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Abstract

A common problem in regression analysis using ordinary least squares (OLS) is the effect of outliers or contaminated data on the estimates of
the parameters. A robust method that is not sensitive to outliers and can handle contaminated data is needed. In this study, the objective is to
determine the significant parameters that determine the moisture content of the seaweed after drying and develop a hybrid model to reduce the
outliers. The data were collected with sensors from the v-Groove Hybrid Solar Drier (v-GHSD) at Semporna, South-Eastern Coast of Sabah,
Malaysia. After the second order interaction, we have 435 drying parameters, each parameter has 1914 observations. First, we used four machine
learning algorithms, such as random forest, support vector machine, bagging and boosting to determine the significant parameters by selecting 15,
25, 35 and 45 parameters. Second, we developed the hybrid model using robust methods such as M. Bi-Square, M. Hampel and M. Huber. The
results show that there is a significant improvement in the reduction of the number of outliers and better prediction using hybrid model for the
contaminated seaweed big data. For the highest variable importance of 45 significant drying parameters of seaweed, the hybrid model bagging M
Bi-square performs better because it has the lowest percentage of outliers of 4.08 %.
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1. Introduction

The purpose of regression analysis is to study the relation-
ship between two or more independent variables and a depen-
dent variable. Consider a multiple regression model:

y = Xβ + ε, (1)

∗Corresponding author tel. no: +60 14-9543405
Email address: majidkhanmajaharali@usm.my (M. K. M. Ali )

where y is an n × 1 vector of response variables, X is known
as the design matrix of order n × p, β is a p × 1 vector of
unknown parameters and ε is an n × 1 vector of identically and
independent distributed errors.

The Ordinary Least Squares (OLS) is popularly used to es-
timate the unknown parameters in a regression model. Accord-
ing to [1, 2], the ordinary least squares (OLS) estimator of β is
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obtained as:

β̂ =
(
X
′

X
)−1

X
′

y. (2)

Observations that deviate from the distribution’s general
shape or pattern are called outliers [3]. The relationship
between the observed and the dependent variable can be
estimated by OLS regression, by minimizing the sum of
squares [4]. OLS also has limitations when the assumptions
are violated [5]. Estimates from OLS are not precise due to the
high variances and covariances [6]. The presence of outliers
in the data makes the LS estimator unstable, inefficient, and
unreliable [7]. Agricultural data has outliers because of factors
that cannot be regulated, and these outliers will increase the
standard errors [4, 8]. The presence of outliers affects the
performance of OLS, and a robust regression is used [9].

When modelling data using regression analysis, various
assumptions are tested but these assumptions are violated.
This model needs to be tested on the error structure for the
necessary assumptions before prediction [10]. The researcher
can transform the variables to fulfil the assumptions, but this
cannot eradicate the outliers in the data that affect the forecast
and estimate of the parameters [11]. Data with outliers is
common in the field of agriculture [11, 12].

To overcome this problem, robust estimators have been in-
troduced. M-estimation is the most common method of robust
regression, it was introduced by [13], it is a generality to the
method of maximum likelihood estimation. Before we used the
robust methods to reduce the outliers, four machine learning al-
gorithms such as random forest, support vector machine, boost-
ing and bagging are used to select the significant parameters
that determine the moisture content of the seaweed.

The major contributions of this study are:

i. To determine the significant parameters for the moisture
content removal of seaweed during drying and reduce the
number of outliers.

ii. To propose a hybrid model that combines robust M-
estimators and machine learning models to improve the
prediction accuracy.

2. Flowchart of the study

Figure 1 shows the flowchart of the various stages in the
study.

2.1. Stage I

This involves the inclusion of all possible models.

n!
(n − r)!r!

+ number of single factor, (3)

where n is the number of single factors, r is the number of or-
ders. Equation (3) can be used to compute the total number of
all possible models.

Figure 1: Flowchart of the procedure for the hybrid model

2.2. Stage II

Test for the assumptions of linear regression. The residual
vs fitted plot, normal Q-Q plot are Kolmogorov-Smirnov test
are used to verify the assumptions. Next, each machine learning
model is used to select 15, 25, 35 and 45 highest important
variables for optimization and easy comparison, to determine
the moisture content removal of the seaweed after drying. We
selected the number of variables because features selection can
only provide the rank of important variables and does not tell
us the number of significant factors [14]. Similarly, there is
no rule to decide the number of parameters to be included in a
prediction model [15]. Furthermore, the algorithms cannot tell
us the number of significant variables except the ranks [16].

