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Abstract

The traditional Poisson regression model for fitting count data is considered inadequate to fit over- or under-dispersed count data and new models
have been developed to make up for such inadequacies inherent in the model. In this study, Bayesian Multi-level model was proposed using the
No-U-Turn Sampler (NUTS) sampler to sample from the posterior distribution. A simulation was carried out for both over-and under-dispersed
data from discrete Weibull distribution. Pareto k diagnostics was implemented, and the result showed that under-dispersed and over-dispersed
simulated data has all its k value to be less than 0.5, which indicate that all the observations are good. Also all WAIC were the same as LOO-IC
except for Poisson in the over-dispersed simulated data. Real-life data set from National Health Insurance Scheme (NHIS) was used for further
analysis. Seven multi-level models were fitted and the Geometric model outperformed other model.
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1. Introduction

Count data contains non-negative integers and zero obtained
within a fixed period. Various studies have been carried out on
count data and modelling, [1] applied it to medical data [2] ap-
plied it to model microbiome data and many others. Frequentist
and Bayesian estimation have equally been used to model count
data, and the widely used is the Bayesian estimation technique.
There are three major types of count data, the over-dispersed,
under-dispersed and over-dispersed. More about types of count
data can be found in the study by [3,4]. There are models
dedicated to modelling under-dispersion due to their suitabil-
ity while a model such as Negative Binomial is suitable for fit-
ting over-dispersion. Models such as Dirichlet Process Prior,
Negative Weibull can be used to fit both under-dispersion and
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over-dispersion. Models such as zero inflated and hurdle mod-
els can effectively handle over and under-dispersed count data
with many zeros.
The zero-truncated regression models are specifically designed
to fit count data with no zero count. The categorized regression
model is designed to fit count data that its response variable is
categorized. Some of the improved techniques relative to Pois-
son regression model can be found in [5], [6], [3], amongst oth-
ers. [7] carried out a on hidden markov model in multiple test-
ing on dependent count data, [8] showed that the exponentiated-
exponential Geometric distribution can be applied to fit under-
dispersed or over-dispersed count data, in the same manner [4]
demonstrated that Dirichlet Process Mixture Prior of Gener-
alized Linear Mixed Models (DPMglmm) can fit either over-
dispersed or under-dispersed count data well.
[9] sufficiently showed that multi-level zero-inflated Poisson
(ZIP) regression model can adequately fit both over-and under-
dispersed count data that have zero counts. The authors adopted
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EM algorithm along with the penalized likelihood and restricted
maximum likelihood (REML). [10] adopted multilevel Zero-
inflated Poisson (ZIP) regression and zero-inflated negative bi-
nomial (ZINB) and applied the models to fit count data relating
to decay, missing and filled teeth of children aged 12 years old.
A related and recent study was carried out by [11], the authors
proposed multilevel zero-inflated generalized Poisson (ZIGP)
that is suitable in fitting both over- and under-dispersed count
data and compared with multilevel models of zero-inflated Pois-
son, zero-inflated negative binomial. The result showed that the
multilevel ZIGP produced more accurate parameter estimates,
particularly for under-dispersed data.
In this study, Bayesian multilevel modelling was proposed and
implemented for some basic distributions used in fitting count
data (Poisson, Negative Binomial and Geometric), zero inflated
and hurdle models, and identify a most suitable model for fit-
ting under-and over-dispersed respectively. The remaining part
of this paper is sectionalized as follows; multi-level modelling
is described in section 2, parameter estimation and model se-
lection can be found in 3. Section 4 is the results of simulation
study and that of real-life data. Lastly, summary and conclusion
in section 5.

