) + ε

(
xd

k (t) − xd
j (t)

)
, (3)

where mass of agent j is M j, Mk is mass of agent k, G(t) is
constant of gravitation at time t, ε is a small constant and the
Euclidian distance R jk(t) between j and k agents is defined as:

R jk(t) = ‖X j(t), Xk(t)‖2 (4)

In a d dimension, the sum of forces acting on j agent is as-
sumed to a weighted sum of the dth component of forces of
other agents calculated at random.
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The total force is given as:

Fd
j (t) =

N∑
k=1,k,i

randkFd
jk (5)

randk is a random number in the interval [0, 1].
According to Newton’s law of motion, the acceleration

(ad
j (t)) of the agent j at time t in dth direction is defined by:

ad
j (t) =

Fd
j (t)

Mii(t)
(6)

where M is the inertial mass of the jth agent.
The sum of an agent’s current velocity and current acceler-

ation determines its next velocity, given, respectively, as:

xd
j (t + 1) = xd

j (t) + vd
j (t + 1) (7)

vd
j (t + 1) = rand j × vd

t (t) + ad
j (t) (8)

where vd
t (t) and xd

j (t) represents the agent’s velocity and po-
sition respectively. rand is a uniform random variable in the
interval [0, 1] and is used to give a randomized feature to the
search.

By reducing the randomly initialized constant of gravitation
G with time, the search accuracy is controlled. This is to say
that G is a function of time t and the initial value G is given as:

G(t) = G(G0, t) (9)

Gravitational and inertial masses are computed using fitness
evaluation. The efficiency of an agent in relation to the solu-
tion it represents is dependent on the heaviness of the mass of
the agent. In other words, heavier masses will not move as fast
as the lighter masses. The masses are updated using

m j(t) =
fit j(t) − wors(t)

best(t) − worst(t)
, (10)

and

Mi(t) =
m j(t)∑N

k=1 mk(t)
(11)

with the following assumptions:

Mai = Mpi = Mii = Mi, i = 1, 2, . . .N (12)

where fit j(t) is the fitness value of agent j at time t, worst(t) and
best(t) are defined as d in

best(t) = min
k∈1,...N

fitk(t) (13)

and

worst(t) = max
k∈1,...N

fitk(t), (14)

respectively, for a minimization problem addressed in this con-
tribution.

2.1. Support Vector Regression

In 1995,Vapnik and co-workers proposed the support vec-
tor machine (SVM) [8] which is a tool obtained from statistical
learning theory for carrying out classification and regression
tasks. SVM was initially developed for solving classification
problems but it later evolved into solving regression problems
[16]. Several implementations of SVM have been achieved in
different areas of research after it was proposed [17, 18]. SVM
is therefore a universal term that can be subdivided into sup-
port vector classification (SVC) and support vector regression
(SVR) [19]. SVC employs only one slack variable while SVR
uses two slack variables. Both SVC and SVR employ very sim-
ilar algorithms, the difference is the number of slack variables
and types of variables they predict. In general, linear regression
with SVR is defined as

f (x,∝) = 〈w, x〉 + b (15)

where w ∈ K and b ∈ R .
SVR algorithm’s main purpose is to find w and b in a way

that ε is not exceeded in every training dataset. To achieve this,
vector w must be minimal and equation (15) must be flat. Min-
imization of the Euclidean norm ‖w‖2 by means of a transfor-
mation to a convex optimization problem is needed to flatten
equation (15) as shown in equation (16) below.

Minimize
1
2
‖w‖2

Subject to

 y j −
〈
w, x j

〉
− b ≤ ε〈

w, x j

〉
+ b − y j ≤ ε

(16)

Constraints that may prevent the possibility of the convex opti-
mized problem in equation (16) are added by the introduction
of slack variables (ξ j and ξ∗j ). New optimization problem is
presented as

Minimize
1
2
‖w‖2 + C

j∑
j=1

(
ξ j + ξ∗j

)

Subject to


y j −

〈
w, x j

〉
− b ≤ ε + ξ j〈

w, x j

〉
+ b − y j ≤ ε + ξ∗j

ξ j, ξ
∗
j ≥ 0

(17)

where C is regularization or penalty factor.

Performance generalization of SVR model is determined by
regularization factor C, the epsilon parameter ε, and the ker-
nel option, which are carefully selected user-defined parame-
ters. The regularization factor balances the difference between
complexity of model and error tolerance in training data, with
greater errors being equivalent to lower values of C and vice
versa. The number of support vectors in the insensitive zones
is regulated by the epsilon parameter, while input data trans-
formation to a feature space of higher dimension is governed
by the kernel option [20]. This study used gravitational search
algorithm to choose the parameters discussed above.
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3. Methodology and the employed computational strategies

This section contains the proposed hybrid model’s compu-
tational approach as well as an overview of the dataset used.