2.3. Stage III

After the selection of the significant parameters, the predic-
tion is done and the validation metrics such as MAPE, SSE,
MSE and R-square are computed. The outliers are also com-
puted, and the robust method is introduced to build the hybrid
model.

3. Materials and Methods

3.1. Data Description

The data were collected from 8th April 2017 to 12th April
2017, between the hours of 8:00 am to 5:00 pm during the
drying of seaweed by using v-Groove Hybrid Solar Drier (v-
GHSD) at Semporna, South-Eastern Coast of Sabah, Malaysia.
There are 435 parameters after the inclusion of the second order
interaction in this study.

3.2. Machine learning algorithms

Machine learning can learn from data and use the algo-
rithms to understand and forecast the future [17]. Machine
learning algorithms can be used to determine the rank of signif-
icant explanatory variables that contribute significantly to the
response variable. These high-ranking variables selected using
variable importance can reduce the training time, complexity
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of the model and improve accuracy [18]. Four machine learn-
ing algorithms such as random forest, support vector machine,
bagging and boosting are used in this study, to determine the
significant parameters that determine the moisture content re-
moval of the seaweed.

3.2.1. Random Forest
A random forest (RF) is a mixture of classification and re-

gression trees (CARTs). It uses the highest number of votes
(classification) or the mean forecasts (regression) of all the trees
[19]. It uses the idea of bagging, and it is an ensemble learning
method [20], [21].

If L is a learning set ,with a group of N pairs of features,
with the output (x1, y1) , (x2, y2) , (x3, y3) . . . (xN , yN) , if xi ∈ X
and yi ∈ Y . A class of p-features xi ( f or i = 1, 2, . . . ,N) is a
N × p matrix X,where the rows i = 1, 2, ...,N relates as xi, with
columns j = 1, 2, 3, ..., p as x j.
Algorithm:
For b = 1 to n

1. Create a bootstrapped sample D∗b from the training set D.
2. Grow the tree by using the m from the bootstrapped sam-

ple D∗b.

For a specific mode

i. Select m variables randomly.
ii. Identify the top split variables and values.

iii. Divide a node using the top divided variables and values.

Replicate the steps 1–3 till the stopping conditions are satisfied.

3.2.2. Suppor Vector Machine (SVM)
Support vector machine can be used for regression and clas-

sification problems [22]. SVM has the capacity to reveal non-
linear connections with kernel function [20, 23]. The SVM was
developed by Cortes & Vapnik [24]. A good tutorial and ex-
planations were given by [25, 26]. In support vector regression,
the ε loss function is usually minimized. Beyond this particular
bound, a straightforward linear loss function is applied, and any
loss less than ε is set to zero:

Lε = f (x) =

{
0, if |yi − f (xi) | < ε

yi − f (xi) − ε|, otherwise (4)

For instance, suppose f (x) is a linear function f (x) = β0 + xt
iβ,

then the loss function is given as
n∑

i=1

max
(
yi − xt

iβ − β0 − ε, 0
)

(5)

The ε is the tuning parameter and can be written as the con-
strained optimization problem:
Minimize

1
2
‖β‖2 (6)

Subject to{
yi − xt

iβ − β0 ≤ ε

−
(
yi − xt

iβ − β0

)
≤ ε

. (7)

If there are observations who do not lie within the ε band
around that regression line,then there is no solution to the prob-
lem. The slack variables ζi and ζ∗i are used ,this allows the
observations to fall outside the ε band around that regression
line.
Minimize

1
2
‖β‖2 + K

n∑
i=1

(
ζi + ζ∗i

)
(8)

Subject to
yi − xt

iβ − β0 ≤ ε + ζi

−
(
yi − xt

iβ − β0

)
≤ ε + ζ∗i

ζi, ζ
∗
i ≥ 0

(9)

3.2.3. Boosting
Boosting is used to improve the accuracy of algorithms

[27]. Boosting starts with an algorithm or method to discover
the rough rules of thumb. It is called the “base” or “weak”
learning algorithm many times. The base learning algorithm
creates a new weak prediction rule each time it is called, and
after many rounds, the boosting algorithm must merge these
weak rules into a singular forecast rule that, ideally, will be
significantly more precise than any of the weak rules [28]. Sup-
pose we have this model matrix X =

[
X1, X2, . . . , Xp

]
εRn×p,

outcomes variable vector y ∈ Rn×1. The regression coefficients
vector is given as β ∈ Rp, the value of predicted for the
outcome variable is denoted by Xβ, and the residuals are
denoted by ε = y − Xβ. For regression purposes, least squares
boosting (LSB(ε)) gives an accurate description of the data and
regularization [27].