2. Model Description

2.1. Multilevel Modelling
The multilevel modelling technique follows a similar process
involved when fitting the Generalized Linear Model. In GLM,
a link function links the response y variable to the predictor(s),
same with multilevel modelling. Let ( f ) be an inverse link func-
tion that links the response variable y to the predictor, then Υ

is the linear combination of the predictors transformed by the
inverse link function ( f ), and d be a parametric model (distri-
bution), the model can be simply be written as

yi ∼ d ( f (Υi) , θ) (1)

And linear predictor:

Υ = Xβ + Kε (2)

The data is made up of the response variable y, X and K, while
β, ε and θ are the model parameters to be estimated. while β
is the fixed effect coefficient at population level, while ε is the
coefficient at group-level. The Bayesian estimation technique
by Monte Carlo Markov Chain (MCMC) procedure considers ε
as a parameter relative to maximum likelihood that considers ε
as error term [12].

2.2. Zero-Inflated distribution
If Yfollows zero-inflated Poisson (ZIP) distributions, given by

P(Y = y) =

{
ω + (1 − ω) exp(−λ), y = 0
(1 − ω) exp(−λ)λy/y!, y > 0

}
(3)

Where is ω in the range0 < ω < 1 , in order to accommodate
more zeros than those allowed under the Poisson assumption(ω =

0), and the case of ω < 0imply zero inflated. [9] estimated
multi-level parameters of ZIP regression in the generalized lin-
ear mixed models (GLMMs) context. The authors generalized
the ZIP model so that the model will be able to withstand more
complex correlation structure.
Zero-inflated negative binomial for counts is formed from ZIP,
the mean and variance defined as:

E(Y) = (1 − ω)λ = µ, (4)

The use of regression models based on ZIP was established by
[13-15 ], [5]. Following [5] we have:
log(λ) = Xβ and

log (ω/1 − ω) = ZΥ (5)

where X and Z are matrices of covariates, β and Υare vector of
parameters. Assuming two linear predictors are related in some
ways, [16] provided a simplest form of (3) which is refers to the
ZIP(τ)model as follows:

log(λ) = Xβ, log (ω/1 − ω) = τXβ (6)

Where τ is a scalar parameter, which implies thatω = (1 +

λ−r)−1.
Following equation (3) in multi-level case, [9] identified the ex-
tension of ZIP model to include random components wi and ui

within logistic and Poisson linear predictors to take care of de-
pendence of observations in given clusters. The random effects
wi and uiare specific to the ith cluster. In a three-level hierar-
chical situation of Yi jk, the kth observation of the jth individual
within the ith clusters is measured through random effects asso-
ciated with the linear predictors as follows:

log
[

φi jk

(1−φi jk)

]
= ξi jk = aT

i jkα + wi + si j

log(λi jk) = γi jk = xT
i jkβ + ui + vi j

(7)

The covariates aT
i jkand xT

i jk are not always the same α and β
are the corresponding vectors of regression coefficients. si jand
vi jare variations at subject level.

2.3. Hurdle Models

If the distribution of Yfollows zero-truncated Poisson distribu-
tion it follows that:

π0y > 0

P(Y = y) =
(1 − π0)e−λλy

(1 − e−λ)y!
y = 0 (8)

Reparametizing the zero-inflated Poisson model in equation (3)
withπ0 = ω + (1 − ω)e−λ, [16], gave Poisson hurdle regression
model is given as;

log (λ) = Xβ,

log[− log(1 − π+) = τXβ (9)

Where π+ = 1 − π0 is the probability of clearing the “hurdle”
and generating a non-zero count.
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2.4. Prior Distributions
Prior distribution is specified at population and group-level. At
population-level parameters have an improper prior [17]. At
group level it is assumed that parameters ε comes from a multi-
variate normal distribution having zero mean and unknown co-
variance matrixΣ.

epsilon ∼ N (0,Σ) (10)

Covariances are between group-level parameters are generally
of different groupings factors and assumed to be zero. By impli-
cation, Kand ε can be divided to form several matrices Ki and
parameter vectors εi , where i indexes grouping factors, thus,
the model can be simplified to

εi ∼ N (0,Σi) (11)

