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Abstract

It is investigated how changes in gravity affect the thermal instability rotating Jeffrey nanofluids in porous media. Along with the Galerkin method
and normal mode approach, the Darcy model is used. The distinct variable gravity parameters taken in this paper are: h(z) = z2 − 2z, h(z) = −z2,
h(z) = −z and h(z) = z and their effects on the Jeffrey parameter, Taylor number, moderated diffusivity ratio, porosity of porous media, Lewis
number and nanoparticle Rayleigh number on stationary convection have been scrutinized and graphically shown. Our finding demonstrates that
varying gravity parameter h(z) = z2 − 2z has more stabilising impact on stationary convection. We have also discovered the necessary condition
for overstability in the instance of oscillatory convection for this problem.
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1. Introduction

Choi [1] devised the term “nanofluid”, which was defined
as a liquid having a dispersion of submicronic solid particles
(nanoparticles). Convective transport in nanofluids was an issue
that Buongiorno [2] examined. He advanced Choi [1] work
by including mathematical terms. Different uses for nanofluid
were introduced by Tzeng et al. [3], Kim et al. [4], Routbort et
al. [5] and Donzelli et al. [6].

The theoretical and experimental findings in Chandrasekhar
[7] are based on the Newtonian fluid’s capacity to convect steadily

∗Corresponding author tel. no: +918570975865
Email addresses: pl maths@yahoo.in (Pushap Lata Sharma),

deepakbains123@gmail.com (Deepak Bains)

in the absence of a porous medium while subject to rotation and
a magnetic field. Papamarkos et al. [8] described a method
based upon octagonally symmetric design and IIR digital fil-
terations. A Study of Non-Newtonian Nanofluids like Rivlin-
Ericksen, Maxwellian and Modified Darcy-Maxwell Model for
S.C. is employed by Rana et al. [9], Chand [10] and Singh et al.
[11], respectively. Linearised stability theory was used by Lap-
wood [12] to investigate convective flow in a porous material.
Nield et al. [13] introduced convection in porous media. Con-
vection with internal heating in a porous material saturated by a
nanofluid was examined by Nield et al. [14]. The results reveal
that the inclusion of nanofluid particles increases the system’s
instability. Later, Nield et al. [15] provided brief introduction
to the book Nield et al. [13]. Tzou [16, 17] investigated how
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natural convection affected nanofluids’ thermal instability. Sev-
eral researchers Nield et al. [18, 19, 20], Sheu [21] and Chand
et al. [22, 23, 24] used the Buongiorno [2] model to investigate
nanofluids’ thermal instability in porous media. Ramanuja et
al. [25] also used porous medium in their problem.

The development of objects in an astrophysical plasma en-
vironment is caused by thermal instability, which is studied by
Kaothekar [26] for partly ionised thermal plasma. This plasma
has a relation to astrophysical condensations. Chand et al. [27]
studied T.I. effect on Oldroydian nanofluid by considering real-
istic boundary conditions. Nield et al. [20], Sharma [28], Yadav
et al. [29], Chand et al. [30, 31], Govender [32] and Chand et
al. [33] examined the of nanofluid’s thermal instability in rota-
tion. Some of them examined rotation’s interactions with sus-
pended particles, many non-newtonian fluids, couple-stress ro-
tation’s interactions with porous media, and rotation’s interac-
tions with itself. They discovered that a system’s thermal insta-
bility depends heavily on rotation. Yadav et al. [34] employed
magneto-convection in rotatory layer of nanofluid and electro-
thermo-convection in a horizontal layer of rotating nanofluid
is examined by Chand et al. [35]. Additionally, several of
them created rotation-based industrial applications, including
those found in nuclear reactors, power plants, the petroleum
sector, geophysics etc. Nanofluid oscillating convection in a
porous media was explored by Chand et al. [36]. Gautam et al.
[37] established the concepts of free-free, rigid-free, and rigid-
rigid boundary conditions for the electrohydrodynamic T.I. of
a Jeffrey nanofluid layer saturating a porous medium and con-
cluded that the rotation parameter stabilises the system for bot-
tom and top-heavy layouts. A porous-medium-saturated Jeffrey
nanofluid flow was studied by Rana [38] for the effects of ro-
tation. For both bottom and top-heavy arrangements and pro-
vided evidence that the rotation parameter stabilises the sys-
tem. Sharma et al. [39] studies the electrohydro dynamics
convection in dielectric rotating Oldroydian nanofluid in porous
medium.

