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Abstract

An investigation of magneto-hyperbolic tangent fluid motion through a porous sheet which stretches vertically upward with temperature-reliant
thermal conductivity is scrutinized in this study. The current model characterizes thermal radiation and the impact of internal heat source in
the heat equation plus velocity and thermal slipperation at the wall. The translation of the transport equations is carried out via the scaling Lie
group technique and the resultant equations are numerically tackled via shooting scheme jointly with Fehlberg integration Runge-Kutta scheme.
The results are publicized through various graphs to showcase the reactions of the fluid terms on the thermal and velocity fields. From the
investigations, it is found that rising values of the material Weissenberg number, slip and suction terms damped the hydrodynamic boundary film
whereas the heat field is prompted directly with thermal conductivity.
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1. Introduction

Magnetohydrodynamic is the interaction of an electromag-
netic field with conducting fluids. Rheostat flow kinematics is
a realistic application of magnetohydrodynamic where a mag-
netic field is used in conventional fluids since the heat exchange
rate is unavailable for some sheet materials. Other uses include;
thermal insulation, power storage, and so on. In the light of this,
Abbas et al. [1] investigated a lateral stretching sheet of MHD
power-law fluid with differing thermal conductivity. The au-
thors reported a shrinking boundary layer structure with growth

∗Corresponding author tel. no: +234 8032056439
Email address: kunlesalawu2@gmail.com (S. O. Salawu)

in the magnetic field term at all phase of fluid categories consid-
ered in the report. More so, Salawu et al. [2] analyzed magne-
tohydrodynamic viscous liquid flow across a nonlinear stretchy
plate where the model ordinary derivative equations of the sys-
tem was solved using the collocation-approximation. Sarkar
and Makinde [3] explored the viscous fluids heat transport and
magnetohydrodynamic flow across an exponentially stretching
layer accounting for viscous dissipation and radiation effect.
Nadeem et al. [4] explored the Magnetohydrodynamic rheolog-
ical fluid flow on an angular boundary layer flow. The analysis
showed that a boost in the magnetic field strength, the regular
and tangential velocity profiles diminish while the skin friction
coefficient increase.

Meanwhile, the studies conducted on the flow along a stretch-
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ing sheet has become a great deal of interest among researchers
in respect of significant contributions in manufacturing and en-
gineering activities. Sakiadis [5] analyzed the continuously mov-
ing flat surface on a laminar boundary layer and obtained a
computational solution for the boundary layer equations. Crane
[6] extended this by reporting on the time-independent linearly
stretchy flow and specified the solutions in a closed form. Such
a study was also extended by Wang [7] by incorporating par-
tial slip effect, whereas Tshivhi et al. [8] investigated such
a concept over a flat stretchable sheet when the flow is ini-
tiated spontaneously from rest. Okedoye et al. [9] analyzed
slip fluid motion confined in a permeable stretchable material
while the impact of partial slip due to vertical stretching sheet
on stagnation-point flow with thermal transport was assessed by
Zaimi and Ishak [10]. Salawu et al. [11] examined the cross-
diffusion impact on magnetohydrodynamic fluid flow through a
stretched sheet with velocity slip. A case of MHD dissipative
fluid flow occasioned by a non-linearly stretched material with
heat-mass transfer was numerically evaluated by Upreti et al.
[12]. It was pointed out from the analysis that the thermal field
is enlarged by the enhancement of the magnetic field. Such an
investigation was also extended to the transport of Casson liq-
uid configuration in a three-dimensional sheet with pores and
Joule heating effect by Sreenivasulu et al. [13] while Fatun-
mbi and Okoya [14] inspected hydromagnetic micropolar fluid
thermal transport characteristics over a stretching material fea-
turing the prescribed thermal flux and plate temperature heating
conditions.

