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Abstract

This study is therefore aimed at developing classes of efficient numerical integration schemes, for direct solution of second-order Partial Differ-
ential Equations (PDEs) with the aid of the method of lines. The power series polynomials were used as basis functions for trial solutions in the
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1. Introduction

In this work, we consider the second-order PDE of the form

A
∂y2

∂x2 + B
∂y2

∂t2 +C
∂y
∂t

= 0, x∈ [a, b] , t > 0

With any of the following initial-boundary conditions

y(x, α1) = ξ1, y(x, α2) = ξ2,

y(β1t) = ζ1, y(β2, t) = ζ2,

y(x, α1) = ξ1, y(β2, t) = ζ2

Email address: olaiyaolumide.o@gmail.com (Olumide O. Olaiya )

, where αi, βi, ζi, ξi, i = 1, 2, a, b, A, B,C are all real constants
and A , 0. y ∈ C2 [a, b] × [c, d] , x ∈ (a, b) , t ∈ (c, d).
Second-order PDEs can either be of Laplacian, Poisson forms
which could either be heat or waveform of equations. They
find their applications in numerous areas of human endeavours,
especially in mathematical sciences and engineering.

The developed differential equations require solutions, ei-
ther in closed form (analytic form) or in numerical forms. In
most cases, closed-form of solutions is rare to come by as there
exist limited methods for solving such models in the form of
differential equations. This brings to light the use of numerical
methods/techniques to solve the modelled problem.

Numerical techniques are numerous and the types know no
bounds. They include; The Euler method, Runge-Kutta meth-
ods, linear Multistep method, shooting method, Finite differ-
ence method, finite element methods, e.g Galerkin method,
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Spectral element method. Other methods are; Spectral method base on Fourier transformation; Method of lines reduces the
PDE to a large system of the ordinary differential equation (ODE) Boundary Element Method (BEM) based on transforming a PDE
to an integral equation on the boundary of the domains and it is popular in computational fluid dynamics, the list is endless. Authors
who have worked extensively on numerical methods for approximation of solution of a differential equation include but no limited
to Brugnano and Trigiante [1], Onumanyi et al. [2, 3], Jator [4, 5], Fatunla [6], Yusuph and Onumanyi [7], Siraj-ul-Islam, et al.[8],
Adewale et al. [9].

We adopt the method of lines approach which is commonly used for solving time-dependent partial differential equations
(PDEs), whereby the spatial derivatives are replaced by finite difference approximations see Ngwane and Jator [10].

The Method of Lines (MOLs) allows the conversion of PDEs into ODEs by complete or partial discretisation of the independent
variables resulting in algebraic equations. If partial discretization is carried out and with only one remaining independent variable,
then this results in the system of ODEs which is an approximation of the original PDE. Thus, one of the underscored features of the
MOL is the use of existing, and generally well established, numerical methods for ODEs, for more literature on this approach see
Brugnano and Trigiante [1], Ramos and Vigo-Aguiar [11], Cash [12] and Jator and Li [13].

2. Derivation of the Method

Second order ordinary differential equation of the form is considered

y′′ = f (x, y) (1)

subject certain conditions, where a, b are real numbers, f is a continuous function on (a, b) and y ∈ C2[a, b]. A 2-step block methods
for the problem of the form (1) is considered.
The grid points given by xn, xn+1 = xn + h, xn+2 = xn + 2h, are considered for solving the problem in (1) on the interval [xn, xn+2].
We assume a trial solution y(x) of (1) by a polynomial p(x) given by

y(x) ' p(x) =

m−1∑
i=0

aixi (2)

which on differentiating yields

y′′(x) ' p′′(x) =

m−1∑
i=2

i(i − 1)aixi−2 (3)

with the ai ∈ R real unknown parameters to be determined. and m = r + s; r is the number of interpolation points and s is the
number of collocation points.

2.1. Specification of the method

In this work the interval of integration considered is [xn, xn+2], we thus consider two different categories of off-set points viz-a-
viz the points x i

3
, for i = 1, 2, 4, 5 and x i

4
, for i = 1, 2, 3, 5, 6, 7.

2.1.1. Case 1
Here, we consider the specification where the off-set points are x i

3
, for i = 1, 2, 4, 5. interpolating (2) at the points x i

3
, for i = 1, 2

implies r = 2 and collocating (3) at points x i
3
, for i = 0(1)6 implies s = 7 so that (2) and (3) becomes

y(x) ' p(x) =

8∑
i=0

aixi = a0 + a1x + a2x2 + · · · + a8x8 (4)

which on differentiating twice yields

y′′(x) ' p′′(x) =

8∑
i=2

i(i − 1)aixi−2 = 2a2 + 6a3x + 12a4x2 + · · · + 56a8x6 (5)
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From the imposed collocation condition, the following system of algebraic equation is obtained