3.1. Description of the dataset

Using experimental ionic radii data extracted from the lit-
erature [1], the proposed hybrid gravitational searched support
vector regression (GSB-SVR) model was developed.

3.2. Computational details of the proposed hybrid model

This research paper develops a robust model with optimal
functionality resulting from the combination of GSA and SVR
algorithms. In this hybrid model, all the computational tasks
were implemented on the MATLAB programming environ-
ment. Before starting modeling and simulation, existing data
was randomized in order to facilitate equal distribution of data
points and a more effective computation when the data is split
into 80% and 20% training and testing set respectively. With
the help of the developed real SVR algorithm codes, support
vectors were created with existing training data points, and the
generalization ability of the generated support vectors is cor-
roborated by a testing set of data. GSA is aimed at finding the
best hyper parameter values of SVR for excellent generalization
of the developed model when applied to a collection of data not
used in the training process.

The penalty or regularization factor (C), epsilon (ε), and the
kernel option (σ)) of the optimum kernel functions are the SVR
hyper-parameters optimized by GSA in each population. The
search for optimal values of hyper-parameters starts with ini-
tialization of GSA agents which requires putting N agents in a
search space, with each agent encoding SVR hyper-parameters.
Following the initialization of the number of agents, every agent
in the population was used to train SVR algorithm with the
training set of data, and their fitness was evaluated with the test-
ing set of data. Each agent’s mass was calculated using equa-
tion (11). Equations (5) and (6) were used to compute the total
gravitational force and acceleration of every agent. The compu-
tation of position and velocity of each agent was carried out and
repeated until maximum iteration is reached using equations (7)
and (8). As a result, hyper parameters of SVR were optimized
with GSA and the GSA-SVR model was developed. The op-
timal hyper-parameter value obtained from an agent with the
highest fitness value at maximum iteration is then used to train
the GSA-SVR model. The following are the procedures for the
developed hybrid GSB-SVR model.

Step I: Randomization of data and partitioning: For even
distribution and more efficient computation during modelling,
the available data is randomized. The data is partitioned into
two sets, 80% for training and 20% for testing.

Step II: Choose a kernel function from the listed options.
Step III: GSA agent initialization: Fill a search space with

N agents while each agent encodes SVR hyper-parameters.
(penalty factor, epsilon and kernel option). Compute each
agent’s fitness in the following way:

(a) Train SVR algorithm with each agent and a chosen kernel
function. The number of SVR trained algorithm is equal to
the initial number of agents. Using the training dataset, de-
termine the performance measuring parameters (mean ab-
solute percentage error (MAPE) and mean absolute error
(MAE)) for each trained algorithm.

(b) Compute MAPE and MAE using the testing set of data to
determine each trained algorithm’s generalization capacity.

(c) Compute the fitness of MAPE and MAE for each agent,
choose and save the trained algorithm with the minimum
value.

Step IV: Use equation (11) to estimate the mass of every
agent with the assumptions contained in equation (12).

Step V: Calculate the overall force of gravity and accelera-
tion for each agent using equation (5) and equation (5).

Step VI: Determine the velocity and position of the agent.
That is

vd
j (t + 1) = rand j × vd

t (t) + ad
j (t)

xd
j (t + 1) = xd

j (t) + vd
j (t + 1)

Step VII: The velocity and position of the agents are up-
dated until maximum iteration of 100 is attained.

Step VIII: Repeat Step III-Step VII with a different kernel
function.

Step IX: Save the optimum kernel function and hyper-
parameters for future implementation.

4. Results and discussion

This section presents the outcomes of the developed GSB-
SVR model with inclusion of results of the implemented opti-
mization algorithm. Comparison of estimates of the developed
GSB-SVR with the existing model is also presented.

4.1. Optimization of SVR hyper-parameters
Optimization of SVR hyper-parameters is presented in Fig-

ure 1. The effect of the number of agents in enhancing explo-
ration and exploitation capacities of Newtonian optimization al-
gorithm is presented in the figure.

