
J. Nig. Soc. Phys. Sci. 5 (2023) 1089

Journal of the
Nigerian Society

of Physical
Sciences

An Integral Approach for Complete Migration from a Relational
Database to MongoDB

Abdelhak Errajia,∗, Abderrahim Maizateb, Mohamed Ouzzifb

aRITM ESTC Laboratory Hassan II University, ENSEM Casablanca, Morocco
bRITM ESTC Laboratory Hassan II University, ESTC Casablanca, Morocco

Abstract

Recently our world has recognized a very important revolution in all sectors of life; this evolution comes following the good exploitation of the data
generated by intensive human communication, which uses social networks and computer tools. NoSQL systems appear to resolve some limitations
of relational databases in the management of BigData. This situation has created a crucial need to migrate relational databases to NoSQL systems,
especially for companies that want to keep their old data accumulated for years, which describes their experiences, market studies, and the behavior
of customers, competitor positions, and future strategic alignment. Our contribution comes to developing our complete approach to migrating the
relational database to MongoDB. This article will start with an introduction, after showing related work with a discussion then we move on to
present our analysis and modeling methodology, during it, we develop our models and meta-models of the two systems: source and destination
of migration. After we present our global approach called "TMSDRDND", which divides its treatment into two layers: "TSRSNLayer" and
"MDRSNLayer". The first deals with the transformation of the structure and the semantic data, and the second takes care of data migration using
an ETL to be developed according to a specific concept and architecture and exploiting the results of the first layer. During these two layers, we
treat three axes, each of which processes a part of the RDB according to their nature: data stored in tables, data carried on the structure, and data
coming from the semantics of relational databases.

DOI:10.46481/jnsps.2023.1089

Keywords: Data Migration, Database Transformation, NoSQL, Big Data, Data, ETL, approach

Article History :
Received: 24 September 2022
Received in revised form: 16 March 2023
Accepted for publication: 25 March 2023
Published: 24 April 2023

© 2023 The Author(s). Published by the Nigerian Society of Physical Sciences under the terms of the Creative Commons Attribution 4.0 International license

(https://creativecommons.org/licenses/by/4.0). Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Communicated by: T. Latunde

1. Introduction

The use of information, data processing, and communica-
tion tools, as well as the web 2.0 revolution, has caused the
creation of an enormous amount of data that evolves continu-
ously every time until we have arrived at a big data level. The

∗Corresponding author tel. no: +212 601486615
Email address: erraji.abdelhak@gmail.com (Abdelhak Erraji)

latest study announces that globally, data is doubling its vol-
ume every two years [1] and that an amount of data will be
created in 2025 in the order of 163 000 milliards gigabytes [2].
This huge amount of data comes from various data sources, in
different natures, and is exploited by several tools, in different
sectors, for different purposes, and in many ways [3-4]. This
information was used in data warehouses and DataMart to cal-
culate performance and objective indicators, to feed decision-
making and strategic systems, that were considered at the time
to be a revolution in storage and operation data, knowing that

1

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 2

they store and manage a considerable amount of data and per-
form analyzes based on data accumulated over several years
to be able to make the right decisions, even if it uses the re-
lational model and a relational databases management system.
This information has played a very important role in reading the
present situation of institutions, publicizing their products and
services, and also planning and building a good future, which
guarantees the existence and resistance in the market and also
its evolution on a scale, national or international [5-6]. While
data is big then it will be more important and constructive in the
derivation of other information. Also, their role is important in
the precise analysis of the present, the efficient construction of
the future, the overtaking of the competitors, the distinction and
the control of the field of activity, and also in the good control
and management of processes, as well as the management of the
institution for the future. To do this, we need to adopt a system
and model for managing this data. The system and the relational
model have confirmed its success for small and medium-sized
databases, with its strict mathematical model making both its
strength and its weakness; in fact, it has dispersed the data in
several coherent, compact tables linked to each other by for-
eign keys. Each table contains a set of fields all dependent on
the primary key to forming entity integrity. This structure has
succeeded in considerably reducing the redundancy of informa-
tion, and succeeded in extracting new information from other
data stored at the base, without forgetting the power to realize
complex and interesting calculation formulas using the power
of the system’s relational content in joins. However, when the
databases became very large, this model presents several weak-
nesses in the storage of this data, its management, the response
time to requests, the availability of data, and the evolution to-
ward very large sizes. This has raised the limits of the rela-
tional model, and to overcome it, database designers have de-
signed new systems that do not implement the relational model,
called NoSQL (Not Only SQL) systems. These systems include
several tools that implement four models by forming four cat-
egories of these systems: key-value store, column-value store,
document store, and graph store. Each category is adapted to a
specific need the rules for data management, storage, and use as
well as the expected need of the data management system are
not the same from one institution to another. For example, the
needs of international banks such as PayPal, and eBay are not
the same as Facebook and Twitter, which in turn are different
from WhatsApp or Google. These NoSQL systems implement
simple and flexible schemas and structures in data management,
accepting data from many sources and in different forms, with
simple mechanisms to manage the flat and basic files containing
the data. These systems implement the horizontal scalability of
database servers, which makes it possible to add and link sev-
eral servers together to form a single data container, to build a
distributed database, and with replications in such a way as to
guarantee the real-time response and availability of data at all
times. On the contrary, relational databases use a single data
server for their hosting, by implementing vertical scalability.
Also, if we want to create a distributed database in relational
systems that requires techniques such as CORBA to deal with
the heterogeneity of the systems used, the difference between