A =



1 xn+ 1
3

x2
n+ 1

3
x3

n+ 1
3

x4
n+ 1

3
x5

n+ 1
3

x6
n+ 1

3
x7

n+ 1
3

x8
n 1

3
1 xn+ 2

3
x2

n+ 2
3

x3
n+ 2

3
x4

n+ 2
3

x5
n+ 2

3
x6

n+ 2
3

x7
n+ 2

3
x8

n 2
3

0 0 2 6xn 12x2
n 20x3

n 30x4
n 42x5

n 56x6
n

0 0 2 6xn+ 1
3

12x2
n+ 1

3
20x3

n+ 1
3

30x4
n+ 1

3
42x5

n+ 1
3

56x6
n+ 1

3
0 0 2 6xn+ 2

3
12x2

n+ 2
3

20x3
n+ 2

3
30x4

n+ 2
3

42x5
n+ 2

3
56x6

n+ 2
3

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1 42x5

n+1 56x6
n+1

0 0 2 6xn+ 4
3

12x2
n+ 4

3
20x3

n+ 4
3

30x4
n+ 4

3
42x5

n+ 4
3

56x6
n+ 4

3
0 0 2 6xn+ 5

3
12x2

n+ 5
3

20x3
n+ 5

3
30x4

n+ 5
3

42x5
n+ 5

3
56x6

n+ 5
3

0 0 2 6xn+2 12x2
n+2 20x3

n+2 30x4
n+2 42x5

n+2 56x6
n+2



, x=



a0
a1
a2
a3
a4
a5
a6
a7
a8


;b=



yn+ 1
3

yn+ 2
3

h2 fn
h2 fn+ 1

3
h2 fn+ 2

3
h2 fn+1
h2 fn+ 4

3
h2 fn+ 5

3
h2 fn+2


e= (1,x, x2, x3, x4, x5, x6, x7, x8)T

Where yn ≈ y (xn) , fn ≈ f (xn, yn, y′n).
Hence, we state the following theorem without proof.

Theorem 2.1. [14] Let (4) and (5) be satisfied, then the 2-step continuous linear hybrid multistep method is equivalent to the
equation

y(x) =bT (A−1
k )T e (6)

where b, A and e are as defined above.
Applying the above theorem, the following continuous hybrid method is derived

y(x) =

2∑
i=1

α i
3
yn+ i

3
+h2

2∑
j=0

β i
3

fn+ i
3

(7)

where α and β are function of t given as

α 1
3
= −3t+2, α 2

3
= 3t−1

β0=h2
[

21
32 t6− 459

4480 t− 27
160 t7+ 1

2 t2+ 81
4480 t8+ 863

108894−
49
40 t3− 441

320 t5+ 203
120 t4

]
β 1

3
=h2

[
−243
2240 t8+ 27

28 t7− 279
80 t6+ 261

40 t5− 261
40 t4+3t3− 27623

60480 t+ 8999
90720

]
β 2

3
=h2

[
243
896 t8− 513

224 t7+ 1233
160 t6− 4149

320 t5+ 351
32 t4− 15

4 t3+ 18689
120960 t− 769

181440

]
β1=h2

[
−81
224 t8+ 81

28 t7− 363
40 t6+ 279

20 t5− 127
12 t4+ 10

3 t3− 139
864 t+ 1987

136080

]
β 4

3
=h2

[
243
896 t8− 459

224 t7+ 963
160 t6− 2763

320 t5+ 99
16 t4− 15

8 t3+ 10921
120960 t− 1609

181440

]
β 5

3
=h2

[
−243
2240 t8+ 27

35 t7− 171
80 t6+ 117

40 t5− 81
40 t4+ 3

5 t3− 347
12096 t+ 263

90720

]
β2=h2

[
81

4480 t8− 27
224 t7+ 51

160 t6− 27
64 t5+ 137

480 t4− 1
12 t3+ 479

120960 t− 221
544320

]
(8)

where t= x−xn
h ,

Evaluating (7) at non-interpolating points i.e at the points x=xn+ i
3

for i= 0, 3, 4, 5, 6 which is equivalent to t = i
3

yn= 2yn+ 1
3
−yn+ 2

3
+h2

(
863

108864 fn+ 8999
90720 fn+ 1

3
− 769

181440 fn+ 2
3
+ 1987

136080 fn+1

− 1609
181440 fn+ 4

3
+ 263

90720 fn+ 5
3
− 221

544320 fn+2

)
yn+1= −yn+ 1

3
+2yn+ 2

3
+h2

(
−221

544320 fn+ 977
90720 fn+ 1

3
+ 16451

181440 fn+ 2
3
+ 1357

136080 fn+1

+ 71
181440 fn+ 4

3
− 31

90720 fn+ 5
3
+ 31

544320 fn+2

)
yn+ 4

3
= −2yn+ 1

3
+3yn+ 2

3
+h2

(
−137

181440 fn+ 209
10080 fn+ 1

3
+ 433

2240 fn+ 2
3
+ 4927

45360 fn+1

+ 257
20160 fn+ 4

3
− 1

672 fn+ 5
3
+ 31

181440 fn+2

)
yn+ 5

3
= −3yn+ 1

3
+4yn+ 2

3
+h2

(
−19

181440 fn+ 17
560 fn+ 1

3
+ 2987

10080 fn+ 2
3
+ 4927

22680 fn+1

+ 389
3360 fn+ 4

3
+ 41

5040 fn+ 5
3
− 11

90720 fn+2

)
yn+2= −4yn+ 1

3
+5yn+ 2

3
+h2

(
−95

54432 fn+ 389
9072 fn+ 1

3
+ 7085

18144 fn+ 2
3
+ 4633

13608 fn+1

− 3893
18144 fn+ 4

3
+ 1061

9072 fn+ 5
3
+ 409

54432 fn+2

)

(9)
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Differentiating α 1
3
, α 2

3
and all the β i

3
, i = 0(1)6 and evaluating the derivative of (8) at the points x=xn+ i

3
,i = 0(1)6, equivalent

to t= i
3 .