The idealisation of uniform gravity used in theoretical re-
search, while appropriate for lab applications, is seldom war-
ranted for large-scale convection events happening in the Earth’s
atmosphere, ocean, or mantle. Gravity must thus be viewed as a
changeable quantity that changes with distance from a surface
or other reference point. Pradhan et al. [40] investigated the
thermal instability of a fluid layer in a changeable gravitational
field and discovered that boosting the gravitational field verti-
cally accelerates the commencement of convection. A porous
media with an internal heat source and an inclined temperature
gradient was studied by Alex et al. [41] to see how changing
gravity affected thermal instability. Straughan [42] used both
linear theory and nonlinear energy theory to analyse the issue
for the case of stiff boundaries in a spatially changing gravita-
tional field and discovered that the nonlinear conclusions were
remarkably similar to the linear ones. Chand et al. [43] looked
into how changing gravity would affect a layer of nanofluid in
a porous medium and found that the gravity parameter had a
big impact on fluid stability. Theoretically and visually, Chand
[10] investigates thermal instability of Maxwell non-Newtonian
fluid with varying gravity. Using a higher order Galerkin method,

Yadav [44] investigated the joint effects of variable gravity fields
and throughflow on the beginning of convective motion in a
porous medium layer. The results showed that both the through-
flow and gravity variation parameters serve to delay the mo-
tion’s onset. Mahajan et al. [45] analyses the effects of several
fundamental temperature and concentration gradients on a layer
of reactive fluid in a varied gravity field utilising both linear and
non-linear analysis. Surya et al. [46] examine the thermal in-
stability of a horizontal layer of liquid heated from below that is
contained between thermally conductive porous walls under the
influence of a fluctuating gravitational field. As limiting exam-
ples of the permeability parameters of the borders, the impact
of the gravity variation growing vertically upward for various
particular situations of the boundary conditions is derived and
graphically depicted. In a layer of porous media, the effects of
rotation and varying gravitational strengths on the beginning of
heat convection were computed by Yadav [47]. The findings
demonstrate how the gravity variation parameter and the rota-
tion parameter both delay convection’s arrival. With increased
rotation and gravity variation parameters, the measurement of
the convection cells diminishes. Shekhar et al. [48] investigates
numerically how varying gravity affects rotational convection in
a porous material that is poorly packed. The linear, parabolic,
cubic, and exponential functions are taken into account for vari-
ations in gravitational force. While the Darcy number increases
convection cell size, convection cell size falls when the variable
gravity parameter and rotation parameter are increased. Addi-
tionally, it has been found that the system is more stable for
exponential gravity functions than for cubic gravity functions.
Chand et al. [49] investigated the impact of variable gravity
on the thermal instability of rotating nanofluids in porous me-
dia and discovered that, in the presence of rotation and also for
nanoparticle Rayleigh numbers, decreasing the gravity parame-
ter has a stabilising effect while increasing it has a destabilising
effect.

By taking into account its numerous applications in vari-
ous fields like geophysics, astrophysics, food processing, oil
reservoir modeling, building of thermal insulations and nuclear
reactors etc. This brief review of the literature leads one to be-
lieve that such a problem was nonexistent; hence, the current
problem of thermal instability of rotating Jeffrey nanofluids in
porous media with variable gravity was chosen.