the ways of managing and exploiting the internal files contain-
ing the data, and the means of communication between them.
This will significantly reduce their efficiency and performance.
Relational database management systems have known several
limitations in the management and exploitation of BigData gen-
erated by the accumulation of data for years of exercises. This
data represents a real treasure for the organizations, because it
describes their experiences in the past, and their opportunities
of the present by studying the market and the competitors, also
it makes it possible to better plan the future. These organiza-
tions are adopting NoSQL systems, which come to overcome
these limitations of relational systems. At this point, the use of
both systems is not the optimal solution, because it considerably
increases the costs and expenses in terms of software, technical
support, formations, and user training in the specificities of the
two systems. In this situation, these institutions should adopt
the NoSQL system and migrate the old databases to this sys-
tem. In this optic, many studies and approaches have been de-
veloped, but they present a lack either in ways of transformation
or by the neglect of important data during their migration. At
this level, it is legitimate to ask the following questions: What
is the analysis methodology, which follows to encompass all
the elements of the relational database, and to guarantee good
migration results? May we migrate all the data and function-
alities of the relational system to another NoSQL, considering
their differences? How do you transfer the operational elements
of relational systems such as triggers, views, and joins? What
is the NoSQL category that promotes a full migration to the
NoSQL system?

2. Related Work and Discussion

2.1. Related Work

Currently, in the scientific forum, research and discussion
are taking place on the best way to migrate and transform data
from the old relational system to big data to keep pace with the
current development in the field of data storage and exploita-
tion, knowing that NoSQL systems present a better way to store
Big Data. In this regard, we present the results of the research
through the most important research and presented as follows :
Mearaj and al. [7] transformed the data from its native form into
documents. Result files and their collections take their defini-
tions during creation. The profitability of this solution has led to
the use of the cloud in data storage. They use MongoDB as their
target system because it can generate data directly and with its
latest version supports multi-document ACID transactions to
maintain data integrity. Gopalan M and al. [8] propose to ad-
dress the translation engine from relational databases to NoSQL
Cassandra databases. They concluded that Oracle and MySQL
are better than Cassandra and these new NoSQL products are
purely commercial. However, this conclusion is still very sub-
jective and not based on objective indicators. Yansyah and Arry
[9] propose a framework that can migrate data in a real oper-
ating environment and a framework that can serve as a refer-
ence for developers to migrate data between databases NoSQL.
NoSQL systems are only studied in a limited way that does not