hy′n+3yn+ 1
3
−3yn+ 2

3
= h2

[
−459
4480 fn− 27623

60480 fn+ 1
3
+ 18689

120960 fn+2
3
− 139

864 fn+1+ 10921
120960 fn+ 4

3

− 347
12096 fn+ 5

3
+ 479

120960 fn+2

]
hy
′

n+ 1
3
+3yn+ 1

3
−3yn+ 2

3
= h2

[
199

72576 fn− 1973
20160 fn+ 1

3
− 18

128 fn+2
3
+ 4157

90720 fn+1−
851

40320 fn+ 4
3

+ 41
6720 fn+ 5

3
+ 289

120960 fn+2

]
y
′

n+ 2
3
+3yn+ 1

3
−3yn+ 2

3
= h2

[
−731

362880 fn− 13
320 fn+ 1

3
+ 6347

40320 fn+2
3
− 3971

90720 fn+1+ 257
13440 fn+ 4

3

− 109
20160 fn+ 5

3
+ 253

262880 fn+2

]
hy
′

n+1+3yn+ 1
3
−3yn+ 2

3
= h2

[
−1

1920 fn+ 1537
60480 fn+ 1

3
+ 39587

120960 fn+2
3
+ 4927

30240 fn+1−
2201

120960 fn+ 4
3

+ 209
6720 fn+ 5

3
− 43

120960 fn+2

]
hy
′

n+ 4
3
+3yn+ 1

3
−3yn+ 2

3
= h2

[
−571

362880 fn+ 691
20160 fn+ 1

3
+ 1299

4480 fn+2
3
+ 33533

90720 fn+1+ 1223
8064 fn+ 4

3

+ 79
6720 fn+ 5

3
+ 59

51840 fn+2

]
hy
′

n+ 5
3
+3yn+ 1

3
−3yn+ 2

3
= h2

[
−29

362880 fn+ 51
2240 fn+ 1

3
+ 13313

40320 fn+2
3
+ 5081

18144 fn+1−
5519

13440 fn+ 4
3

+ 73
576 fn+ 5

3
+ 1313

362880 fn+2

]

(10)

The schemes in (9) and (10) form the requited method for solving (1) numerically.

2.1.2. Case 2
Here, we consider the specification where the off-set points are also x i

3
, for i= 1, 2, 4, 5. Interpolating (2) at the points xi+n, for

i= 0, 1 implies r= 2 and collocating (3) at points x i
3
, for i = 0(1)6 implies s= 7 so that (2) and (3) becomes

y(x)'p(x) =

8∑
i=0

aixi=a0+a1x+a2x2+· · ·+a8x8 (11)

which on differentiating yields

y′′(x)'p′′(x) =

8∑
i=2

i(i−1)aixi−2= 2a2+6a3x+12a4x2+· · ·+56a8x6 (12)

From the imposed collocation condition, the following system of algebraic equation is obtained

A =



1 xn x2
n x3

n x4
n x5

n x6
n x7

n x8
n

1 xn+1 x2
n+1 x3

n+1 x4
n+1 x5

n+1 x6
n+1 x7

n+1 x8
n+1

0 0 2 6xn 12x2
n 20x3

n 30x4
n 42x5

n 56x6
n

0 0 2 6xn+ 1
3

12x2
n+ 1

3
20x3

n+ 1
3

30x4
n+ 1

3
42x5

n+ 1
3

56x6
n+ 1

3
0 0 2 6xn+ 2

3
12x2

n+ 2
3

20x3
n+ 2

3
30x4

n+ 2
3

42x5
n+ 2

3
56x6

n+ 2
3

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1 42x5

n+1 56x6
n+1

0 0 2 6xn+ 4
3

12x2
n+ 4

3
20x3

n+ 4
3

30x4
n+ 4

3
42x5

n+ 4
3

56x6
n+ 4

3
0 0 2 6xn+ 5

3
12x2

n+ 5
3

20x3
n+ 5

3
30x4

n+ 5
3

42x5
n+ 5

3
56x6

n+ 5
3

0 0 2 6xn+2 12x2
n+2 20x3

n+2 30x4
n+2 42x5

n+2 56x6
n+2


, x=



a0
a1
a2
a3
a4
a5
a6
a7
a8


;b=



yn
yn+1
h2 fn

h2 fn+ 1
3

h2 fn+ 2
3

h2 fn+1
h2 fn+ 4

3
h2 fn+ 5

3
h2 fn+2


e= (1,x, x2, x3, x4, x5, x6, x7, x8)T

Applying the above theorem, the following continuous hybrid method is derived

y(x) =

1∑
i=0

αiyn+i+h2
2∑

i=0

β i
3

fn+ i
3

(13)
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where α and β are function of t given as

α0= −t
α1= 1+t
β0= 105h2t−112h2t3+56h2t4+378h2t5−252h2t6−324h2t7+243h2t8

13440

β 1
3
= −

3(−85h2t−56h2t3+42h2t4+168h2t5−168h2t6−72h2t7+81h2t8)
2240

β 2
3
=

3(347h2t−560h2t3+840h2t4+546h2t5−1092h2t6−180h2t7+405h2t8)
4480

β1= 563h2t+1680h2t2−3430h2t4+3528h2t6−1215h2t8

3360

β 4
3
=

3(−41h2t+560h2t3+840h2t4−546h2t5−1092h2t6+180h2t7+405h2t8)
4480

β 5
3
= −

3(−5h2t+56h2t3+42h2t4−168h2t5−168h2t6+72h2t7+81h2t8)
2240

β2=−11h2t+112h2t3+56h2t4−378h2t5−252h2t6+324h2t7+243h2t8

13440



(14)

where t= x−xn−1
h .