2. Mathematical Formulation

Here, we examine a rotating horizontal Jeffrey nanofluid
layer heated from below in a porous medium with medium per-
meability k1 and porosity ε and angular velocity Ω(0, 0,Ω) bor-
dered by plane z = 0 and z = d, working upward under the
influence of variavle gravity. Furthermore, it is assumed from
Nield et al. [18] and Chand et al. [49] that there is variable
gravity along z -direction i.e. g = (1+δh(z))g, where δh(z) is the
variable gravity parameter. When the top boundary layer is at
z = d, the temperature T and volumetric fraction ϕ of nanopar-
ticles are assumed to be T1 and ϕ1, respectively, with T0 > T1
and ϕ0 > ϕ1.
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Figure 1: Physical Configuration

For the sake of simplicity, Oberbeck-Boussinesq approxi-
mation is used and Darcy’s law is taken to be true by Nield et
al. [18] and Chand et al. [49]. Thus from Buongiorno [2],
Chandrasekhar [7], Nield et al. [18] and Chand et al. [33, 49]
the pertinent governing equations for the study of spinning Jef-
frey nanofluid in porous medium are

∇.q = 0 (1)
0 = −∇p +

(
ϕρp + (1 − ϕ) {ρ0 (1 − α (T − T1))}

)
g

−
µ

k1(1 + λ)
q +

2ρ0

ε
(q ×Ω) (2)

For nanoparticle, the continuity equation is given by (Buon-
giorno [2])

∂ϕ

∂t
+

1
ε

q.∇ϕ = DB∇
2ϕ +

DT

T1
∇2T (3)

For the nanofluid, the equation of thermal energy is given by
(Buongiorno [2] and Chand et al. [49])

(ρc)m
∂T
∂t

+ (ρc) f q.∇T = km∇
2T

+ε (ρc)p

[
DB∇ϕ.∇T +

DT

T1
∇T.∇T

]
(4)

where q is the fluid velocity, p is the pressure, ρ0 is nanofluid
density at z = 0, ρP is nanoparticles density, ϕ is the volume

fraction of the nanoparticles, T is temperature, T1 is the refer-
ence temperature, α is thermal expansion coefficient, g is grav-
itational acceleration and k1 is medium fluid permeability, µ
is coefficient of viscosity, ε is the porosity of the porous me-
dia, λ = λ1

λ2
the Jeffrey parameter (which is the ratio of stress-

relaxation-time parameter, λ1 to strain-retardation-time param-
eter, λ2), the fluid’s heat capacity in porous medium is (ρc)m,
(ρc)P stands for heat capacity of nanoparticles, (ρc) f stands for
fluid’s heat capacity, km is the fluid’s thermal conductivity, the
Brownian diffusion coefficient is DB and DT is nanoparticles’
the thermophoretic diffusion coefficient (Chand et al. [49]).

We presumed nanoparticles’ temperature and volumetric frac-
tion as constant. Thus, boundary conditions (Chandrasekhar [7]
and Nield et al. [18]) are{

w = 0, T = T0, ϕ = ϕ0 at z = 0
w = 0, T = T1, ϕ = ϕ1 at z = d

(5)

On introducing non-dimensional variables as (Chandrasekhar
[7])

(x∗, y∗, z∗) =
(x, y, z)

d
, q∗ = q

d
κm
, t∗ =

tκm

σd2

p∗ =
pk1

µκm
, ϕ∗ =

ϕ − ϕ0

ϕ1 − ϕ0
, T ∗ =

T − T1

T0 − T1

where κm = km
(ρc) f

, σ =
(ρc)m
(ρc) f

are fluid’s thermal diffusivity and
thermal capacity ratio, respectively. Relaxing the star (∗) for
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simplification. The reduced non-dimensional form of equations
1,2,3,4 are:

∇.q = 0 (6)

0 = −∇p −
1

1 + λ
q − Rm(1 + δh(z))k̂

+RD(1 + δh(z))T k̂ − Rn(1 + δh(z))ϕk̂

+
√

Ta

(
q × k̂

)
(7)