The algorithm for LSB(ε) is as follows:
Algorithm: LSB (ε)
Choose the rate of learning ε > 0 and iterations number N.
Define at β̂0 = 0, r̂0 = y, k = 0.

1. Do this for 0 ≤ k ≤ N
2. Establish the covariates ũ jk and jk as below:

ûn = argmin
u∈R

 n∑
i=1

(
r̂k

i − xinu
)2
2

for n = 1, 2, 3, . . . , p,

jk ∈ argmin
1≤n≤p

n∑
i=1

(
r̂k

i − xinũn

)2

3. Revise the present errors and regression coefficients as:

r̂k+1 ← r̂k − ε̃u jk
β̂k+1

jk
← β̂k

jk
+ ε̃u jk and β̂k+1

j ← β̂k
j, j , jk

3.2.4. Bagging
Breiman [29] introduced bagging (bootstrap aggregating) to

decrease the variance of classification and regression tree mod-
els. It is used to improve the present method and leads to an
improvement in the accuracy. Bagging is used as an intensive
methods to enhance erratic estimation. For a high - dimensional
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data problems, bagging can be used to find a good model. Sup-
pose we have a feature ϕ (x,L) to predict y from x, if there
is a training sequence {Lk} consisting of N objects , from L
distribution, the aim here is to use the {Lk} to build a more ac-
curate predictor than ϕ (x,L) as a specific training set predictor
ϕ (x,L) [29]. If y is not discreet and we put ϕ (x,Lk) with the
mean of ϕ (x,Lk) over k. We get continually many samples via
the bootstrap

{
L(A)

}
, an from L, and form

{
ϕ
(
x,L(A)

)}
. If y is

continuous, then ϕA as ϕA (x) = averageϕA

(
x,L(A)

)
. The

{
L(A)

}
will form replicate datasets with M cases are randomly chosen
from L and by applying replacement. Each (ym, xm) can appear
many times in a any specific L(A). The technique to construct ϕ
is an important factor to know if bagging improves precision or
reliability.

Theoretically bagging is described as follows:

i. Build a bootstrap sample L∗i =(
Y∗i , X

∗
i

)
(i = 1, 2, 3, . . . ,m) centred on an empirical dis-

tribution of these pairs Li = (Yi, Xi) (i = 1, 2, 3, . . . ,m).
ii. Use the plug-in principle to ascertain the boot-

strapped predictor θ̂∗m (x); which is, θ̂∗m (x) =

gm
(
L1, L2, L3, . . . , Lm

)
(x).

iii. θ̂m;B (x) = E∗
[
θ̂∗m (x)

]
means the bagged predictor.

The bagging algorithm is as follows:
Input: Data D = {(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xm, ym)} ;
Learning algorithm base L;
Base learner’s numbers j.
Process:
For j = 1, 2, . . . , J:
bs j = bootstrap(D); %Create the bootstrap sample from D
θ j = L

(
bs j

)
% Train the base learner θ j from the bootstrap

sample
End
Output: 1

J
∑J

j=1 θ j (x) % For regression studies

3.3. Robust Estimation Method
Outliers are common with contaminated data and how to

determine the observations is a challenge. A robust method
can deal with the influence of outliers. Contaminated data can
be analyzed using robust estimation [6], [30, 31, 32]. A robust
method is used to solve the problems of traditional methods
because of these outliers. To know the best method for the
robust estimation methods, M estimation methods M Huber, M
Hampel and M Bi-Square are compared.

The M-estimation method attempts to minimise that the
function ρ (•) operates on the residual. M-estimators define:

β̂M = argmin
β

n∑
i=1

ρ (ei (β)). (10)

The ρ is ρ−type M-estimation. Assume σ is known and the
residuals approximate β be ei = yi − β

T xi. The β in M-estimate
minimizes the objective function:

n∑
i=1

ρ

{
ei (β)
σ

}
. (11)

Figure 2: (a) Residuals vs Fitted (b) Residuals vs Normal Q-Q

The σ robustly estimate and the scale σ̃M in M-estimator has
solution:

1
n

n∑
i=1

ρ
(ei

σ

)
=

1
n

n∑
i=1

ρ

(
yi − β

T xi

σ

)
= k, (12)

where the β has the p×1 parameter vector, and then the function
ψ yields:∑

i

ψ (ei)
∂ei

∂βi
, for j = 1, 2, . . . , p. (13)