Sometimes, it can be assumed that group-level parameters
for different levels of the same grouping factors are not depen-
dent. If the other level is indexed by j, (11) leads to:

εi j ∼ N
(
0,M j

)
(12)

The covariance matrices M j will become the model parameters.
No-U-Turn Sampler (NUTS) by (2014) [18] is used for M j as
instead of the Inverse-Wishart prior distribution used in most
studies and packages. Inverse-Wishart distribution is used be-
cause it has good conjugacy characteristics for Gibbs-Sampler.
The choice of Inverse-Wishart prior distribution was criticized
in the studies by [19], and [20]. The parameters of M j is se-
lected in terms of correlation matrixΩj and a vector of standard
deviations σ j through,

M j = D
(
σ j

)
ΩjD

(
σ j

)
(13)

and D
(
σ j

)
imply the diagonal matrix with diagonal elements

σ j. Then, prior would be specified for D
(
σ j

)
ΩjD

(
σ j

)
. In the

case of Ωj, LKJ-Correlation prior by [21] is used, with ζ > 0.
That is, Ω j ∼ LKJ (ζ)

sectionParameter Estimation and Model Selection
Sampling from the posterior require appropriate sampling pro-
cedure, two basic sampling procedures are discussed here. First
is the Hamiltonian Monte-Carlo (HMC) Sampler, also known
as Hybrid Monte-Carlo [22-23]. [18] extended HMC to No-U-
Turn Sampler (NUTS), because HMC has some drawbacks as
discussed by [17]. The NUTS Sampler allows setting param-
eters, and eliminates the need for hand-tuning, [18] stated that
setting the parameters automatically makes it least efficient as
compared to a well-tuned Hamiltonian Monte-Carlo. Software
package by R core team (2020) was used to fit the model with
brms package by [17] along with Stan processor without which
the analysis cannot be run, it can be assessed on http://cran.r-
project.org/bin/windows/Rtools/.
The Watanabe-Akaike Information Criteria proposed (WAIC)
by [24] and Leave-one-out cross validation LOO-CV by [25,26]
were used for model selection in this study. The WAIC was
used for estimating the out-of-sample expectation and consid-
ered an improvement upon the DIC, with WAIC, correction for

effective number of parameters to adjust over-fitting is added.
According to [27], WAIC can be computed in two possible
ways, first is calculated using simulation θs, s = 1, .......S and
given as

pWAIC1 = 2
n∑

i=1

log

 1
S

S∑
s=1

log p(yi|θ
s)

 − 1
S

S∑
s=1

log p(yi|θ
s)

(14)

For the second WAIC computation approach, the variance of
individual terms in the log predictive density is added up over
the ndata points and express as follows:

pWAIC2 =

n∑
i=1

varpost
(
log p(yi|θ)

)
(15)

The advantages of WAIC over AIC and DIC was adequately
discussed by [27] In the case of Leave-one-out cross-validation
(LOO-CV) in Bayesian analysis, the data are repeatedly sub-
divided into a training set ytrain and a holdout set yholdout with
the objective of fitting ytrain yielding a posterior distribution
ptrain (θ) = ptrain (θ|ytrain).
The Bayesian LOO-CV estimate of out-of-sample predictive fit
is

lppdloo−cv =

n∑
i=1

log ppost(−i)(yi) (16)

and estimated as
n∑

i=1

log

 1
S

S∑
s=1

log p(yi|θ
is)

 (17)

Lower WAICs and LOOs suggest better model fit.

2.5. Pareto-k-diagnostics
The shape parameter k of the generalized Pareto distribution
can be used to assess the reliability and approximate conver-
gence rate of the Pareto smoothed importance sampling (PSIS).
It follows that if, k < 0.5(that is, ‘good’) then the central limit
theorem holds. Similarly, If0.5 ≤ k < 1, (that is, ‘ok’) then the
variance of the raw importance ratios is infinite, but the mean
exists. In the same manner, If k > 0.7(that is, ‘bad’), unreason-
able convergence rates is observed and unreliable Monte Carlo
error estimates, and finally, if k ≥ 1 (that is, ‘very bad’), then
neither the variance nor the mean of the raw importance ratios
exists.