2

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 3

go beyond core NoSQL, and the data security aspects of the
migration process are not considered part of the job. Kachaoui
and Belangour [10] propose an approach for converting rela-
tional databases to NoSQL databases using MySQL and Mon-
goDB systems. The study describes the transformation method
in detail and evaluates it using a small database as the scope
of the proposed algorithm. These authors consider his work
to be the result of intensive research in related research, filling
gaps overlooked by concerned researchers in the field and mak-
ing small contributions to data transformation. Ganesh and Ra-
jeswari [11] propose a method for migrating data from MySQL
to MongoDB and a Naive based on MapReduce model for effi-
cient classification of Big Data. The author mentioned that after
migrating data to MongoDB for CRUD operation, query execu-
tion performance was improved. The proposed model is imple-
mented using the census income dataset. Cerjeka and al. [12]
propose an initial set of transformation rules that will be used in
the integration process to develop a new catalog of data ware-
house systems based on data warehouses that track changes ap-
plied to data sources relational and NoSQL. The transformation
rule set includes a total of five rules and was developed for the
MongoDB system. Namdeo and Suman [13] propose the use
of schema design for NoSQL databases to develop an SDAM
schema design model to transition from RDBMS to NoSQL
databases. It has three phases: creating the NoSQL database
schema (especially document databases), creating all possible
database schema combinations, and costing. They assume they
can automatically create all possible database schemas. They
treat select queries and update queries as inputs used in rela-
tional models. Ghule and Vadali [14] propose a flexible, mod-
ular data adapter for hybrid database systems. The data adapter
uses a generic SQL layer that accepts requests from application
services. The data adapter also controls the flow of requests
during database conversion. They took an approach where cal-
culations were performed on existing large-scale data in an ob-
ject storage system without moving the data anywhere. For the
author, these NoSQL databases offer only weak consistency,
which makes them unsuitable for applications requiring strong
consistency. Yassine [15] uses MongoDB as a NoSQL database
and MySQL as a relational database. His experiments are based
on three NoSQL structures, including embedding-only docu-
ments, citation-only documents, and both. They use a large
number of records and a set of five queries as a benchmark to
measure recovery time. Shiromoto and al. [16] specialize in
NoSQL databases, they use a combination of HBase and rela-
tional databases. They evaluated the performance of table join
execution time and system memory consumption on real ma-
chines. These performances turn out to be tolerable in practical
use compared to the embedded use of only relational databases.
They also showed that there are benefits to changing the join
order or saving column families as unique Hbase items.

2.2. Discussion
In the previous approaches, we noticed that the authors of

the papers quoted above tried to treat databases integrally, but
they neglected very interesting parts of relational databases dur-
ing their transformation according to their approaches. The ma-

Figure 1: Conceptual Data Model

jority of these authors did copy/paste from a relational system
to a non-relational one. Indeed, the relational system has dis-
patched their data in several tables, which are linked together
by foreign keys, representing implicit relations between these
tables. These foreign keys show that these tables will be joined
to reconstruct the entire data dispatched in several tables. How-
ever, the transformation of these tables by keeping their origi-
nal structures in the relational system towards a Non-relational
system, means that these tables will also be joined in the new
non-relational system in the same way as in the relational sys-
tem, either to restore global information distributed in several
tables or to derive new information not stored in the database.
This situation will create a new relational database in a non-
relational system that does not perform joins the same as in the
relational system, plus there are some NoSQL systems that do
not allow doing joins, also others try to consolidate all the data
into a single table which organizes the data into columns. The
relations between the tables build the fundamental element in
the relational philosophy, also the operations of joins present
the radical technique to exploit this kind of database, forming
its force in the restitution of the global data, in the elimination
of the redundancy of the data during its storage, in the optimiza-
tion of the storage capacity and especially in the derivation of
the new data not stored in the database, and at the same time
forms its weakness, especially in the joining of the giant ta-
bles which requires a complex mechanism that creates an enor-
mous volume of data in memory, and loads the processor with
its processing to retrieve useful information. The relations in
the relational system, represent its semantic and living aspects
which encompass and hide at the same time a lot of informa-
tion that describe the action and the operational aspect of this
system and also the computing power. This semantic aspect
is well neglected in all the previous approaches and also the
relations are badly transformed if we consider the destination
system of the transformation. With this in mind, we see that im-
proper transformation of relations and foreign keys will waste
significant parts of the data when transforming it from the re-
lational system to another NoSQL and even makes the result
database incomplete is useless! For this reason, we see that the
relations in the relational system and in particular their trans-
formations in the form of foreign keys in this system must have
another form, which can be different from one NoSQL system
to another, to maintain the data integrity, to transform the se-
mantic aspect of the relational system to other NoSQL without
conflicting with the specificities of the recipient systems. In-
deed, to clarify our point of view, we will base ourselves on a
practical case presented in figure 1 which proposes a concep-
tual model of data for the relational system. Figure 1 presents a
model that has three elements: student, school, and registration.
However, the two entities student and school model the students