1
σ

∂ϕ

∂t
+

1
ε

q.∇ϕ =
1
Ln
∇2ϕ +

NA

Ln
∇2T (8)

∂T
∂t

+ q.∇T = ∇2T +
NB

Ln
∇ϕ.∇T +

NANB

Ln
∇T.∇T (9)

where dimensionless parameters are
Rm =

(ρPϕ0+ρ0(1−ϕ0))gk1d
µκm

is density Rayleigh number,

RD =
ρ0α(T0−T1)gk1d

µκm
is Rayleigh Darcy Number

Rn =
(ρp−ρ0)(ϕ1−ϕ0)gk1d

µκm
is nanoparticle Rayleigh number,

Ta =

(
2Ωρd2

µ

)2
is Taylor number,

Ln = κm
DB

is Lewis number,
NA =

DT (T0−T1)
DBT1(ϕ1−ϕ0) is nanofluid modified diffusivity ratio,

NB =
ε(ρc)p(ϕ1−ϕ0)

(ρc) f
is modified nanoparticle-density increment.

The reduced non-dimensional boundary conditions are:{
w = 0, T = 1, ϕ = 0 at z = 0
w = 0, T = 0, ϕ = 1 at z = 1

(10)

3. Basic States and it’s Solutions

The time independent basic states for nanofluid are expressed
as (Nield et al. [18, 19] and Chand et al. [49]):{

q(u, v,w) = 0 ⇒ u = v = w = 0,
p = pb(z), T = Tb(z), ϕ = ϕb(z)

(11)

The basic variable represented by subscript b. Using equation
(11) in 6), (7,8), (9), these equations reduce to

0 = −
d
dz

pb(z) − Rm(1 + δh(z)) + RD(1 + δh(z))Tb(z)

−Rn(1 + δh(z))ϕb(z) (12)

d2

dz2ϕb(z) + NA
d2

dz2 Tb(z) = 0 (13)

d2

dz2 Tb(z)+
NB

Ln

d
dz
ϕb(z)

d
dz

Tb(z)+
NANB

Ln

(
d
dz

Tb(z)
)2

= 0(14)

Solving equation 13 with boundary conditions equation 10, we
get

ϕb(z) = (1 − NA)z + (1 − Tb)NA (15)

Using (15) in equation (14), we have

d2

dz2 Tb(z) +
(1 − NA)NB

Ln

d
dz

Tb(z) +
NANB

Ln

(
d
dz

Tb(z)
)2

= 0

Neglecting the higher order term, we have

d2

dz2 (Tb(z)) +
(1 − NA)NB

Ln

d
dz

(Tb(z)) = 0 (16)

Using boundary conditions (10), the solution of differential equa-
tion 16 is

Tb(z) =

e−
(1−NA )NB

Ln
z
[
1 − e−

(1−NA )NB
Ln

(1−z)
]

1 − e−
(1−NA )NB

Ln

(17)

According to Buongiorno [2] hypothesis, the approximated so-
lutions for equations 15 and 17 are given as

Tb = 1 − z, and ϕb = z (18)

These approximated solutions 18 agrees well with the results
obtained by Nield et al. [18, 19, 20], Sheu [21] and Chand et
al. [49].

4. Perturbation Solutions

superimposing infinitesimal perturbation on the basic states
in ordered to examine the stability of the system, the basic states
equation 11 are written in following form (Nield et al. [18, 19,
20] and Chand et al. [49]){

q(u, v,w) = 0 + q′(u, v,w), p = pb + p′

T = Tb + T ′ = (1 − z) + T ′, ϕ = ϕb + ϕ′ = z + ϕ′
(19)

Using (19) in equations (6, 7,8,9), and linearize by ignoring the
products of primes and for convenience discarding primes (′) .
We obtain the reduced equations (6,7,8,9) as

∇.q = 0 (20)