Evaluating (13) at the points x=xn+ i
3

for i= 1, 2, 4, 5, 6 which is equivalent to t= −2/3,−1/3, 1/3, 2/3, 1 the following main
methods are obtained

yn+ 1
3
=

2yn
3 +

yn+1
3 −h2

(
2803 fn
544320−

1265 fn+ 1
3

18144 −
1657 fn+ 2

3
60480 −

1777 fn+1
136080 +

1049 fn+ 4
3

181440 −
11 fn+ 5

3
6048 +

137 fn+2
544320

)
yn+ 2

3
=

yn
3 +

2yn+1
3 −h2

(
1291 fn
544320−

1217 fn+ 1
3

30240 −
10711 fn+ 2

3
181440 −

1567 fn+1
136080 +

163 fn+ 4
3

60480 −
67 fn+ 5

3
90720 +

53 fn+2
544320

)
yn+ 4

3
= −

yn
3 +

4yn+1
3 +h2

(
661 fn

272160 +
1789 fn+ 1

3
45360 +

2147 fn+ 2
3

30240 +
6817 fn+1

68040 +
841 fn+ 4

3
90720 −

fn+ 5
3

15120−
11 fn+2
272160

)
yn+ 5

3
= −

2yn
3 +

5yn+1
3 +h2

(
535 fn

108864 +
475 fn+ 1

3
6048 +

5167 fn+ 2
3

36288 +
5725 fn+1

27216 +
1321 fn+ 4

3
12096 +

193 fn+ 5
3

18144 −
53 fn+2
108864

)
yn+2= −yn+2yn+1+h2

(
47 fn
6720 + 27

224 fn+ 1
3
+

459 fn+ 2
3

2240 +
563 fn+1

1680 +
459 fn+ 4

3
2240 + 27

224 fn+ 5
3
+

47 fn+2
6720

)
(15)

differentiating (14) and evaluating the derivative of (13) at the points x=xn+ 3
i for i= 0(1)6 which is equivalent to

t= −1,−2/3,−1/3, 0, 1/3, 2/3, 1 the following additional methods are obtained

y′n= −
y
h
n +

yn
h
+1−h

(
253 fn
2688 −

165
448 fn+ 1

3
+

267 fn+ 2
3

4480 −
5
32 fn+1+

363 fn+ 4
3

4480 −
57 fn+ 5

3
2240 +

47 fn+2
13440

)
,

y′n+ 1
3
= −

yn
h +

yn+1
h +h

(
4019h fn
362880 −

571h fn+ 1
3

60480 −
679h fn+ 2

3
3456 +

4577h fn+1
90720 −

3673h fn+ 4
3

120960 +
113h fn+ 5

3
12096 −

457h fn+2
362880

)
,

y′n+ 2
3
= −

yn
h +

yn+1
h +h

(
2293h fn
362880 +

223h fn+ 1
3

1728 +
7561h fn+ 2

3
120960 −

3551h fn+1
90720 +

1193h fn+ 4
3

120960 −
131h fn+ 5

3
60480 +

17h fn+2
72576

)
,

y′n+1= −
yn
h +

yn+1
h +h

(
h fn
128 + 51

448 h fn+ 1
3
+

1041h fn+ 2
3

4480 +
563h fn+1

3360 −
123h fn+ 4

3
4480 + 3

448 h fn+ 5
3
−

11h fn+2
13440

)
,

y′n+ 4
3
= −

yn
h +

yn+1
h +h

(
2453h fn
362880 +

7421h fn+ 1
3

60480 +
23593h fn+ 2

3
120960 +

33953h fn+1
90720 +

3445h fn+ 4
3

24192 −
103h fn+ 5

3
12096 +

7h fn+2
10368

)
,

y′n+ 5
3
= −

yn
h +

yn+1
h +h

(
599h fn
72576 +

1345h fn+ 1
3

12096 +
28459h fn+ 2

3
120960 +

5165h fn+1
18144 +

48551h fn+ 4
3

120960 +
1123h fn+ 5

3
8640 −

1481h fn+2
362880

)
,

y′n+2= −
yn
h +

yn+1
h +h

(
47h fn
13440 +

327h fn+ 1
3

2240 + 111
896 h fn+ 2

3
+

1651h fn+1
3360 + 93

640 h fn+ 4
3
+ 219

448 h fn+ 5
3
+

453h fn+2
4480

)

(16)

Here, it is noteworthy that (9) and (10) are combined to form a block for case 1 while (15) and (16) form another block for
case 11. For each case, (1) is solved which is a system of second-order ordinary differential equations resulting from the semi-
discretization of a second-order PDE.

3. Analysis of the Method

3.1. Order and Local Truncation Error (LTE)

The LMMs (8), and (13) are said to be of order p if

C0=C1=C2= · · · =Cp+µ−1 = 0, Cp+µ,0.
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Here Cp+µ is the error constant and

Cp+µhp+µy(p+µ)(xn)

is the principal Local Truncation Error (LTE) at the point xn. The C′s are given by

C0=α0+α1+α2+· · ·+αk

C1= (α0+α1+α2+· · ·+αk) − (β0+β1+· · ·+βk)

Cq=
1
q!

(α1+2qα2+· · ·+kqαk)−
1

(q−3)!
(β1+2q−1β2+· · ·+kq−3βk),q= 2, 3, . . .