The studies of non-Newtonian fluids have inspired scien-
tists and engineers in recent times owing to its many uses in
science and technology including food processing, drug and
pharmaceutical productions, chemical engineering works and
many more, Salawu et al. [15-16]. Examples of non-Newtonian
fluids include gels, paints, blood, printers ink, lubricants with
polymer ingredients, cosmetics and toiletries. Among various
non-Newtonian fluid theories, there exists the tangent hyper-
bolic fluid model commonly utilized in numerous laboratory
and chemical engineering processes. This fluid model displays
a shear thinning attributes such that there exists a decline in
the viscosity as the shear rate rises, Hassan et al. [17]. This
unique feature of tangent hyperbolic fluid makes it a sought af-
ter in bio-engineering operations, for instance, the thinning at-
tributes of blood flow in the body serves as a prevention to the
obstruction of arteries and veins such that coagulation effect is
minimized, Alsharif et al. [18]. In view of such striking char-
acteristics, various researchers have applied this fluid model to
analyze various flow problems under different configurations.
Mamatha et al. [19] examined the motion of hydrodynamic
tangent hyperbolic liquid mixed with dust particles in a porous
stretching plate with convective heating. A numerical evalua-
tion of such a phenomenon towards a stagnation-point in the
occurrence of radiative heat, nonlinear convection, haphazard
motion and thermo-migration of nanoparticles was scrutinized
by Khan et al. [20]. Meanwhile, the distribution of such a liquid
with nanomaterials mixture in a nonlinear stretchable material
was scrutinized by Mahanthesh and Mackolil [21] for a stag-
nation fluid. These researchers reported a rise in the viscous

drag due to enhancement in the power-law index and magnetic
field terms. Oyelakin and Sibanda [22] inspected the influence
of exponentially based viscosity on the motion of hyperbolic
tangent fluid. The report showed that a decrease in the viscos-
ity triggered a spike in the velocity while lowering the heat and
species intensity.

Sophus and Ackerman [23] found point metamorphosis that
mapped a given differential equation and introduced the Lie
group analysis classical approach. This approach brings to-
gether nearly every known technique of exact integration for all
the associated ordinary and partial differential equations. Many
researchers employed this technique to determine the similari-
ties among given differential equations. Using this technique,
the number of variables that control the partial differential sys-
tems can be effectively reduced, Salawu and Dada [24]. The
dilution of values transforms the partial differential system into
ordinary systems. Using Lie group analysis approach, con-
vective dynamics problems have been studied on different flow
configurations in various science and engineering branches, Za-
kir and Zaman [25]. Similarly, Ullah and Zaman [26] engaged
this approach while studying the transport and thermal effects
of a tangent hyperbolic flowing liquid through a stretched plate
with Navier slip effect. Further, Ullah et al. [27] engaged
this approach to extend the work of [26] by incorporating suc-
tion/injection coupled with heat generation. The authors exam-
ined the partial differential equations representing a natural con-
vective unstable flow movement using the Lie symmetry trans-
formation approach. The classical Lie group transformation is
applied twice sequentially in this study to change the transport
model into a set of ordinary derivative equation.

The above studies however ignored the impact of variable
heat conduction in the temperature field. Thermal conductivity
describes the characteristic quantity of fluids that allows them
to conduct heat. For accurate prediction of thermal propagation
processes, the influence of temperature-based thermal conduc-
tivity has to be considered. Shahzad et al. [28] investigated
such an effect on a viscous fluid in the existence of a stretching
layer by utilizing the shooting process and the perturbation pro-
cedure in analyzing the numerical solution. Similarly, Alsherif
et al. [29] took into account the case of a stretching cylinder,
considered a viscous fluid flow alongside variable thermal con-
ductivity. The investigation depicted that growing the curvature
of the cylinder causes the fluid temperature to rise rapidly. An
examination of temperature based thermal conductivity coupled
with thermal radiation impact of a viscous fluid in a porous
stretching material was evaluated by Hayat et al. [30]. Ullah
et al. [31] reported on power-law convective MHD liqud flow
across a linearly stretchy plate alongside thermal conductivity
influence. Recently, such a concept has been widely investi-
gated by various researchers, Aziz and Shams [32] on diverse
flow configurations and conditions.