0 = −∇p −
1

1 + λ
q − Rn(1 + δh(z))ϕk̂

+RD(1 + δh(z))T k̂ +
√

Ta

(
q × k̂

)
(21)

1
σ

∂ϕ

∂t
+

1
ε

w =
NA

Ln
∇2T +

1
Ln
∇2ϕ (22)

∂T
∂t
− w = ∇2T − 2

NANB

Ln

∂T
∂z

+
NB

Ln

(
∂T
∂z
−
∂ϕ

∂z

)
(23)

and Boundary Conditions are

ϕ = 0, T = 0, w = 0 at z = 0 and z = 1 (24)

It should be noted that Rm is unrelated in equations 21,22 and
23, it is simply the basic static pressure gradient measurement.
Operating equation 21 with k̂.curl.curl, we get (i.e. Mak-
ing use of result curl.curl = grad.div − ∇2)

1
1 + λ

∇2w = −Rn(1 + δh(z))∇2
Hϕ

+RD(1 + δh(z))∇2
HT −

√
Ta
∂ξ

∂z
(25)
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Now eliminating p from equation (21), i.e. by operating it with
i ∂
∂y and further with − j ∂

∂x , respectively and further solving, we
get

ξ = (1 + λ)
√

Ta
∂w
∂z

(26)

Now, using (26) in equation (25), we have

1
1 + λ

[
1

1 + λ
∇2w + Rn(1 + δh(z))∇2

Hϕ

−RD(1 + δh(z))∇2
HT

]
+ Ta

∂2w
∂z2 = 0 (27)

5. Stability Analysis by Normal Mode

The disturbances analysing by normal mode analysis as fol-
low (Chandrasekhar [7]):[

w,T, ϕ
]

= [W(z),Θ(z),Φ(z)] exp(ikxx + ikyy + nt) (28)

where growth rate is represented as n and the wave number
along x and y directions are kx and ky, respectively. Using equa-
tion 28 in equations 22, 23 and 27, we get

1
1 + λ

[
1

1 + λ

(
D2 − a2

)
W + RD(1 + δh(z))a2Θ

−Rn(1 + δh(z))a2Φ
]

+ TaD2W = 0 (29)

1
ε
.W −

NA

Ln
(D2 − a2)Θ +

[
n
σ
−

(D2 − a2)
Ln

]
Φ = 0 (30)

W+

[
(D2 − a2) +

NB

Ln
D − 2

NANB

Ln
D − n

]
Θ−

NB

Ln
DΦ = 0(31)

where D = d
dz and −a2 = k2

x + k2
y = ∂2

∂x2 + ∂2

∂y2 , ∇2 = d2

dz2 − a2 =

D2−a2. The a is the dimensionless resulting wave number. The
boundary conditions by considering normal mode are written as
Chandrasekhar [7] (free- free Boundary Condition)

W = D2W = Θ = Φ = 0 at z = 0 and z = 1 (32)

Assume that the solutions for W, Θ and Φ are of the form
(Chandrasekhar [7])

W = W0 sin(πz), Θ = Θ0 sin(πz), Φ = Φ0 sin(πz) (33)

These solutions in (33) satisfy the boundary conditions (32).
Substituting solution (33) into equations (29,30,31) and inte-
grating each equations individually within limits z = 0 to z = 1,
we gain the following matrix equation



J
1+λ

+ (1 + λ)π2Ta − a2RD(1 + δh(z)) a2Rn(1 + δh(z))

1 −(J + n) 0

1
ε

NA
Ln

J J
Ln

+ n
σ



W0

Θ0

Φ0

 =


0
0
0

 (34)

where J = π2 + a2 is the entire wave number. The eigen-
value to the system of linear equation 34 is given as

RD =

[ J
1 + λ

+ (1 + λ)π2Ta

] (J + n)
a2(1 + δh(z))

−

[
NA
Ln

J +
(J+n)
ε

]
J

Ln
+ n

σ

Rn (35)

6. Stationary Convection

For steady state, put n = 0 in equation 35, we obtain

RD =
(π2 + a2)2

a2(1 + λ)(1 + δh(z))
+

(π2 + a2)(1 + λ)π2Ta

a2(1 + δh(z))

−

(
NA +

Ln

ε

)
Rn (36)

The Rayleigh Darcy Number for stationary convection re-
veal by the equation 36 is a function of a, λ, δh(z), Ta, NA, Ln,
ε, Rn.