3. Result

3.1. Simulation Study
Simulation of over and under-dispersed count data was carried
out and the response count variable was obtained from Discrete
Weibull distribution. On simulating count data from Discrete
Weibull (DW) distribution, [28] identified that the parameter β
of DW should contain the range0 ≤ β ≤ 1; irrespective the
value of parameterq. For under-dispersed count data, β should
be specified such that β ≥ 2, irrespective of the value of q. Anal-
ysis for simulation study was carried using software package by
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Figure 1. Marginal plot of relationship between Encounter and type

[29], and R package “DWreg” by [30]. Random numbers con-
sisting of 500 observations were generated and two predictors
were uniformly generated in interval (0, 1) and (0, 2) for over-
and under-dispersion respectively. For over dispersed, beta=0.8
and for under-dispersed beta=2.1.
The parameter of discrete Weibull follows that θ0 = 0.25, θ1 =

0.35, θ2 = 0.5 and the corresponding equation for logit link is
as follows

log (q (1 − q)) = 0.25 + 0.35x1 + 0.5x2 (18)

All Pareto k estimates are good (k < 0.5)

If p waic estimates greater than 0.4. We recommend trying
loo Instead.
Table 1 shows results for Under-dispersed simulated count data.
The best two performed model are Geometric and Hurdle Pois-
son distribution indicated with ** and * respectively with low-
est WAIC and LOO, following implementation using brms, a
package for Bayesian multilevel modelling in R. from Table 1,
it shows that WAIC=LOO for all the models.
Table 2 shows results for Over-dispersed simulated count data.
The best two performed model are negative Binomial and zero
inflated negative binomial distribution indicated with ** and *
respectively with lowest WAIC and LOO, following implemen-
tation using brms, a package for Bayesian multilevel modelling
in R. All the model shows that WAIC=LOO expect for Poisson
model.

3.2. 4.2 Application to Health Insurance Data

3.2.1. Data Description
The data set was obtained from National Health Insurance

Scheme (NHIS), and it contains excess zero count. Sample of
116 users of NHIS users was obtained from September 2016
to July 2017. Response variable is number of encounter (En-
counter), out of 116 observed, eighty two (82) persons made
claims. Encounter is the time a user of National Health In-
surance Scheme (NHIS) visits the health facility, and possi-
bly makes claims. The predictors include type of Encounter
(type), which is either primary or (secondary= 0, primary= 1)

Figure 2. Marginal plot of relationship between Encounter and Age

Figure 3. Marginal plot of relationship between Encounter and Sex

Figure 4. Marginal plot of relationship between Encounter and
DrugsAdm

primary are users who registered primarily to use the health fa-
cility, while secondary are users who were referred from an-
other health facility to that of State Hospital Ota, because of
availability of specialists. Another predictor Sex (male=1 and
female=0), Biological age of patients (Age). Number of drugs
administered (DrugsAdm) that is, both oral and injection.

Drugs-out-of-stock (DrugsOS) is another predictor. The
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Table 1. Simulated Under-Dispersed count data from Discrete Weibull Model
Model elpd waic p waic waic elpd loo p loo looic Waic=looic
Poisson
Est.
SE