In view of the discussion above and the consequential appli-
cations of essential fluids parameters in manufacturing and en-
gineering works, the present work aim to determine the motion
and thermal transport of hydromagnetic tangent hyperbolic liq-
uid over a permeable vertical stretchy surface using Lie group
analysis approach. In particular, this study extends that of [26,
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Figure 1. Configuration of the flow model

31] by considering porous media with the inclusion of vari-
able heat conductivity, thermal radiation and a buoyancy effect
which were ignored by previous authors. A unique similar-
ity transformation approach is developed using the Lie group
analysis which is adopted for transforming the nonlinear par-
tial derivative transport model into a more simplified ordinary
derivative form. The resultant set of outlining equations is nu-
merically tackled using the shooting algorithm in conjunction
with Fehlberg integration Runge-Kutta method. The physical
characteristics of dimensionless terms obtained are clarified us-
ing graphs with appropriate discussion.

2. Problem Formulation Analysis

The underlisted assumptions have been identified as crucial
for the formulation of the governing equations for the current
investigation. Is is assumed that the fluid movement is time-
independent, incompressible tangent hyperbolic fluid. The fluid
movement is designed in a two-dimensional porous plate which
stretches upwardly in a vertical route as displayed in Figure 1.
The flow is routed in x axis while y axis runs perpendicular to
x axis. A restriction is placed on the flow in the region y > 0.
There is slippery in the momentum and energy boundary lay-
ers. There is a surface mass flux on the sheet having a velocity
of vw(x) as expressed in Eq. (7). With the imposition of an ex-
ternal magnetic field normal to x direction but ignoring that of
the induced magnetic filed influence and electric field as well.
Likewise, it is supposed that the radiative heat flux is negligi-
ble towards the x axis whereas it is applicable along y direction.
Furthermore, the assumption of varying thermal conductivity
is held valid with the inclusion of heat source. Other fluid at-
tributes are are constant apart from the non-uniformity of the
density in the momentum body force and the thermal conduc-
tivity. Boussinesq approximation coupled with boundary layer
approximation are applied in this study for the derivation of the
main equations. For this study, the tangent hyperbolic fluid ten-
sor is described as [26,31]

τ = [µ∞ + (µ0 + µ∞) tanh(Γγ)m]γ, (1)

In Eq. (1), τ describes the tensor stress while µ∞ depicts vis-
cous shear rate at infinity whereas µ0 signifies the zero vis-
cous shear rate and Γ describes the material constant of time-
dependent whereas m connotes the power-law exponent while
γ is expressed as:

γ =

(
1
2

ΣiΣ jγi jγ ji

) 1
2

=

(
1
2

Π

) 1
2

. (2)

In Eq. (2), Π = 1
2 tr((∇V)T + ∇V)2. The case µ∞ = 0 is ac-

counted for owing to low influence of viscosity at infinity. Also
taking into account the tangent hyperbolic fluid detailing shear
thinning characteristics, with the assumption that Γγ < 1, Eq.
(1) then reduces to:

τ = µo[Γγm]γ = µo[(1 + Γγ − 1)m]γ

≈ µo[(1 + m(Γγ − 1))]γ (3)

2.1. The Governing Equations
Combining the above-mentioned assumptions for the devel-

opment of the transport model, Eqs. (4-6) describes the trans-
port equations for the present investigation (see [20,26,31]).

∂u
∂x

+
∂v
∂y

= 0, (4)

u
∂u
∂x

+ v
∂u
∂y

= (1 − m) ν
∂2u
∂y2 +

√
2νmΓ

(
∂u
∂y

)
∂2u
∂y2

−
σB2

ρ
u + gβT (T − T∞) −

ν

kp
u, (5)

u
∂T
∂x

+ v
∂T
∂y

=
1
ρCp

∂

∂y

(
k(T )

∂T
∂y

)
−

1
ρCp

∂qr

∂y

+
Qo

ρCp
(T − T∞) +

ν

Cpkp
u2 +

σB2

ρCp
u2, (6)

The respective flow boundary constraints are stated below

u = cx + β
∂u
∂y
, v = vw(x), T = Tw + G

∂T
∂y

at y = 0, (7)

u −→ 0,T −→ T∞ as y −→ ∞. (8)

The thermal flux radiation qr in Eq. (6) is indicated in Eq. (9)
as (see Sumalatha and Bandari [33])

qr = −

(
4σ∗

3k∗

)
∂T 4

∂y
(9)