The LTE associated with any of (8) and (13) is given by the difference operator

L[y(x) :h] =

2∑
i=1

α i
3
y(xn+

i
3

)−h2
2∑

j=0

β i
3
y′′(xn+

i
3

) (17)

where y∈C2[a, b] is an arbitrary function. Expanding (17) in Taylor’s series about the point xn, the expression is obtained as:

L[y(xn) :h] =C0y(xn)+C1hy′(xn)+C2h2y′′(xn)+· · ·+Cρ+2hρ+2yρ+2(xn) (18)

Expanding each scheme in (9) and (10), the following principal truncation errors are obtained:

C0
p+2=−

19y(9)[x]h9

119042784
+O[h]10,C1

p+2=
31y(9)[x]h9

1190427840
+O[h]10,C2

p+2=
y(9)[x]h9

4723920
+O[h]10

C
4
3 p+2=

31y(9)[x]h9

595213920
+O[h]10,C

5
3 p+2=

31y(9)[x]h9

595213920
+O[h]10,C′0 p+2=

8881y(9)[x]h9

5952139200
+O[h]10

C′
1
3 p+2= −

409y(9)[x]h9

1700611200
+O[h]10,C′

2
3 p+2=

1201y(9)[x]h9

5952139200
+O[h]10,C′1 p+2= −

463y(9)[x]h9

11904278400
+O[h]10

C′
4
3 p+2=

1201y(9)[x]h9

5952139200
+O[h]10,C′

5
3 p+2= −

409y(9)[x]h9

1700611200
+O[h]10,C′2 p+2=

8881y(9)[x]h9

5952139200
+O[h]10

The above blocked method (9) and (10) is of uniform order p= 7
Expanding each scheme in (15) and (16), the following principal truncation errors are obtained:

C
1
3
p+2=

349y(9)(x)h9

3571283520
+O(h)10,C

2
3
p+2=

2y(9)(x)h9

55801305
+O(h)10,C

4
3
p+2= −

2y(9)(x)h9

55801305
+O(h)10

C
5
3
p+2= −

349y(9)(x)h9

3571283520
+O(h)10,C2

p+2=
y(9)(x)h9

32659200
+O(h)10,C′0p+2=

y(9)(x)h9

765450
+O(h)10

C′
1
3
p+2= −

1691y(9)(x)h9

3968092800
+O(h)10,C′

2
3
p+2=

y(9)(x)h9

62001450
+O(h)10,C′1p+2−

11y(9)(x)h9

48988800
+O(h)10

C′
4
3
p+2

y(9)(x)h9

62001450
+O(h)10,C′

5
3
p+2−

1691y(9)(x)h9

3968092800
+O(h)10,C′2p+2

y(9)(x)h9

765450
++O(h)10

The above blocked method (15) and (16) is of uniform order p= 7
The LMM (8) (same for (13)) is said to be consistent if it has order p≥1 and the first and second characteristic polynomials

which are defined respectively, as

ρ(r) =

k∑
j=0

α jz j (19)

and

σ(r) =

k∑
j=0

β jz j (20)
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where r is the principal root, satisfy the following conditions:

k∑
j=0

α j= 0 (21)

ρ(1) =ρ′(1) = 0 (22)

and

ρ′′(1) = 2!σ(1) (23)

Henrici [15], Lambert[16].
Consider the main method in (9) given as

yn+2= −4yn+ 1
3
+5yn+ 2

3
+h2

(
−95

54432 fn+ 389
9072 fn+ 1

3
+ 7085

18144 fn+ 2
3
+ 4633

13608 fn+1

− 3893
18144 fn+ 4

3
+ 1061

9072 fn+ 5
3
+ 409

54432 fn+2

) (24)

The condition (21) is satisfied. the first characteristic equation for (9) is given as:

ρ(r) =r2+4r
1
3−5r

2
3 (25)

ρ′(r) = 2r+
4

3r2/3−
10

3r1/3 (26)

Here ρ(r) = 0, ρ′(r) = 0. Therefore, (22) is satisfied. The second characteristic polynomial for (9) is given as

σ(r) =
−95

54432
+

389
9072

r
1
3 +

7085
18144

r
2
3 +

4633
13608

r+
3893

18144
r

4
3 +

1061
9072

r
5
3 +

409
54432

r2 (27)

σ(1) =
10
9

(28)

ρ′′(r) = 2−
8

9r5/3 +
10

9r4/3 . ρ′′(r) =
20
9

(29)

Hence condition (23) is satisfied. Conclusively, the hybrid method is consistent.
Consider the main method in (15) given as

yn+2= −yn+2yn+1+h2
(

47 fn
6720 + 27

224 fn+ 1
3
+

459 fn+ 2
3

2240 +
563 fn+1

1680

+
459 fn+ 4

3
2240 + 27

224 fn+ 5
3
+

47 fn+2
6720

) (30)

The condition (21) is satisfied. the first characteristic equation for (15) is given as:

ρ(r) =r2−2r+1 (31)

ρ′(r) = 2r−2 (32)

Here ρ(1) = 0, ρ′(1) = 0. Therefore, (22) is satisfied. The second characteristic polynomial for (15) is given as

σ(r) =
47

6720
+

27
224

r
1
3 +

459
2240

r
2
3 +

563
1680

r+
459

2240
r

4
3 +

27
224

r
5
3 +

47
6720

r2 (33)

σ(1) = 1 (34)

ρ′′(r) = 2. ρ′′(1) = 2 (35)

Hence condition (23) is satisfied. Conclusively, the hybrid method is consistent.
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3.2. Zero Stability

To establish hat the methods are zero stable, each of the method in block form are solved simultaneously to obtain all the yi and
y′i’s for appropriate index i, (see Modebei et al.[17]). For the method (9) and its additional methods in (10), they are taken in block
form and solved simultaneously to obtain y i