3

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 4

Figure 2: Example of a logical data model (MLD)

and the schools, while registration models the effect, the action,
and the operation which link a student to a school, by form-
ing the semantic and living aspect in this system, which always
remains implicit and fundamental in this kind of system. This
last element will disappear in the transformation of this model
towards the logical data model presented in figure 2 and be re-
placed by a foreign key, but its spirit remains alive in the model
thanks to the foreign key added to the logical model and will
be restored by join operation. this semantic aspect is the real
manner to restore the global information dispatched in several
tables and at the same time the only way to derive other new
information not stored in the system altogether. Figure 2 comes
to illustrate the existence of the foreign key in such a model, to
replace the relationship that has been between the tables and es-
pecially between their rows and that it is recoverable thanks to
the join, without forgetting that the location of this foreign key
determines whose table holds the relation. However, in NoSQL
systems, we speak another language according to the category
of the system. For example, the conceptual model above will
be transformed in the relational model into two separate tables,
and the relationship between them will be disappear and re-
placed by a foreign key in the student table, on the other hand
in MongoDB as a NoSQL database using JSON files to store
their data, we follow the logic of the objects, and therefore the
best way to represent the same conceptual model is to create
objects which materialize a single class called school which
contains among its attributes a list of objects student without
showing any foreign key, this if and only if the list of internal
objects do not participate in any other relationship, so the sense
of membership of the relationship, in this case, is the reverse
of the relational model (see figure 2). This last way allows us
to model the same logical model above, but without resorting
to the need for the join operation for MongoDB, as well as the
foreign keys will be superfluous and therefore make no sense in
this case. Among the old researchers, we notice that they have
done a copy/paste the relational system into the non-relational
system, which makes it possible to lose the relational aspect in
a non-relational system. Us, we believe that certain relations
must undergo a particular transformation and that some foreign
keys must disappear during the transformation of certain rela-
tions.

3. Methodology and Modeling for our Approach

3.1. Methodology for our modeling in our approach

We begin our approach with this crucial step, which will
be the basis of our modeling and the phase fundamental of our
analysis, for establishing our modeling toward the implemen-
tation phase at the end of this paper. Our methodology recom-
mends following some steps to have a complete migration of the
database from the relational system to the MongoDB system in
an intelligent way. To this end, we will publish our analysis and
modeling approach, which involves performing the following
ten steps:

• The first is to identify all the elements that make up a
relational database.

• The second consists of grouping all the elements of the
relational database according to their category: data, struc-
ture, or semantics.

• The third is to identify all the elements that make up the
migration target system.

• The fourth is to come up with a diagram that summarizes
these elements and build a representative model.

• The fifth includes a presentation of the target system meta-
model.

• Six is to reclassify these elements according to categories:
elements that already exist in the target system (supported
by MongoDB), elements that are already guaranteed by
MongoDB (to be reassigned), and components to be ig-
nored (their principles contradict the principles of Mon-
goDB), components whose presence has no value and
components that require special migration.

• The seventh consists of developing the modeling of the
elements which require a migration to MongoDB and
proposing a summary diagram.

• The eighth is the modeling of the relational database cre-
ated from the elements of step 7, linked by the MongoDB
model.

• The ninth step consists in developing a mapping between
the two source and target systems as an operating result
of steps three and eight. This correspondence will serve
the implementation steps thereafter.

The following diagram explains as better the different previous
steps and the sequence between them and their dependencies:
This figure 3 makes it possible to present the different stages
of our methodology explained above, as well as their sequence,
also the stages that can be executed in parallel to arrive at our
framework of the correspondence between the two source and
destination systems of the migration, whose objective is to train
the model of the database resulting from this migration

4

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 5

Figure 3: Our detailed methodology by steps and their depen-
dencies

Figure 4: List of all components of relational database

3.2. Components Of Relational Databases And Their Modeling

To have a complete migration, we must list all the com-
ponents of the relational database to process them and to de-
fine the manner of their transformations. With this in optic, we
present the Figure 4: Figure 4 lightens an exhaustive list of rela-
tional system components to be migrated to NoSQL systems in
Figure 4, classified according to their three expressive proper-
ties: structural, data, and semantic. NoSQL systems do not sup-
port queries that define and manipulate structures in relational
database systems, because NoSQL systems implement simple
and flexible information structures in their files, which can store
many objects in different structures without any problem.