In non-appearance of Jeffrey’s nanofluid (λ = 0), the equation
36 reduces to

RD =
(π2 + a2)2

a2(1 + δh(z))
+

(π2 + a2)π2Ta

a2(1 + δh(z))
−

(
NA +

Ln

ε

)
Rn(37)

Equation 37 agrees well with the results obtained by Chand et
al. [49] for stationary convection.
In non-appearance of Jeffrey’s nanofluid (λ = 0) and rotation
(Ta = 0), the equation 36 reduces to

RD =
(π2 + a2)2

a2(1 + δh(z))
−

(
NA +

Ln

ε

)
Rn (38)

Equation 38, agrees well with the results obtained by Pradhan
et al. [40]. In non-appearance of Jeffrey’s nanofluid (λ = 0),
rotation (Ta = 0) and constant gravity (δh(z) = 0), then the
equation 36 reduces to

RD =
(π2 + a2)2

a2 −

(
NA +

Ln

ε

)
Rn (39)

Equation 39, agrees well with the results obtained by Nield et
al. [18] and Chand et al. [49]. According to Nield et al. [18],
the critical value of equation 36 is accomplished at a = π, so

5
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Table 1: On the onset of Stationary Convection

(RD)c Variation of Constant Variables Variable Gravity’s impact on Stationary Convection
z in graphs λ Ta Ln Rn ε NA δ h(z) = z2 − 2z h(z) = −z2 h(z) = −z h(z) = z

0.3
λ 0.6 0 - 1 100 500 -1 0.6 5 0.5 Stabilising Stabilising Stabilising Destabilising

0.9
100

Ta 200 0 - 1 0.6 500 -1 0.6 5 0.5 Stabilising Stabilising Stabilising Destabilising
300
100

Ln 500 0 - 1 0.6 100 -1 0.6 5 0.5 Stabilising Stabilising Stabilising Destabilising
1000
-1

Rn -0.5 0 - 1 0.6 100 500 0.6 5 0.5 Destabilising Destabilising Destabilising Destabilising
-0.1
0.3

ε 0.6 0 - 1 0.6 100 500 -1 5 0.5 Destabilising Destabilising Destabilising Destabilising
0.9
1

NA 5 0 - 1 0.6 100 500 -1 0.6 0.5 Stabilising Stabilising Stabilising Destabilising
10

Figure 2: Variability of (RD)c w.r.t. z for distinct values of h(z) by taking
distinct values of λ

for stationary convection the critical Rayleigh-Darcy Number
is specified as

(RD)c =
4π2

(1 + λ)(1 + δh(z))
+

2π2(1 + λ)Ta

1 + δh(z)

−

(
NA +

Ln

ε

)
Rn (40)

In non-appearance of rotation (Ta = 0), Jeffrey’s nanofluid
(λ = 0), nanoparticles and at constant gravity (δh(z) = 0), we

Figure 3: Variability of (RD)c w.r.t. z for distinct values of h(z) by taking
distinct values of Ta

obtained the Rayleigh Darcy Number given as

(RD)c = 4π2

This agrees well with the results obtained by Lapwood [12] for
regular field.