3
for i = 1(1)6 to obtain the following block method. For block method (9)-(10)

yn+ 1
3
= yn+

hy′n
3 +h2

(
28549 fn
1088640 +

275 fn+ 1
3

5184 −
5717 fn+ 2

3
120960 +

10621 fn+1
272160 −

7703 fn+ 4
3

362880 +
403 fn+ 5

3
60480 −

199 fn+2
217728

)
yn+ 2

3
= yn+

2hy′n
3 +h2

(
1027 fn
17010 + 194

945 fn+ 1
3
− 8

81 fn+ 2
3
+

788 fn+1
8505 −

97 fn+ 4
3

1890 +
46 fn+ 5

3
2835 −

19 fn+2
8505

)
yn+1= yn+hy′n+h2

(
253 fn
2688 + 165

448 fn+ 1
3
−

267 fn+ 2
3

4480 +
5 fn+1

32 −
363 fn+ 4

3
4480 +

57 fn+ 5
3

2240 −
47 fn+2
13440

)
yn+ 4

3
= yn+

4hy′n
3 +h2

(
1088 fn
8505 +

1504 fn+ 1
3

2835 −
8

945 fn+ 2
3
+

2624 fn+1
8505 −

8
81 fn+ 4

3
+ 32

945 fn+ 5
3
−

8 fn+2
1701

)
yn+ 5

3
= yn+

5hy′n
3 +h2

(
35225 fn
217728 +

8375 fn+ 1
3

12096 +
3125 fn+ 2

3
72576 +

25625 fn+1
54432 −

625 fn+ 4
3

24192 +
275 fn+ 5

3
5184 −

1375 fn+2
217728

)
yn+2= yn+2hy′n+h2

(
41 fn
210 + 6

7 fn+ 1
3
+ 3

35 fn+ 2
3
+

68 fn+1
105 + 3

70 fn+ 4
3
+ 6

35 fn+ 5
3

)
y′n+ 1

3
= y′n+h

(
19087 fn
181440 +

2713 fn+ 1
3

7560 −
15487 fn+ 2

3
60480 +

586 fn+1
2835 −

6737 fn+ 4
3

60480 +
263 fn+ 5

3
7560 −

863 fn+2
181440

)
y′n+ 2

3
= y′n+h

(
1139 fn
11340 + 94

189 fn+ 1
3
+

11 fn+ 2
3

3780 +
332 fn+1

2835 −
269 fn+ 4

3
3780 + 22

945 fn+ 5
3
−

37 fn+2
11340

)
y′n+1= y′n+h

(
137 fn
1344 + 27

56 fn+ 1
3
+

387 fn+ 2
3

2240 +
34 fn+1

105 −
243 fn+ 4

3
2240 + 9

280 fn+ 5
3
−

29 fn+2
6720

)
y′n+ 4

3
= y′n+h

(
286 fn
2835 + 464

945 fn+ 1
3
+ 128

945 fn+ 2
3
+

1504 fn+1
2835 + 58

945 fn+ 4
3
+ 16

945 fn+ 5
3
−

8 fn+2
2835

)
y′n+ 5

3
= y′n+h

(
3715 fn
36288 +

725 fn+ 1
3

1512 +
2125 fn+ 2

3
12096 +

250 fn+1
567 +

3875 fn+ 4
3

12096 +
235 fn+ 5

3
1512 −

275 fn+2
36288

)
y′n+2= y′n+h

(
41 fn
420 + 18

35 fn+ 1
3
+ 9

140 fn+ 2
3
+

68 fn+1
105 + 9

140 fn+ 4
3
+ 18

35 fn+ 5
3
+

41 fn+2
420

)

(36)

For block method (15)-(16) similar operation is carried out;
A numerical method is zero-stable if the solutions remain bounded as h→0, which means that the method does not provide

solutions that grow unbounded as the number of steps increases, Modebei et al.[17]. To show the zero-stability of the block method
(36), we take h→0 the method may be rewritten in matrix form as

A0Yn=A1Yn−1 (37)

Yn= (Y0
n ,Y

1
n )T

Y0
n = (yn+ 1

3
, yn+ 2

3
, yn+1, yn+ 4

3
, yn+ 5

3
, yn+2)T

Y1
n = (y′n+ 1

3
, y′n+ 2

3
, y′n+1, y

′
n+ 4

3
, y′n+ 5

3
, y′n+2)T

For method (36) A0=I12×12 identity matrix and A1=I12×12 matrix given by

A1=

 A11 0
0 A22

 , A11=



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


, A22=



0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
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The characteristic polynomial of the matrix A11 is given as
|A11−λI|, that is λ5(λ−1)= 0 with root λ j= 0 for j= 1, . . . , 5 and
λ6= 1.

The characteristic polynomial of the matrix A22 is given as
|A22−λI|, that is λ5(λ−1) = 0 with root λ j= 0 for j= 1, . . . , 5 and
λ6= 1.

For method (15)-(16) A0=I12×12 identity matrix and A1=I12×12
matrix given by

A1=

 A11 0
0 A22

 , A11=A22=



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


The characteristic polynomial of the matrix Aii is given as |Aii−λI|,
i= 1, 2, that is λ5(λ−1) = 0 with root λ j= 0 for j= 1, . . . , 5 and
λ6= 1.

Definition 3.1. The two step hybrid block method (9)-(10) (or
(15)-(16)) is said to be zero stabile if the number of root of the
first characteristic equation |ρ(r)| < 1 and if |ρ(r)| = 1, then
the multiplicity of ρ(r) must not exceed 2. Hence, the are zero
stable.

3.3. Convergence of the Methods
Definition 3.2. Convergence: An LMM is said to be convergent
if and only if it is consistent and zero-stable.

By the above definition, the derived hybrid methods are
convergent.