From the above Eqs.(4-9), u and v describe flow rtae modules
in respect to x and y axes. The symbols kp, β and σ represent
porous medium permeability, velocity slip factor and electrical
conductivity whereas the density, volumetric thermal expansion
coefficient, magnetic flux density and the thermal slip factor
are sequentially denoted by ρ, βT , B and G. Also, T signals the
fluid temperature, g denotes gravitational acceleration, ν is the
kinematic viscosity, vw describes surface mass flux, c defines
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stretching rate and Qo describes coefficient of heat source/sink,
σ∗ connotes Stefan-Boltzmann constant while the coefficient
absorption mean is taken as k∗. By the application of the Rosse-
land approximation and assuming that the heat variation is low
in the flow field, so that Taylor’s series can utilized to expand
T 4 to get

T 4 ≈ 4T 3
∞ − 3T 4

∞,

The temperature-based thermal conductivity is also specified as
(see Animasaun [34]):

k(T ) = k∞[1 + ζ(T − T∞)], (10)

in which k∞ denotes the upstream heat conduction, ζ typifies
the thermal conductivity parameter. To transmute the outlin-
ing flow equations into dimensionless system, the underlisted
quantities adopted:

x
x

=

(a
ν

) 1
2
,

y
y

=

(a
ν

) 1
2
,

u
u

=
1

(aν)
1
2

,
v
v

=
1

(aν)
1
2

,

T = (Tw − T∞)θ + T∞. (11)

Dropping the bar and substituting u =
∂ψ
∂y and v = −

∂ψ
∂x into

Eqs. (5-6) taking cognizance Eqs (9) and (10), the underlisted
are obtained(

∂ψ

∂y
∂2ψ

∂x∂y
−
∂ψ

∂x
∂2ψ

∂y2

)
= (1 − m)

∂3ψ

∂y3 +
√

2maΓ

(
∂2ψ

∂y2

)
∂3ψ

∂y3 −

(
σB2

aρ
+

ν

akp

)
∂ψ

∂y

+
gBT (Tw − T∞)

a
3
2 ν

1
2

θ, (12)

(
∂ψ

∂y
∂θ

∂x
−
∂ψ

∂x
∂θ

∂y

)
=

(
k∞
µcp

(1 + ζθ) +
16σ∗

3µcpk∗
T 3
∞

)
∂2θ

∂y2 +

k∞
µcp

ζ

(
∂θ

∂y

)2

+
Qo

aρCp
θ+

u2
wσB2

aρCp(Tw − T∞)

(
∂ψ

∂y

)2

+
u2

wν

akpρCp(Tw − T∞)

(
∂ψ

∂y

)2

,

(13)

Also, the boundary conditions (7-8) transform to:

∂ψ

∂y
=

c
a

x + β

√
a
ν

∂2ψ

∂y2 ,
∂2ψ

∂x2 =
vw
√

aν
, θ = 1 + G

√
a
ν

∂θ

∂y

at y = 0,
∂ψ

∂y
→ 0, θ → 0 as y→ ∞.

(14)

3. Lie Group Scaling Transformations

The Lie scaling technique depends on theory formulated
to find all symmetry transformations that keep the system of
equations unchanged. It helps in reducing the number of in-
dependent variables and in consequence transforms the PDEs
to an ODEs. Using this method to generate similarity vari-
ables involves finding the invariant solution which does not

alter the structure of the given equation under study. In this
section, the simplified format of the Lie group transformation
approach is employed to derive the new similarity transforma-
tions for the transport equations. As such, the outlining flow
equations can be changed to ordinary derivative equations. Fol-
lowing [27,31,35] the transformation variables are defined

Υ : x∗ = xeεγ1 , y∗ = yeεγ2 , ψ∗ = ψeεγ3 , θ∗ = θeεγ4 , Γ∗ = Γeεγ5

(15)

In Eq. (15), ε depicts the parameter of the group whereas the
transformation variables are represented by γ1, γ2, γ3, γ4, γ5. Also,
Eq. (15) is called point transformation for the set of coordinates
system (x, y, ψ, θ, Γ) transforms into (x∗, y∗, ψ∗, θ∗,Γ∗). The sub-
stitution of the transformation Eq. (15) into Eq. (12) and (13)
results to the form:

eε(γ1+2γ2−2γ3)
(
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗
−
∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