-628.1
10.2

1.9
0.1

1256.2
20.3

-628.1
10.2

1.9
0.1

1256.2
20.3

Yes

Negbin
Est.
SE

-629.3
10.1

1.9
0.1

1258.5
20.2

-629.3
10.1

1.9
0.1

1258.5
20.2

Yes

Geometric
Est.
SE

-717.3
12.9

0.9
0.1

1434.6**
25.8

-717.3
12.9

0.9
0.1

1434.6**
25.8

Yes

hurdle poisson
Est.
SE

-620.5
13.1

3.3
0.2

1241.0*
26.1

-620.5
13.1

3.3
0.2

1241.0*
26.1

Yes

hurdle negbin
Est.
SE

621.2
13.1

3.3
0.2

1242.5
26.2

621.2
13.1

3.3
0.2

1242.5
26.2

Yes

zero inflated poisson
Est.
SE

-629.1
10.1

2.0
0.1

1258.3
20.2

-629.1
10.1

2.0
0.1

1258.3
20.2

Yes

zero inflated negbin
Est.
SE

630.2
10.1

1.9
0.1

1260.5
20.2

630.2
10.1

1.9
0.1

1260.5
20.2

Yes

Table 2. Simulated Over-Dispersed count data from Discrete Weibull Model
Model elpd waic p waic waic elpd loo p loo looic Waic=LOO
Poisson
Est.
SE

-1984.6
108.6

21.6
3.1

3969.2
217.2

-1984.7
108.6

21.7
3.1

3969.4
217.2

No

Negbin
Est.
SE

-1217.4
27.9

3.9
0.5

2434.8**
55.8

-1217.4
27.9

3.9
0.5

2434.8**
55.8

Yes

Geometric
Est.
SE

-1228.7
27.9

4.2
0.6

2457.4
55.8

-1228.7
27.9

4.2
0.6

2457.4
55.8

Yes

hurdle poisson
Est.
SE

-1682.3
87.6

19.0
2.9

3364.6
175.1

-1682.3
87.6

19.0
2.9

3364.6
175.1

Yes

hurdle negbin
Est.
SE

-1229.7
27.7

4.5
0.4

2459.4
55.5

-1229.7
27.7

4.5
0.4

2459.4
55.5

Yes

zero inflated poisson
Est.
SE

-1680.7
87.6

18.7
2.9

3361.3
175.2

-1680.7
87.6

18.7
2.9

3361.4
175.2

Yes

zero inflated negbin
Est.
SE

-1218.2
27.9

4.0
0.5

2436.4*
55.9

-1218.2
27.9

4.1
0.5

2436.4*
55.9

Yes
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Figure 5. Marginal plot of relationship between Encounter and DrugOS

Figure 6. Marginal plot of relationship between Encounter and Type
along with Age

Figure 7. Marginal plot of relationship between Encounter and Type
along Sex

idea of National Health Insurance Scheme (NHIS) is that treat-
ments and drugs administered attract 10 percent of the total
cost. It becomes disadvantage to patients having cases of Drug-
sOS. Out of 116 users, 97 are primary, while 19 are secondary
users, 70 out of 97 (72.16%) primary users did not make claims
within the period observed. 4 out of 19 secondary users did not

make claims (21.05%). Out of 116 NHIS users of the health fa-
cility, 64 are females and 52 are males. 41 females had zero
claims (64.06%), while 33 males had zero claims (63.46%).
11 females and 8 males are secondary users, while 53 females
and 44 males are primary users. The data can be obtained
https://data.mendeley.com/drafts/6hcf5mf7fy.