7. Oscillatory Convection

Here, possibility for oscillatory convection is considered.
For oscillatory convection, put n = ini in equation 35, we have

RD =

[ J
1 + λ

+ (1 + λ)π2Ta

] (J + ini)
a2(1 + δh(z))

6
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Figure 4: Variability of (RD)c w.r.t. z for distinct values of h(z) by taking
distinct values of Ln

Figure 5: Variability of (RD)c w.r.t. z for distinct values of h(z) by taking
different values of Rn

−

[
NA
Ln

J +
(J+ini)
ε

]
J

Ln
+ ini

σ

Rn (41)

By equating the real and imaginary components of equation 41,
we get

a2JRD(1 + δh(z))
Ln

+

(
NA

Ln
+

1
ε

)
JRna2(1 + δh(z)) =[ J

1 + λ
+ (1 + λ)π2Ta

] J2

Ln

−

[ J
1 + λ

+ (1 + λ)π2Ta

] n2
i

σ
(42)

and
RD

σ
+

Rn

ε
−

J
a2(1 + δh(z))

×

[ J
1 + λ

+ (1 + λ)π2Ta

] ( 1
σ

+
1
Ln

)
= 0 (43)

Figure 6: Variability of (RD)c w.r.t. z for distinct values of h(z) by taking
different values of ε

Figure 7: Variability of (RD)c w.r.t. z for distinct values of h(z) by taking
different values of NA

where J = π2 + a2. The frequency of the oscillatory mode is
calculated as follows

n2
i Ln

a2σ
=

J2

a2 −
JRD(1 + δh(z))[
J

1+λ
+ (1 + λ)π2Ta

]
−

J(1 + δh(z))[
J

1+λ
+ (1 + λ)π2Ta

] (
NA +

Ln

ε

)
Rn (44)

In order for ni to be real it is necessary that

J(1 + δh(z))[
J

1+λ
+ (1 + λ)π2Ta

] [
RD +

(
NA +

Ln

ε

)
Rn

]
6

J2

a2 (45)

where J = π2 + a2. The equations 43,44,45 becomes as the
absence of the Jeffrey nanofluid (λ = 0), rotation (Ta = 0) and
constant gravity (δh(z) = 0)

RD

σ
+

Rn

ε
−

(π2 + a2)2

a2

(
1
Ln

+
1
σ

)
= 0 (46)
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n2
i Ln

a2σ
=

(π2 + a2)2

a2 − RD −

(
NA +

Ln

ε

)
Rn (47)

and

RD +

(
NA +

Ln

ε

)
Rn 6

(π2 + a2)2

a2 (48)

The above result obtained in 46,47,48 are good agreement of
results obtained by Nield et al. [18] and Chand et al. [36, 49].
According to Nield et al. [18], the critical value of the wave
number is accomplished at a = π , therefore, by setting a =

π in equations 46,47,48, we obtain the result for the stability
boundary case as

RD

σ
+

Rn

ε
= 4π2

(
1
Ln

+
1
σ

)
(49)

n2
i Ln

a2σ
= 4π2 −

[
RD +

(
NA +

Ln

ε

)
Rn

]
(50)

and [
RD +

(
NA +

Ln

ε

)
Rn

]
6 4π2 (51)

These results obtained in equations 49,50,51 are same as that of
obtained by Nield et al. [18] for particular case.

8. Results and Discussion

Variable gravity factors’ impacts on density Rayleigh num-
ber, nanoparticle Rayleigh number, Lewis number, porosity of
porous media, modified diffusivity ratio, and rotation on sta-
tionary convection have been graphed, and their stabilising or
destabilising effect has been explored below. The variable grav-
ity parameters are as follow: h(z) = z2 − 2z, h(z) = −z2, h(z) =

−z and h(z) = z.
Figure 2 shows the graph for (RD)c with respect to z for

distinct values of λ = 0.3, 0.6, 0.9 by fixing other parameters
as Ln = 500,NA = 5, ε = 0.6, δ = 0.5,Ta = 100,Rn = −1.
It is discovered that when the gravity parameter changes, such
as when it becomes h(z) = z2 − 2z, h(z) = −z2, h(z) = −z it
stabilises, however when it becomes h(z) = z, it destabilises.
These match those in Straughan [42] for the variable gravity
parameter.