The function ψ (e) =
∂ρ(e)
∂(e) derivatives the influence function.
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Table 1: Robust Regression M-estimation Description

Methods Objective Function Weight Function

Bi-Square


k2

6

{
1 −

[
1 −

(
e
k

)2
]3
}

for |e| ≤ k

k2

6 for |e| > k


[
1 −

(
e
k

)2
]2

for |e| ≤ k

0 f or |e| > k

Huber
{ 1

2 e2 for |e| ≤ k
k |e| − 1

2 k2 for |e| > k

{
1 f or |e| ≤ k

k
|e| for |e| < k

Hampel


e2

2 , 0 < |e| < a
a |e| − e2

2 , b < |e| ≤ c
−a

2(c−b) (c − e)2 + a
2 (b + c − a) , b < |e| ≤ c


1 f or 0 < |e| < a

a
|e| for b < |e| ≤ c

a
c
|e|−1
c−b for b < |e| ≤ c

Table 2: Kolmogorov-Smirnov Test for Normality

Test Statistic Value P-value Remarks
0.1641 2.2e-16 The residuals do not come

from a normal distribution.

Then the weight function defines:

w (e) =
ψ (e)

e
, (14)

where function ψ (e) states:∑
i

w (ei) ei
∂ei

∂βi
= 0, for j = 1, 2, . . . , p (15)

and the object becomes to obtain the following iterated re-
weighted least square problem:

min
∑

i

w
(
e(k−1)

i

)
e2

i , (16)

where k indicates the iterate number.

Table 1 shows the summary of the M - estimators and their
respective weight function.

4. Results and Discussion

From the plot in Figure 2a, the residuals vs fitted plot shows
that there is no pattern since the residuals did not spread out.
There is evidence of non-linearity and heterogeneity. Figure 2b
shows the normal Q-Q plot, the residuals are not normally dis-
tributed, this also supports the result of Kolmogorov-Smirnov
test in Table 2. The possible outliers are the observations
272 and 355. The observation 272 determine more the mois-
ture content removal of the seaweed than the model predict.
Though, it is an extreme case, but still affect the moisture con-
tent removal. The observation 355 has a negative residual and

determine less the moisture content removal of the seaweed
than the model predicts.

The normality assumption is checked with the Kolmogorov-
Smirnov test for a two-taied test. From the results in Table 2,
the p-value =2.2e-16, which is less than 0.05, it means we have
enough evidence to say that the residuals do not come from a
normal distribution. This also explains why we have this type
of QQ plot in Figure 2.

The results in Table 3 are the evaluation of each machine
learning algorithm for 15, 25, 35 and 45 high - ranking variables
that determine the moisture content removal of the seaweed.
Based on the mean absolute percentage error (MAPE), mean
squared error (MSE), R2 and sum of squared error (SSE),
random forest outperforms support vector machine, bagging
and boosting for the 15, 25, 35 and 45 significant parameters.
This also confirms the results of [33], where random forest
absolutely performed better than the other methods.

Random forest when 45 significant parameters that deter-
mine the moisture content of the seaweed were selected gave
MAPE of 2.125891, MSE of 7.330011, R2 of 0.9732063 and
SSE of 14029.64 gave the best performance. All the validation
measures such as MAPE, MSE, R-square and SSE imply that
significantly better results are obtained by random forest to the
determine the moisture content removal of the seaweed.

Table 4 is the summary of the original model without
using robust method and the hybrid models ,which combines
machine learning models and robust estimation techniques.
It also shows the number and percentage of outliers using
2-sigma limit.The percentage for the outliers is the number of
observations outside the 2-sigma limit. It shows the percentage
of outliers outside the 2-sigma limit for the original model
without using robust method and the hybrid model. This sigma
limit can improve the outputs quality and eliminate the source
of deficiencies [34].

Based on the results in Table 4 for the original model, for
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Table 3: Evaluation metrics for the 15, 25, 35 and 45 high-ranking important variables

Machine
Learning Model

High-ranking
important
variables selected

High-ranking important variables selected

MAPE MSE R2 SSE

Random Forest

15 2.458969 9.910512 0.9637737 18968.72
25 2.337353 9.010273 0.9670644 17245.66
35 2.174667 7.790909 0.9715216 14911.80
45 2.125891 7.330011 0.9732063 14029.64

Support Vector
Machine

15 8.614626 45.25618 0.8347612 86620.32
25 7.980399 35.80985 0.8691446 68540.05
35 7.568951 34.00095 0.8757802 65077.81
45 7.351331 32.38644 0.8816661 61987.65