)
= eε(3γ2−γ3)(1 − m)

∂3ψ∗

∂y∗3

+ eε(5γ2−2γ3−γ5)
(
√

2mΓ

(
∂2ψ∗

∂y∗2

)
∂3ψ∗

∂y∗3

)
− eε(γ2−γ3)

(
σB2

aρ
+

ν

akp

)
∂ψ∗

∂y∗
+

gBT (Tw − T∞)

a
3
2 ν

1
2

θ∗e−εγ4 ,

(16)

eε(γ1+γ2−γ3−γ4)
(
∂ψ∗

∂y∗
∂θ∗

∂x∗
−
∂ψ∗

∂x∗
∂θ∗

∂y∗

)
= eε(2γ2−γ4)

(
k∞
µcp

(1 + ζθ∗) +
16σ∗

3µcpk∗
T 3
∞

)
∂2θ∗

∂y2 +

eε(2γ2−2γ4) k∞
µcp

ζ

(
∂θ∗

∂y∗

)2

+
Qo

aρCp
θ∗e−εγ4

+ eε(γ2−γ3)
(

u2
wσB2

aρCp(Tw − T∞)
+

u2
wν

akpρCp(Tw − T∞)

) (
∂ψ∗

∂y∗

)2

,

(17)

Similarly, the boundary conditions transform to:

eε(γ2−γ3) ∂ψ
∗

∂y∗
=

c
a

e−εγ1 x∗ + β

√
a
ν

∂2ψ∗

∂y∗2
eε(2γ2−γ3),

∂2ψ∗

∂x∗2
eε(γ2−γ3) =

vw
√

aν
,

e−εγ4θ∗ = 1 + G
√

a
ν

∂θ∗

∂y∗
eε(γ2−γ4) at e−εγ1 y∗ = 0,

eε(γ2−γ3) ∂ψ
∗

∂y∗
→ 0, e−εγ4θ∗ → 0 as y∗ → ∞.

(18)

The preceding system of equations is invariant under the group
transformation if the underlisted relationship exist among the
exponents:

γ1 + 2γ2 − 2γ3 = 3γ2 − γ3 = 5γ2 − 2γ3 − γ5 = γ2 − γ3 = −γ4
(19)

γ1 + γ2 − γ3 − γ4 = 2γ2 − γ4 = 2γ2 − 2γ4 = −γ4 (20)
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solving Eq. (19) and (20) to obtain the following relations:

γ1 = γ3, γ2 = 0, γ4 = γ1, γ5 = −γ1 (21)

Eq. (21) can then be introduced into Eq. (15) to obtain the
criterion for the transformation as:

Υ : x∗ = xeεγ1 , y∗ = y, ψ∗ = ψeεγ1 , θ∗ = θ,Γ∗ = Γe−εγ1 (22)

Applying Taylor’s series to expand Eq. (22) in the power of ε
to the first order to obtain:

x∗ − x = xεγ1, y∗ − y = 0, ψ∗ − ψεγ1,

θ∗ − θ = 0, Γ∗ − Γ = −xεγ1, (23)

Taking Eq. (23), the following characteristic equation were ob-
tained:

dx
xγ1

=
dy
0

=
dψ
xγ1

=
dθ
0

=
dΓ

−xγ1
, (24)

the following similarity transformations are derived by solving
Eq. (24) (see Ulla and Zaman, 2017):

η = y, ψ = x f (η), θ = θ(η), Γ = x−1Γo (25)

The non-dimensional ODEs obtained with corresponding bound-
ary condition via the similarity transformations (25) into Eqs.
(16-18) are as follows:

(1 − m) f ′′′ + mWe f ′′′( f ′′) + f f ′′ − (M2 + Da) f ′

− ( f ′)2 + Grθ′ = 0 (26)

(1 + ζθ + Nr)θ′′ + ζθ′2 + Pr(Qθ + f θ′)

+ PrEcM2 f
′2 + PrEcDa f

′2 = 0 (27)

f ′(0) = λ + α f ′′(0), f (0) = S , θ(0) = 1 + θ′(0), (28)

f ′ → 0, θ → 0 as η→ ∞. (29)