Figure 3 depicts the graph for (RD)c with respect to z for
various values of Ta = 100, 200, 300 setting other parameters
like Ln = 500,NA = 5, ε = 0.6, δ = 0.5,Rn = −1, λ = 0.6. It is
found that Ta has a stabilising impact when the gravity parame-
ters are h(z) = z2 − 2z, h(z) = −z2, h(z) = −z, but a destabilising
effect when the gravity parameter is h(z) = z. This is in good ac-
cord with the finding reported by Chand et al. [49], which states
that reducing the gravity parameter has a stabilising impact on
stationary convection while raising the gravity parameter has a
destabilising effect.

Figure 4 depicts the curve for (RD)c with respect to z for
distinct values of Ln = 100, 500, 1000 while holding other pa-
rameters constant like NA = 5, ε = 0.6, δ = 0.5,Ta = 100,Rn =

−1, λ = 0.6. It is found that Ln has a stabilising impact when

the gravity parameters are h(z) = z2 − 2z, h(z) = −z2, h(z) = −z,
but a destabilising effect when the gravity parameter is h(z) = z.
This is in excellent accord with the finding from Chand et al.
[49] that reducing the gravity parameter stabilises stationary
convection while raising the gravity parameter destabilises it.

Figure 5 shows that (RD)c decreases with increase in Rn

(as = −1,−0.5,−0.1). Thus Rn has destabilizing effect for all
variable gravity parameter on stationary convection. Figure 6
shows that (RD)c decreases with increase in ε (as = 0.3, 0.6, 0.9).
Thus ε has destabilizing effect for all variable gravity parameter
on stationary convection.

Figure 7 depicts the graph for (RD)c with respect to z for
various values of NA = 1, 5, 10 setting other parameters like
Ln = 500, ε = 0.6, δ = 0.5,Ta = 100,Rn = −1, λ = 0.6. It is
found that NA has a stabilising impact when the gravity parame-
ters are h(z) = z2 − 2z, h(z) = −z2, h(z) = −z, but a destabilising
effect when the gravity parameter is h(z) = z.

9. Conclusion

This article investigates the thermal instability of spinning
Jeffrey nanofluids in porous media with changing gravity. The
problem is examined for free-free boundary conditions using
Galerkin technique and normal mode analysis. Equation 40 is
the essential Rayleigh-Darcy number for stationary convection,
and it has been studied whether this number stabilises or desta-
bilises stationary convection with regard to changing gravity.
Equation 45 yields the adequate condition for the oscillatory
mode’s frequency, while equation 44 also finds the oscillatory
mode’s frequency.
In Table 1, the varied gravity’s effects in stationary convection
are illustrated visually by changing one parameter at a time
while keeping the other parameters constant by assigning them
certain constant values.

The main conclusions from Table 1 are:

1. Jeffrey parameter (λ), Taylor number (Ta), modified dif-
fusivity ratio (NA) and Lewis number (Ln) have stabiliz-
ing effect on stationary convection when variable gravity
parameters varies as h(z) = z2 − 2z, h(z) = −z2, h(z) = −z
whereas have destabilizing effect when variable gravity
parameter varies as h(z) = z. In other words, stationary
convection has a stabilising impact for lowering the vari-
able gravity parameters and destabilising the system for
raising the variable gravity parameters.

2. When the variable gravity parameter fluctuates as: h(z) =

z2 − 2z, h(z) = −z2, h(z) = −z and h(z) = z, the nanopar-
ticle Rayleigh number (Rn), porosity of porous medium
(ε) destabilise the system.

3. Variable gravity perameters h(z) = z2 − 2z, h(z) = −z2,
h(z) = −z delay the motion’s onset.

4. NB has no effect on (RD)c.

5. The variable gravity parameter h(z) = z2 − 2z has more
stabilizing impact on stationary convection rather than
other variable gravity parameters taken in this paper.

8
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6. The sufficient condition for the oscillatory mode’s fre-
quency is obtained and is represented by equation 45.
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