Figure 5: The relational database model

3.3. Modeling of the relational data model

After having presented the different elements of the rela-
tional system that we will migrate to the MongoDB system, we
propose their modeling in the figure 5: Note that this model-
ing in figure 5 covers all the elements of Figure 4, including
the triggers that bridge the gap between update operations ap-
plied to a table and programming at the database level. Thus, it
covers the various constraints and the various relations between
the tables and the other constituents. This modeling will play a
very important role during the correspondence between the two
pole systems of the migration following our approach.

3.4. MongoDB: Storage and Structure

MongoDB stores data as documents and collections, know-
ing that a document is just a JSON or BSON (Binary JSON)
object and a collection is a set of documents by building JSON
files. JSON represents the notation specific to the JavaScript
language for representing data in the form of objects, whose
constituents are formed by a set of key-value pairs. Keys act
as attribute names of the object, defining the data structure of
that object, while values represent the data stored by this ob-
ject. In this case, it is useful to say that the keys are distinct
words and specific to the object itself, while each value can be
a numeric value, a word, another JSON object, a list of the val-
ues of the same type, or heterogeneous types including other
JSON objects, in turn, can be of different structures. This stor-
age philosophy can serve the transformation of a row of data
to a JSON object by forming a Document under MongoDB.
This last object will be of simple structure and with simple val-
ues. This allows us to transform all the rows of a given table
into a collection of JSON objects, with the possibility of ex-
tending each object by other fields, which can have non-simple
values. As well as the horizontal link that can be found be-
tween two lines of two different tables can be transformed into
two JSON objects according to a vertical inclusion relationship.
Contrary to the spirit of object-oriented, which requires the def-
inition of an abstract model called the class to represent the
structure of all objects created based on this model, JSON al-
lows you to create your objects without resorting to an abstract
model, which describes their structure, and each JSON object
has its description independent of other objects. However, a

5

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 6

Figure 6: Logical storage structure in MongoDB

JSON file forms a data exchange medium that is light, sim-
ple, readable, flexible, understandable, and usable by humans
and by different programming and data representation environ-
ments. This major advantage is the source of the success of
MongoDB. At the same time the pivotal element of the suc-
cess of our migration approach because JSON is usable by any
operating system and any development environment, such as
Java, Microsoft, Oracle, UNIX, etc., without forgetting that it
can be extended by JavaScript programs to simulate certain pro-
cessing which brings the semantic aspect of relational databases
closer. Thanks to its basic language (JavaScript), you can im-
plement regular expressions to enrich the schemas under Mon-
goose to add and simplify the control of certain data, bringing
closer certain control functionalities implemented in the man-
agement systems of relational databases. In the figure 6, we
show a simple data structure design to approximate the stor-
age model of MongoDB. Figure 6 illustrates the storage model
presented in the previous paragraph, showing a collection that
contains three documents as examples of data storage. The first
document presents an example formed by Key and Value pairs
and that a value is a JSON Object too.

3.5. Architecture and Functioning of MongoDB
This section aims to describe the operating mechanism of

MongoDB, as well as its internal architecture, to analyze its
processing and operation, and this is to be able to propose an
adequate transformation to the few parts of the semantics of the
relational management system database. For this reason, we
will limit ourselves to what will serve us in achieving our ob-
jective and briefly review the rest of the MongoDB mechanism.
We can summarize these features as follows [17]:

• Data container management: MongoDB allows for hor-
izontal scalability, as table joins in the original MongoDB
philosophy are not essential as they are in conventional
RDBMS, intending to improve the overall system that
manages the data. In addition, it adopts a bursting pol-
icy, which allows a linear scaling of the cluster, to give
the possibility of adding more machines. Thanks to the
bursting, it is possible to bear the increase of the unex-
pected load on the web and increase the efficiency of the
system.

• Data management: With this in mind, MongoDB al-
lows the replication of sets of collections, which is the
grouping of servers that maintains the same set of data to
increase data availability.

• Data processing: MongoDB has within each machine a
data server, which is part of our data container, storage,
and processing engines. Each server in MongoDB has
four different mechanism engines to achieve its mission,
and among these engines is the WiredTiger engine, which
does concurrency control and native compression prop-
erties among its tasks. There is a default WiredTiger en-
gine that provides the best competition performance and
storage efficiency and native compression. In addition, it
serves for better storage efficiency and performance.