In Eqs. (26-29), We =
√

2aΓ symbolizes the Weissenberg num-
ber, Nr = 16σ∗

3k∗k T 3
∞ defines radiation parameter, M2 = σB2

aρ de-

notes Hartmann number, Q =
Q0

aρcp
typifies the heat source/sink

factor and b =
√

a
ν
G is the thermal slip parameters whereas

α =
√

a
ν
β represents the velocity slip, Da = ν

akp
characterizes

the Darcy number and ζ implies thermal conductivity parame-
ter. The primes signifies differential with respect to η, λ = c

a

is the stretching parameter, Ec =
u2

w
Cp(Tw−T∞) is Eckert number,

Gr =
gBT (Tw−T∞)

a
3
2 ν

1
2 x

symbolizes the Grashof number, S =
vw√
aν is

the mass suction and Pr =
µcp

k∞
represents the Prandtl number.

The incorporated engineering quantities in the current investi-
gation include the wall friction C fx and the thermal gradient
Nux which are orderly specified in Eq. (30) as:

ρ(ax)2C fx = τw, Nux =
xqw

k(Tw − T∞)
(30)

Table 1. Skin friction coefficient as compared with previous studies when We =

m = 0
M Akbar [36] Fathizadeh et al. [37] Present values
0 1.00000 1.00000 1.00000
1 −1.41421 −1.41421 −1.41421
5 −2.44948 −2.44948 −2.44949
10 −3.31662 −3.31662 −3.31663
50 −7.14142 −7.14142 −7.14143
100 10.0499 10.0499 10.0499
500 −22.38300 −22.38300 −22.38300

where

τw = (1 − m)
∂u
∂y

+
mΓ
√

2

(
∂u
∂y

)2
∣∣∣∣∣∣∣
y=0

,

qw = −k∞

(
1 +

16σ∗

3k∗k∞
T 3
∞

)
∂T
∂y

∣∣∣∣∣∣
y=0

(31)

The dimensionless form of Eq. (30) are specified in Eq. (31)
as:

Re
1
2 C f = [(1 − m) f ′′(0) +

m
2

We( f ′′(0))2],

Re−
1
2 Nux = − (1 + Nr) θ′(0), (32)

where Rex = ax2

ν
signifies the local Reynolds number.

4. Numerical Solution

Eqs. (26-27) comprises of a set nonlinear coupled differ-
ential equations with it’s associated wall conditions. Owing to
the non-linearity nature of the governing equations, Eqs (26-
27) subject to (28-29) are tackled numerically using shooting
techniques alongside Runge-Kutta Fehlberg scheme by utiliz-
ing a computer algebra symbolic code of Maple software. This
algorithm relies on the adopted method. Except otherwise, the
subsequent default values as been adopted for the study based
on related previous analysis as n = 0.4, We = 0.3, ε = 0.2,
Nr = 0.3, M = 0.2, Da = 0.3, Pr = 3.0, Q = 0.3, Gr = 2.0,
Ec = 0.01, λ = 0.7, S = 0.3, α = 0.2, b = 0.5. The numeri-
cal code’s accuracy is validated by assessing the computational
outcomes of the wall drag coefficient C f x offered in this study as
compared with previously published works of Akbar [36] and
Fathizadeh et al. [37] in respect to variations in the Hartmann
number (M). As recorded in Table 1, the comparison showed
a perfect harmony with the existing data in the literature un-
der limiting circumstances and thus confirming the accuracy of
our numerical code. Table 2 depicts the influences of some en-
trenched parameters on the wall friction and heat gradient. As
seen, an enhance or decline in the engineering quantities are ob-
served due to the boundary layer viscosity. When the boundary
film viscidness is stimulated the wall friction and Nusselt effect
are raised, but when thinner boundary film viscidness noticed
the diffuse more to the ambient leading to a decrease in the wall
effects.
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Table 2. Numerical values for the skin friction (C f ), heat gradient (Nux)
M ε λ Da We Ec Q C f Nux

0.2 0.2 0.7 0.3 0.3 0.01 0.3 0.8722973797 -0.5937107035
0.5 0.7677915589 -0.56754883934
1.0 0.4376848220 -0.48222768379