Mean of the response variable (Encounter) is 0.7068, while
variance is 1.7916 which potentially suggests over-dispersion.
Further test on the data shows that the dispersion parameter is
δ=1.49799, indicating that the data set is over-dispersed with
δ>1.The dispersion test was performed using AER package in
R by [31].
From Table 3 shows results for the real-life Over-dispersed count
data. The best two performed model are Geometric and Nega-
tive binomial distribution indicated with ** and * respectively
with lowest WAIC and LOO, following implementation using
brms, a package for Bayesian multilevel modelling in R, In all
the models Waic LOO as shown in Table 6. As earlier stated;
for any observation for k > 0.7indicate unreasonable conver-
gence rates is observed and unreliable Monte Carlo error esti-
mates. Table 4 shows that hurdle negative binomial (4) has the
highest of such observations, Poisson, negative binomial, and
hurdle Poisson model has 3 of such observations while Geo-
metric, zero inflated poisson and zero inflated negbin has two
(2) each.
Each parameter is presented in Table 5 with the posterior mean
as the ‘Estimate’ and the ‘Est.Error’ as the standard deviation
of the posterior distribution, the Table also contain a two-sided
95% Credible intervals (l-95% CI and u-95% CI) established on
quantiles. From Table 5, the ‘intercept’, ‘type’ and ‘type:Sex”-
interaction has a negative posterior mean. For “type”, the model
predicts longer periods for encounter for secondary users than
primary users; ‘Sex’ (0.19) accounts for more Encounter than
‘Age’ (0.01). “drugsOS (0.41) tells us that there significant
cases of drugs-out-stock which suggest ineffectiveness of Nige-
ria Health Insurance Scheme.

Drawing samples from (NUTS) follows that for each pa-
rameter, Efficient Sample is a real measure of effective sample
size, while Rhat is the would-be scale reduction factor on split
chains (at convergence, Rhat = 1).
Figure 1 shows that Encounter has positive relation with type;
the figure suggests that the effect of Encounter on type is higher
for secondary user of the facility since it is higher on zero end
than 1.
Figure 2 shows that Encounter has positive relation with Age;
the figure suggests that as age increases Encounter increases
Figure 3 shows that Encounter has positive relation with Sex;
the figure suggests that male account for more Encounter than
female.
Figure 4 shows that Encounter has positive relation with type;
Number of DrugsAdm increases with number of Encounter
Figure 5 shows that Encounter has positive relation with type;
Number of DrugsOS increases significantly with number of En-
counter
Figure 6 shows that as primary users of the facility increases,
the number of Encounter increases across ages
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Figure 8. Density and Trace plots for all covariates

Figure 7 shows that as primary users of the facility increases,
the number of Encounter increases across Sexes
Figure 8 shows that the density plots for the tail area of the
distribution, which corresponds to l-95% CI and u-95% CI in
Table 5 and trace plot, the Trace plot shows that the chains are
stable.

4. Summary and Conclusion

In this study Bayesian multi-level model was proposed and im-
plemented. The No-U-Turn Sampler (NUTS) sampler was used
to sample from the posterior distribution, and implementations
were done using the ‘package brms’ in R. Simulation study
was carried out for both over-and under-dispersed and response
variables were generated through discrete Weibull distribution
while the predictors generated from Uniform distribution. Re-
sults from under-dispersed revealed that Geometric distribution

is the most appropriate model to fit count data using multi-level
approach. While for over-dispersed simulated data, negative
binomial shows to outperform the Poisson, Geometric, hurdle-
Poisson, hurdle-negbin, zero-inflated-Poisson, zero-inflated-negbin.
Pareto K diagnostics shows that for under-dispersed and over-
dispersed simulated data all k are less than 0.5, which makes
all the observations to be good, also all WAIC were the same
as LOO-IC except for Poisson in the over-dispersed simulated
data.
Real-life data set of count of Encounter of patients from Na-
tional Health Insurance Scheme was used for further analysis.
The model that performs best was the Geometric distribution
followed by negative binomial model. Contrary to the sim-
ulated data not all WAIC were the same as LOO-IC, except
for Poisson model in the over-dispersed simulated data. The
need to carry out LOO-IC was informed by having observa-
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Table 3. Real Life Data
Model elpd waic p waic waic elpd loo p loo looic Waic=loo
Poisson
Est.
SE

-127.4
15.3

15.9
6.3

254.8
30.6

-129.7
15.9

18.2
7.0

259.3
31.8

No

Negbin
Est.
SE

-122.3
12.8

10.6
3.5

244.6*
25.6

-124.0
13.5

12.3
4.3

248.0*
27.0

No

Geometric
Est
SE.