• Distributed database: MongoDB has the property of au-
tomatic partitioning, and through it, multiple replication
server nodes are added to the system. It allows very large
databases to be split into smaller, faster, and more man-
ageable parts called shards.

• Data search and identification: it uses for documents
and sub-documents indexes on one or more attributes to
make access to this database faster.

• Communication between servers: MongoDB adopts the
Master/Slave topology between its data server machines,
so a master server must be designated in the establish-
ment of this topology to organize and manage commu-
nication between these servers, especially in the man-
agement of shared data between several servers or in the
management of data replicated under several sites. In ad-
dition, this topology must manage the role of the servers
in the event of a failure. This mechanism is the most use-
ful for our migration approach. Indeed, when it comes
to a data extraction request, the master server must repli-
cate it for all the slave servers, to gather and integrate
their responses, the objective of which is to reformulate
the overall response. On the other hand, when it comes to
an update request, then this request goes through a sys-
tem that checks whether there is a schema or a model
to respect for this update and if it is compliant, then the
master server reaches the various slave servers to execute
it will propagate it. This mechanism balances the load
between servers and applies queries in a partitioned way
under small simultaneous tables instead of dealing with a
single giant table. In this mechanism, we take the oppor-
tunity to enrich the schema or the model to be respected
in the case of the update requests to serve the transfor-
mation of the referential integrity constraints or the other
constraints, as well as the triggers, which we will deal
with in the following.

After revealing the essential points of the functioning of Mon-
goDB, quoted above, we propose the figure 7: Figure 7 models
the architecture and the operating mechanism of MongoDB. In
this architecture, we have modeled any clients, including appli-
cations, by an application, that types and sends a request to the

6

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 7

Figure 7: The simplified system architecture of MongoDB with
Mongoose

MongoDB system. The latter will pass this request to a lexi-
cal and syntactic analyzer to check its validity at the lexical and
syntax level, and to transmit it to the engines to evaluate it. Af-
ter the evaluation of this request, it will be transmitted to the
master server to launch its execution if it is an extraction or it
will be transmitted to the Mongoose if it is an update operation.
In the last case, if it complies with the models concerned and
is defined at the Mongoose level, then it will be transmitted to
the master server to launch its execution, otherwise, it will be
rejected by the system.

3.6. Mongoose: towards improved structuring

Mongoose is a JavaScript library, which works with Mon-
goDB and its runtime environment. It allows the definition of
the different schemas and models of the documents stored in
MongoDB using JavaScript Node.js. It is equipped with posi-
tive features and characteristics that make this system efficient
and increase its power, its scalable aspect, and its security com-
ponent. Mongoose when installed in the MongoDB server, it
allows you to define schemas, which are implemented by the
system, and that they are respected when creating and manip-
ulating documents stored in MongoDB. When defining these
schemas, Mongoose can define required attributes that must ex-
ist in all documents and other attributes that must be unique
or respect a regular expression. Also during schema definition,
Mongoose can control CRUD operations by adding to them the
”validator” attribute, which can be set to either ”true” to allow
this operation or ”false” to cancel it. In the latter case, Mon-
goose can define JavaScript functions that return the value ei-
ther ”true or false” following a specific treatment applied to the

documents concerned either to authorize the actions in ques-
tion on them or to cancel them. This last mechanism makes
additional processing to better control the various CRUD ac-
tions, that will be applied in MongoDB documents. This mech-
anism can simulate the same mechanisms seen in relational
database management systems, such as integrity constraints,
foreign keys, policies for violating these constraints such as
(ON update set Null, etc.), check, unique, not Null, default,
identity constraints and controls applied by triggers in the re-
lational model. The characteristics: of flexibility, suppleness,
simplicity, and understanding of JSON, as a means of storing
data, are the strength and the weakness of this system at the
same time. Indeed, the definition of a data container that ac-
cepts storing any information under heterogeneous structures
complicates the analysis, extraction, and derivation of the data
because of the absence of axes of projection and research that
offer the unified structure applied for the different Documents.
Thanks to Mongoose, we can endow the JSON files of Mon-
goDB, with given structures that can define obligations for one
or more attributes, as it can leave JSON documents free with-
out any structure. This situation allows keeping flexibility in
the structuring of the documents or allows defining of a certain
level of obligatory structuring, forming a new power of Mon-
goDB by the fact of changing and managing the level of struc-
turing requirement, contrary to the relational database manage-
ment systems that have only fixed and constrained structures.
Therefore, Mongoose plays an interesting role as a flexible sys-
tem, which can go from an unstructured level to a very inter-
esting and rich structure level. MongoDB can use Mongoose,
to better store and manage their documents. Mongoose allows
you to define schemas of documents, which especially helps
the analysis and exploitation component. In the parts, which
come, these diagrams play other roles, which we have to de-
fine the continuation. The figure 8 shows how mongoose works
with MongoDB: In figure 8 above, Mongoose can have mul-
tiple schemas. Each schema validates a type of document, by
defining its structure with or without a validator. The validators
used in the schemas are fields that can have the value true or
false following a condition or the Boolean return of a validation
program. This situation will help us, particularly on the seman-
tic level, to develop our complete and intelligent approach to
migration, especially in the transformation of foreign keys and
their integrated mechanism.