0.4 0.9077648755 -0.53183984435
0.7 0.9077648765 -0.53183984435

1.0 0.4765432364 -0.67408773863
1.5 0.2732784056 -0.80313254770

0.7 0.6779856282 -0.54475633672
1.0 0.6779856282 -0.54475633672

0.5 0.8498608064 -0.59162423311
0.7 0.8300639857 -0.58974089749

0.03 0.8735104313 -0.59064728168
0.07 0.8735104313 -0.59064728168

1.0 1.1540832041 0.0316335380
2.0 1.8442011437 1.9856306670

Figure 2. Plot of Da&λ on velocity f ′(η)

5. Discussion of Outcomes

This aspect displays and discusses the reactions of the di-
mensionless flow rate and energy profiles due to variations in
the physical flow parameters. These physical parameters in-
clude the stretchy term (λ), Grashof (Gr), Prandtl (Pr), Weis-
senberg (We) and Darcy (Da) numbers, heat source term (Q),
power-law exponent term (m), velocity slip term (α), radiation
parameter (Nr), Hartmann number (M), mass suction param-
eter (S ), thermal conductivity parameter (ζ), and temperature
slip term (b).

Figures 2-6 describe the influences of various physical flow
parameter on the velocity field. Fig. 2 illustrates the effects of

Figure 3. Behaviour Gr&We on velocity f ′(η)

(Da) Darcy term on the dimensionless velocity in the existence
of stretching parameter (λ). Evidently, there is a decrease in the
velocity as (Da) increases. The flow behaviour in respect to a
spike in Darcy number (Da) stimulates an opposition to the flow
distribution that leads to a shrink boundary layer and thereby
decelerates the fluid motion. In a related sense, an enhancement
in the magnitude of the stretching term (λ) lowers the momen-
tum boundary layer structure and consequently decelerates the
locomotion. The impacts of Grashof number (Gr) and Weis-
senberg term (We) on the dimensionless flow rate profile are
presented in Fig. 3. It is evident from the graph displayed that
the velocity drop significantly by a rise in (We) owing to an in-
crease in the viscosity whereas there is an acceleration in the
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Figure 4. Effect of S &m on velocity f ′(η)

Figure 5. Reaction Q&M on velocity f ′(η)

fluid motion as Grashof number increases due to enhancement
in the buoyancy force. As (Gr) is raised, the buoyancy force
dominates the viscous force and thus encourages the velocity
distribution. Fig. 4 portrays the impact of mass suction term
(S ) coupled with that of the power-law exponent (m) on the ve-
locity distribution. It is evident that enhancing the magnitude
of the power-law exponent (m) raised the viscosity and as a re-
sult, there is a significant drop in fluid velocity. Also, this plot

Figure 6. Effect of α&M on velocity f ′(η)

shows raising the magnitude of S and (m), the hydrodynamic
boundary structure thickness declines and the velocity deceler-
ates. The evaluation of the heat generation (Q) term and the
Hartmann number (M) is plotted in Fig. 5. Evidently, an elec-
tromagnetic force is produced from the magnetic field interac-
tion with the tangent hyperbolic electrically conducting liquid
that create a drag in the flow movement as noted in the plot.
The electro-conducting fluid’s interaction with the transverse
magnetic field induces a retarding force on the liquid motion.
Similarly, a hike in (Q) induces higher flow velocity rate owing
to a decrease in the viscosity. Fig. 6 offers the behaviour of (α)
on the liquid motion. In this plot, a declining trend is observed
in the velocity field as the slip term (α) rises.

Figures 7-12 offer the variations of some physical terms on
the thermal field. Firstly, the temperature profile showing the
impact of (λ) in the occurrence of radiative heat (Nr) parameter
is plotted in Fig 7. The graph elucidates that advancement in (λ)
causes the temperature to fall whereas growing (Nr) enhances
the thermal profile. An advancement in the radiative heat flux
corresponding to a rise in Nr while the Rosseland mean ab-
sorption coefficient declines and as such, the thermal field is
enhanced as found in this figure. The results of the Prandtl
number (Pr) and power-law index (m) on the thermal distribu-
tion are depicted in Fig. 8. The graph demonstrates that a boost
in the (Pr) number lowers the thermal field by shrinking the
energy boundary viscosity structure whereas the thermal prop-
agation improves as (m) rises. The Prandtl number connotes the
diffusivity of the momentum ratio to the diffusivity of the heat,
and also influence the relative momentum shear stress and ther-
mal boundary layer. Thus, a boost in the Pr implies a reduction
in the energy boundary film and consequently leads to a decline
in the heat transfer. The reactions of thermal generation term
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Figure 7. Influence of λ&Nr on temperature θ(η)