4. Numerical Examples

In this section, the performance of the developed two-step
hybrid block scheme is examined. the exact and approximate
solution are tabulated. The tables below show the numerical re-
sults of the newly developed scheme with the exact solution for
solving the problem and the result of the developed scheme are
more accurate than existing methods. For simplicity, method
in (9)-(10) would be termed Hybrid 2-step Block Method 1
(H2BM1), and method in (15)-(16) would be termed Hybrid
2-step Block Method 2 (H2BM2)
Example 1.
Consider the PDE (Ngwane and Jator [10]).

κ ∂y2

∂x2−
∂y
∂t = 0

y(0,t) =y(1,t) = 0, y(x, 0) = sinπx+sinωπx, κ>1
(38)

The analytic solution is y(x, t) =e−π
2κtsinπx+e−ω

2π2κtsinπx
Following Ngwane and Jator [10], (38) becomes

dy2
m

dx2 =
1
κ

y(x , tm+1)−y(x , tm−1)]
(∆t)

(39)

ym(0,tm) =ym(1,tm) = 0, ym(x, 0) = sinπx+sinωπx, κ>1

Table 1: Exact and Numerical solution for Example 1

x Exact H2BM1 Error
0.0 1.65341E-9 1.65341E-9 0
0.1 6.16242E-10 6.16242E-10 2.78E-12
0.2 2.29678E-10 2.29678E-10 4.45E-12
0.3 8.56029E-11 8.56029E-11 4.20E-12
0.4 3.19048E-11 3.19048E-11 5.00E-12
0.5 1.18911E-11 1.18911E-11 6.45E-12
0.6 4.43194E-12 4.43194E-12 7.31E-12
0.7 1.65181E-12 1.65181E-12 3.28E-12
0.8 6.15646E-13 6.15646E-13 4.11E-13
0.9 2.29456E-13 2.29456E-13 5.99E-13

Table 2: Exact and Numerical solution for Example 1

9 Exact H2BM2 Error
0.0 1.65341E-9 1.65341E-9 0
0.1 6.16242E-10 6.16242E-10 3.24E-12
0.2 2.29678E-10 2.29678E-10 7.21E-12
0.3 8.56029E-11 8.56029E-11 2.22E-12
0.4 3.19048E-11 3.19048E-11 8.45E-12
0.5 1.18911E-11 1.18911E-11 1.15E-12
0.6 4.43194E-12 4.43194E-12 1.18E-12
0.7 1.65181E-12 1.65181E-12 5.08E-12
0.8 6.15646E-13 6.15646E-13 2.48E-13
0.9 2.29456E-13 2.29456E-13 4.79E-13

where
tm=m∆t, m= 0, 1, . . . ,; M

ym(x)≈y(x, tm),y(x) = [y0(x), y1(x), . . . ,yM−1(x)]T ,

hence (39) becomes the system d2ym(x)
dx2 = f (x , ym) which is in the

form of (1), where f (x, tm) =Ay+G and A is an M−1 square
matrix, G is a vector of constants.

BHSDA is L -Stable Block Hybrid Second Derivative Al-
gorithm in Ngwane and Jator [10].

Tables 1 and 2 shows the comparison of exact solution and
the mothers H2BM1 and H2BM2 respectively. For example 1.

Table 3 shows the comparison of maximum errors obtained
for example 1 using the derived methods and the method in
Ngwane and Jator[10]. This shows the superiorly of the derived
methods over existing methods.

Figure 1 show the surface plots for the exact solution and
Numerical solutions for example 1.
Example 2. Consider the PDE ([14]):

∂y2

∂x2 +
∂y2

∂t2 = −32π2sin(4πx), x∈[0, 1]
y(±1,t) =y(x,±1) = 0, t>0

(40)

Table 3: Comparison of maximum errors obtained in different methods for Ex-
ample 1 at t= 1.

κ H2BM1 H2BM2 BHSDA
1 1.076 × 10−11 1.022 × 10−12 2.64 × 10−6

2 1.024 × 10−12 1.085 × 10−12 1.32 × 10−6

3 1.045 × 10−12 1.045 × 10−12 1.32 × 10−6

5 1.035 × 10−12 1.055 × 10−12 1.32 × 10−6

10 1.019 × 10−12 1.041 × 10−12 1.32 × 10−6
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Figure 1: Surface plots for the Exact and numerical solution for Example 2

Table 4: Exact and Numerical solution using H2BM1 for Example 2.

κ H2BM1 H2BM2 BHSDA
x Exact H2BM1 Error

0.0 6.634320126E-16 6.634320126E-16 0.
0.2 0.5590169122545 0.5590169122520 2.51E-12
0.4 -0.9045084378512 -0.9045084378511 1.00E-12
0.6 0.9045084354472 0.9045084354462 1.00E-12
0.8 -0.5590169311454 -0.5590169311421 3.37E-12
1.0 -4.658833273E-16 -4.658833273E-16 0.

for N= 10, x∈[−1, 1]

Table 5: Exact and Numerical solution using H2BM2 for Example 2.

x Exact H2BM2 Error
0.0 6.634320126E-16 6.634320126E-16 0.
0.2 0.5590169122545 0.5590169122589 4.49E-12
0.4 -0.9045084378512 -0.9045084378577 6.52E-12
0.6 0.9045084354472 0.9045084354428 5.53E-12
0.8 -0.5590169311454 -0.5590169311433 2.12E-12
1.0 -4.658833273E-16 -4.658833273E-16 0.

for N= 10, x∈[−1, 1]

The analytic solution is y(x, t) = sin4πxsin4πt.
Following Ngwane and Jator [10], (38) becomes

dy2
m

dx2 = −
y (x , tm+1)−2y (x , tm) +y(x , tm−1)]

(2∆t)
−32π2sin(4πx)

(41)

ym(±1,tm) =ym(x,±1) = 0,

where
tm=m∆t, m= 0, 1, . . . ,M;

ym(x)≈y(x, tm),y(x) = [y0(x), y1(x), . . . ,yM−1(x)]T ,

hence (41) becomes the system d2ym(x)
dx2 = f (x , ym) which is in the

form of (1), where f (x, tm) =Ay+G and A is an M−1 square
matrix, G is a vector of constants.