Figure 1: Convergence of GSB-SVR model with number of iteration at different
initial number of agent
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Local convergence was attained when the number of the
agent was set at ten. The local solution can be attributed to
weak exploitation due to limited number of agents exploiting
the search space. Exploitation capacity becomes enhanced as
the number of agents was increased to thirty while the search
space is well explored at this value. Increase in the number of
agents above thirty results into high level of complexity within
the search space since larger number of agents are exploring
the search space and each agent experience strong gravitational
pull which further weakens exploration and exploitation capaci-
ties of the algorithm. Optimum hyper-parameters were attained
when the number of agents exploring the space was set at thirty
as presented in Figure 1. Other investigated factors influencing
the optimization strength of the implemented population-based
algorithm include the initial values of the gravitational constant,
maximum number of iteration and parameter alpha that influ-
ences the gravitational pull between the agents.

4.2. Comparison of the performance of the present and existing
model

Performance comparisons between the present and existing
(Kelvin & Rick) model are presented in Figure 2 and Figure
3, respectively on the basis of mean absolute percentage error
(MAPE) and mean absolute error (MAE).

Figure 2: Comparison of the mean absolute percentage deviation of the devel-
oped GSB-SVR model with existing Kelvin & Rick model [1].

Figure 3: Comparison of the mean absolute error of the developed GSB-SVR
model with existing Kelvin & Rick model [1].

On the basis of MAPE, the developed GSB-SVR model has
a better performance than the existing Tolman & Ubic model
with 35.82% improvement in performance while 36.44% im-
provement in performance was attained while comparing the
developed GSB-SVR model with the existing Kelvin & Rick
[1] model using MAE as performance evaluator. The observed
performance enhancement of the developed GSB-SVR model
over the existing model can be attributed to strong mathematical
foundation of the implemented SVR algorithm coupled with the
excellent global solution searching capacity of the hybridized
gravitational search algorithm.

5. Investigating the influence of lanthanides on tetragonal-
ity of Pb1−3xL2x(Ti)O3 perovskite

The significance of lanthanides inclusion on
Pb1−3xL2x(Ti)O3 perovskite is presented in Figure 4. The
metal in the lanthanide series considered include lanthanum
(La), praseodymium (Pr), Neodymium (Nd) and samarium
(Sm). The obtained variation in the tetragonality of the
investigated perovskite follows similar trend of the variation in
atomic number as we move from lanthanum to samarium. The
tetragonality distortion variation of each of the investigated
tetragonality distortion shows a parabolic trend with maximum
distortion between the concentrations of 0.05 to 0.1. This
observed behavior of the tetragonality distortion coupled with
the precision of the developed GSB-SVR model strongly
indicates the tendency of the developed model in enhancing
functional properties of perovskite as can be easily induced by
the tetragonality distortion.
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Figure 4: Influence of lanthanides (L)con tetragonality of Pb1−3xL2x(Ti)O3 per-
ovskite .

6. Influence of titanium dopants on the tetragonality distor-
tion of Pb0.9Ba0.1(ZrxTi1−x)O3 perovskite

Incorporation of titanium and zirconium dopants into
crystal lattice structure of Pb0.9Ba0.1(ZrxTi1−x)O3 and
Pb0.9Ba0.1(Zrx−1Tix)O3 perovskites, respectively using the
developed GSB-SVR model is presented in Figure 5. The
tetragonality distortion in Pb0.9Ba0.1(ZrxTi1−x)O3 was observed
to be minimum when Pb0.9Ba0.1(Zrx−1Tix)O3 perovskite suffers
maximum tetragonality distortion. Tetragonality in other
perovskite compounds can be investigated using the developed
model purposely to reveal the functional properties needed for
a particular application.

Figure 5: Effect of zirconium on tetragonality of Pb0.9Ba0.1(ZrxTi1−x)O3 per-
ovskite.

7. Conclusion

This work presents hybrid gravitational search algorithm
and support vector regression for modeling the tetragonality
distortion of perovskite compounds using the ionic radii and the
concentration of dopants as descriptors to the model. The per-
formance of developed GSB-SVR model is compared with the
existing Kelvin & Rick model, the developed model is found

to perform better than the existing model in terms of the mea-
sured absolute percentage error (MAPE) as well as mean abso-
lute error (MAE). The developed model was employed to estab-
lish the influence of lanthanides on tetragonality distortion of
Pb1−3xL2x(Ti)O3 perovskite and the functional material shows
maximum tetragonality for lanthanum concentration between
0.7 and 0.8. The significance of titanium and zirconium dopants
on perovskite were also investigated for functional properties
induction. The precision and accuracy demonstrated by de-
veloped model, easy accessibility of its descriptors as well as
pre-laboratory ability to effectively and efficiently model the
perovskite tetragonality are of high importance in tailoring and
enhancing functional properties of materials for desired appli-
cations.
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