(Q) and Hartmann term (M) on the energy filed are displayed
in Fig. 9. The graph portrays the fluid temperature exhibit-
ing identical growing patterns on (Q) and (M). Typically, both
parameters cause a rising trend in the thermal boundary layer.
An enhancement in (M) induces a higher electromagnetic force
which inspires an obstruction to the liquid motion and thus in-
crease frictional heating effect which boosts the surface tem-
perature. Similarly, a hike in Q is an indication of extra energy
being generated and thus, a rise in the temperature as found in
this figure.

Fig. 10 elucidates the reactions of the thermal slip term
(b) and Weissenberg term (We) on the fluid heat propagation.
The temperature boundary structure shrinks and the tempera-
ture falls with growth in b whereas the converse occurs with
enhancement in We as noticed in this figure. A rise in (b) draws
away the fluid from the heated region thereby lowers the tem-
perature whereas as We rises in magnitude a frictional heat is
generated due to rising viscosity. The reactions of mass suc-
tion term (S ) and power-law exponent (m) are plotted in Fig.
11. This plot reveals that with advancement in S , the temper-
ature distribution subsides whereas as (m) increases, the tem-
perature distribution shoots up. Likewise, the plot showing the
variation in Darcy term (Da) and thermal conductivity term ζ
in respect to temperature is sketched in Fig. 12. It is noticeable
that an increment in the (Da) and ζ boost the temperature dis-
tribution due to extra heat generated by the resistance imposed
on the fluid flow as Da increases. In Figure 13, the impact
of Ecket number (Ec) on the heat propagation with variation
in Hartmann number (M) is established. As seen, temperature
distribution is raised due to an induce magnetic Joule heating
that inspired the tangent hyperbolic fluid flow particles interac-
tion. Also, the magnetic Joule heating effect is complemented

Figure 8. Reactions of m&Pr on temperature θ(η)

Figure 9. Impact of Q&M on temperature θ(η)

by the porous Joule heating that creates fluid friction and re-
sistant to free flow, thus, particles collision and random motion
is encouraged to increase heat transfer. Therefore, rising heat
distribution magnitude is observed all over the flow region.

6. Conclusion

A computation solution has been performed on the motion
and thermal propagation of hydromagnetic tangent hyperbolic
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Figure 10. Impact of b&We on temperature θ(η)

Figure 11. Effect of S &m on θ(η)

liquid passing a vertically stretched surface with varying ther-
mal conductivity. The flow model is in steady 2-dimensional
and incompressible stretchable plate enclosed in permeable me-
dia with the impact of radiative heat and internal thermal energy
source. Lie group analysis generates the similarity transforma-
tion which transformed the coupled differential equations with
boundary conditions from partial to ordinary derivative equa-
tions, The solution to the equations are the offered computa-

Figure 12. Influence of Da&ζ on temperature θ(η)

Figure 13. Effect of Ec&M on heat field θ(η)

tionally via shooting approach alongside Fehlberg Runge-Kutta
method. The solutions are given graphically and deliberated
while comparison with published studies show good agreement.
The study also reveals that:

• The fluid velocity accelerates with enhancement in the
heat source term Q and Grashof number Gr magnitude.
However, augmenting the Darcy term Da, suction S term,
velocity slip α, stretching term λ, Hartmann number M,
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power-law exponent m as well as Weissenberg value We
decelerates the velocity profiles.

• A damped in the thermal boundary structure and the cor-
responding surface temperature distribution falls with a
rise in the mass suction term S , Prandtl number Pr and
thermal slip term b.

• A rising thermal boundary film viscosity structure is formed
with increasing the fluid heat conduction term ζ, radiative
heat term Nr, Darcy number as well as the heat source
parameter Q.
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