BVM and BUM are Boundary Value Methods and the Block
Unification Methods in Biala [14].

Tables 4-5 shows the comparison of the exact solution and
the methods H2BM1 and H2BM2 respectively for example 2.
Table 6-7 shows the maximum error and CPU time obtained for
different methods. Table 9 shows the maximum error and CPU
time obtained in Biala [14].

Table 6: Comparison of maximum errors obtained in different methods for Ex-
ample 2 at t= 1

N H2BM1 l∞ error CPU Time H2BM2 l∞ error CPU Time
16 2.257E-7 0.112 5.547E-7 0.121
32 2.787E-7 0.898 1.712E-7 0.871
64 8.234E-7 2.785 2.337E-7 2.662

128 3.114E-7 11.211 4.785E-7 12.009
256 2.779E-7 31.812 1.112E-7 30.101

Table 7: Comparison of maximum errors obtained in different methods for Ex-
ample 2 at t= 1

N BVM l∞ error CPU Time BUM l∞ error CPU Time
16 9.662E-0 0.483 1.251E-1 0.531
32 2.582E-2 1.235 2.578E-2 1.031
64 6.433E-3 5.358 6.459E-3 5.516

128 1.607E-3 43.641 1.607E-3 46.923
256 2.000E-0 512.843 4.016E-4 532.657

This show that the derived methods performs accurately, su-
periorly and affluently in terms of the computer time, and errors
obtained in examples 2.

Figure 2 shows the surface plots for the exact and Numerical
solution for examples 2.
Example 3.
We consider the PDE (Jator [15]).

∂y2

∂t2 +
∂y2

∂x2 = sin(y), x∈[−3, 3]

y(x, 0) = 4arctan(e
x√

1−c2 ),

yt(x, 0) = − 4ce
x√

1−c2

√
1−c2(1+e

2 x√
1−c2 )

, 0 < t<1
(42)

The analytic solution is y(x, t) = 4arctan(sech(x)t), c is ve-
locity of the wave. The problem is solved for c= 0.5, ∆t= 0.125
Following Ngwane and Jator [10], (38) becomes

dy2
m

dx2 = −
y (x , tm+1)−2y (x , tm) +y(x , tm−1)]

(2∆t)
+sin(ym)(43)

ym (x, 0) = 4arctan
(
e

x√
1−c2

)
,

ymt (x, 0) = − 4ce
x√

1−c2

√
1−c2

1+e
2 x√

1−c2
 , 0 < t<1
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Figure 2: Surface plots for the Exact and numerical solution for Example 3

Figure 3: Surface plots for the Exact and numerical solution for Example 3

Table 8: Exact and Numerical solution using different methods for Example 3

x Exact H2BM1 H2BM2 SBVM
0.125 0.12195641127 0.12195641122 0.12195641178 0.121956
0.25 0.11346954831 0.11346954852 0.11346954877 0.113469
0.375 0.10557254177 0.10557254144 0.10557254129 0.105573

0.5 0.09822454418 0.09822454411 0.09822454412 0.0982256
0.625 0.09138842135 0.09138842122 0.09138842129 0.0913892
0.75 0.08502738529 0.08502738541 0.08502738557 0.0850284
0.875 0.07910885264 0.07910885215 0.07910885213 0.0791101
1.00 0.07360212510 0.07360212548 0.07360212544 0.0736035

Table 9: Approximate and Numerical solution for Example 3

x H2BM1 Error H2BM2 Error SBVM Error
0.125 7.2E-10 5.1E-10 1.30E-7
0.25 2.1E-11 4.6E-10 2.94E-7

0.375 3.3E-11 4.8E-10 4.51E-7
0.5 7.2E-11 8.0E-10 6.49E-7

0.625 1.4E-10 5.5E-10 8.41E-7
0.75 1.2E-10 3.7E-10 1.03E-6

0.875 4.9E-10 3.3E-10 1.25E-6
1.00 3.8E-10 7.7E-10 1.44E-6

where

tm=m∆t, m= 0, 1, . . . ,M; ym(x)≈y(x, tm),y(x) = [
y0(x), y1(x), . . . ,yM−1(x)]T ,
hence (43) becomes the system d2ym(x)

dx2 = f (x , ym) which is in the
form of (1).
where f (x, tm) =Ay+G and A is an M−1 square matrix, G is a
vector of constants.

SBVM is symmetric boundary value method in Jator [15].

Table 8 shows the exact and numerical solution using the differ-
ent methods for example 3 while Table 9 shows error obtained
for example 3. Figure 3 shows the surface plots for the Exact
and numerical solutions of H2BM1 and H2BM2 for Example 3

5. Conclusion

The development of some numerical schemes has been pro-
posed in this work. This was developed via the interpolation
and collocation techniques using power series function as trial
solutions. The methods were effectively illustrated some partial
differential equations (PDE) and the results obtained were ac-
curate. The analysis of the new methods showed that all satisfy
the properties of numerical methods for the solution of differen-
tial equations. Namely, Consistency, Zero- Stability, Continuity
and convergence.
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