Bagging

15 12.25897 74.29053 0.7284423 142192.10
25 9.778194 47.33173 0.8269861 90592.93
35 8.413645 36.41955 0.8668739 69707.02
45 8.151903 33.65611 0.8769752 64417.80

Boosting

15 8.168942 142.4542 0.5310293 272657.30
25 8.697362 136.3236 0.5543729 260923.30
35 8.183671 140.1463 0.5368431 268240.10
45 8.203304 134.0864 0.5569358 256641.30

Table 4: Percentage of outliers outside 2 - sigma limits for hybrid models

Machine Learning
Model

Robust Regression
Method

15 highest
important
variables

25 highest
important
variables

35 highest
important
variables

45 highest
important
variables

µ ± 2σ(%) µ ± 2σ (%) µ ± 2σ (%) µ ± 2σ (%)

Random Forest

Original 118(6.17) 113(5.90) 112(45.85) 118(6.17)
M Bi-Square 118(6.17) 117(6.11) 75(3.92) 99(5.17)
M Hampel 72(3.76) 88(4.60) 92(4.81) 93(4.86)
M Huber 83(4.34) 90(4.70) 88(4.60) 102(5.33)

Support Vector
Machine

Original 108(5.64) 98(5.12) 86(4.49) 87(4.55)
M Bi-Square 64(3.34) 18(0.94) 84(4.39) 89(4.65)
M Hampel 66(3.45) 62(3.24) 85(4.44) 86(4.49)
M Huber 81(4.23) 83(4.34) 96(5.02) 99(5.17)

Bagging

Original 98(5.12) 96(5.02) 97(5.07) 84(4.39)
M Bi-Square 126(6.58) 97(5.07) 95(4.96) 78(4.08)
M Hampel 101(5.28) 97(5.07) 90(4.70) 85(4.44)
M Huber 113(5.90) 99(5.17) 97(5.07) 89(4.65)

Boosting

Original 193(10.10) 168(8.78) 194(10.12) 194(10.12)
M Bi-Square 77(4.02) 77(4.02) 133(6.95) 79(4.12)
M Hampel 76(3.97) 76(3.97) 72(3.76) 80(4.18)
M Huber 83(4.34) 81(4.23) 67(3.50) 85(4.44)

15 highest important variables, the maximum is boosting with
193 (10.1%) outliers, while the minimum is bagging with 98
(5.12%). For the 25 highest important variables, the maximum

is boosting 168 (8.78%) , while the minimum is bagging
with 96 (5.02%). For the 35 highest important variables, the
maximum is boosting 194 (10.12%), while the minimum is
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support vector machine with 86 (4.49%). For the 45 highest
important variables, the maximum is boosting 194 (10.12%) ,
while the minimum is bagging with 84 (4.39%). Based on this
results, bagging with 45 variables importance gave the best
performance because it has the lowest number of outliers of 84.

Based on the results in Table 4 for the hybrid model, for the
15 highest important variables, bagging M Bi-square has the
highest number of outliers of 126 with 6.58% ,while support
vector machine M Bi-square has the lowest number of outliers
with of 64 with 3.34%. For the 25 highest important variable
random forest M Bi-square has the highest number of outliers
of 117 with 6.11% ,while support vector machine M Bi-square
has the lowest number of outliers with of 18 with 0.94%. For
the 35 highest important variable boosting M Bi-square has the
highest number of outliers of 133 with 6.95% ,while boosting
M Huber has the lowest number of outliers with of 67 with
3.50%. For the 45 highest important variable random forest M
Huber has the highest number of outliers of 102 with 5.33%
,while bagging M Bi-square has the lowest number of outliers
with of 78 with 4.08%. Based on this result, bagging M
Bi-square gave the best performance because it had the lowest
number of outliers of 78 and used the highest number of high
ranking variables.

5. Conclusion

The aim of this study is to develop a hybrid model, to fore-
cast seaweed drying parameters that determine the moisture
content removal that would enhance the quality of the seaweed.
Four predictive models such as random forest, support vector
machine, bagging and boosting were built with M Huber, M
Hampel and M Bi-Square to develop a hybrid model that can
improve the predictive accuracy of the seaweed contaminated
data. In summary, the best model to determine the moisture
content removal of the seaweed big data is the bagging M Bi-
square, it gave the best performance because it had the lowest
number of outliers of 78 and used the highest number of high -
ranking variables. For future study, a hybrid model with imbal-
anced data or missing values can be investigated.
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