-120.8
12.3

7.4
2.3

241.6**
24.6

-121.5
12.5

8.1
2.7

242.9**
25.0

No

hurdle poisson
Est.
SE

-132.6
13.3

11.4
4.2

265.1
26.6

-135.0
14.2

13.8
5.4

269.9
28.5

No

hurdle negbin
Est.
SE

-131.6
12.7

5.0
1.3

263.3
25.5

-133.1
13.3

6.4
2.3

266.2
26.5

No

zero inflated poisson
Est.
SE

-126.7
14.8

12.8
5.1

253.3
29.6

-127.8
15.1

13.9
5.4

255.6
30.1

No

zero inflated negbin
Est.
SE

-122.7
12.9

9.4
3.3

245.3
25.9

-123.4
13.2

10.2
3.7

246.8
26.4

No

Table 4. Pareto k diagnostics
Model Pareto k diag. remark count Pct Min neff obs. k>0.7
Poisson (-Inf, 0.5]

(0.5, 0.7]
(0.7, 1]
(1, Inf)

Good
Ok
Bad
Very bad

112
1
2
1

96.6%
0.9
1.7%
0.9%

1367
236
17
4

3

Negbin (-Inf, 0.5]
(0.5, 0.7]
(0.7, 1]
(1, Inf)

Good
Ok
Bad
Very bad

112
1
3
0

96.6%
0.9%
2.6%
0.0%

1068
446
19
-

3

Geometric (-Inf, 0.5]
(0.5, 0.7]
(0.7, 1]
(1, Inf)

Good
Ok
Bad
Very bad

114
0
2
0

98.3%
0.0%
1.7%
0.0%

1036
-
88
-

2

hurdle poisson (-Inf, 0.5]
(0.5, 0.7]
(0.7, 1]
(1, Inf)

Good
Ok
Bad
Very bad

108
5
1
2

93.1%
4.3%
0.9%
1.7%

859
413
16
7

3

hurdle negbin (-Inf, 0.5]
(0.5, 0.7]
(0.7, 1]
(1, Inf)

Good
Ok
Bad
Very bad

109
3
3
1

94.0%
2.6%
2.6%
0.9%

2909
594
135
9

4

zero inflated poisson (-Inf, 0.5]
(0.5, 0.7]
(0.7, 1]
(1, Inf)

Good
Ok
Bad
Very bad

111
3
1
1

95.7%
2.6%
0.9%
0.9%

1885
165
26
10

2

zero inflated negbin (-Inf, 0.5]
(0.5, 0.7]
(0.7, 1]
(1, Inf)

Good
Ok
Bad
Very bad

113
1
2
0

97.4%
0.9%
1.7%
0.0%

1509
213
50
-

2
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Table 5. Population-Level Effects
Estimate Est. Er-

ror
l-95% CI u-95% CI Eff.Sample

Intercept -0.36 0.63 -1.63 0.83 2290
type -1.33 0.65 -2.57 -0.06 1972
Age 0.01 0.01 -0.02 0.03 2024
Sex 0.19 0.48 -0.73 1.13 2839
DrugsAdm 0.06 0.03 -0.00 0.13 3444
DrugsOS 0.41 0.17 0.10 0.74 2609
type:Age 0.01 0.02 -0.02 0.05 1818
type:Sex -0.18 0.56 -1.26 0.90 2897

tions for all the cases. Figures 1 to Figure 7 contains marginal
plots to identify the relationship between the response variable
(Encounter) and covariates; type, Sex, DrugsAdm, Age, and
DrugsOS.
As identified by [8] that Geometric family have the ability to
model count data effectively, the same has been demonstrated in
this study using Bayesian multi-level regression approach. Fu-
ture direction can consider fitting multi-level regression model
to fit count data using distribution such as the Weibull-exponential
distribution and Exponentiated Generalized Weibull proposed
by [32] and [33] respectively.
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