3.7. MongoDB Design and Modeling
In this chapter, we present the results of the previous chap-

ters. They use the concepts and principles developed and ex-
ploit the architectures, structures, mechanisms, and basic de-
signs previously proposed, to propose a modeling of a database
under MongoDB, which installs Mongoose. We will consider
that the database to be modeled under MongoDB is managed
by a single server machine and therefore, we propose the fol-
lowing design, which will be extensible by the design linked to
the mechanism of databases distributed in several data servers
according to the need for extension and evolution by other ap-
proaches or other research studies. For this purpose, we pro-
pose the model and the meta-model of MongoDB in the figure

7

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 8

Figure 8: The Functioning of mongoose with MongoDB

Figure 9: The conceptual model of MongoDB

9 and in the figure 10: Figure 9 presents a diagram that models
the MongoDB storage model by showing that each data col-
lection can have its index to simplify and improve the search
for the documents that constitute it. Each index is created by
one attribute or two for the double indexes, so these attributes
are the keys of the search inside the collections, knowing that
these attributes are of simple or complex type. Some attributes
can reference another document in another place. We need a
schema for each type of document to validate its structure and
content based on rules formed by conditions or uses of a specific
treatment. Based on the conceptual data model of MongoDB
developed in the figure9, we can propose the logical data stor-
age model of MongoDB, presented in the figure 10: Figure 10

Figure 10: The MongoDB logical Meta-Model [18]

presents a logical storage model established under Mongoose
to master storage under MongoDB. This modeling in Figure 10
shows that MongoDB’s NoSQL system is built by entities that
materialize models that represent ”EntityVariation”. this last
element is formed by properties with the possibility of using
aggregations, which in turn represent groupings of properties.
According to figure 10, a property bears its name and represents
an attribute or an association and can be a simple type, list, or
reference to another object with another characteristic that spec-
ifies its level of obligation of its presence and the cardinalities
established between related objects.

3.8. Mapping of relational database components to MongoDB

We present in this part, the result of our analytical work
to define the scope of our migration approach, as well as the
transformation of the elements to be migrated in the table 1,
to define the correspondence between the components of the
relational database and those of MongoDB:

Table 1 illustrates the list of components that make up the
relational databases and their projection in the MongoDB sys-
tem, which offers an equivalence of some components, allows
to redeploy of others, and presents the rest of the components
which have two types: components without added value to databases
established under MongoDB and components that require a new
transformation to be developed. Also, the third column presents
the correspondence, according to our approach, of the first two
types of components. After carefully reading Table 1, we can
assume that our migration approach can convert some compo-
nents directly,while others require them to be converted and mi-
grated to their respective roles in the target system. In the di-
agram below, we represent the components that need the new
transformation into different forms to accommodate the new
system and its roles: Figure 11 shows just the items in Table
1 that require a special migration to develop again. These ele-
ments are the relationships between tables and the join between
them that represent the semantics of relational systems, as well
as the triggers and views that represent the elements that guar-
antee the proper functioning of relational systems. Figure 11
frames the special work that can be an axis of criticism of our

8

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 9

Table 1: Transformation of Relational Components to MON-
GODB

Element in In MongoDB Elements in
RDBMS or Mongoose MongoDB
Records(values) Exist Object (values)
table Redeploy Collection
Row Redeploy Document
Name of table Redeploy Name of collection
Column Redeploy Field
Column Name Exist Field Name
Data type Redeploy Data type
Check Redeploy Mongoose + schema+

constraint attribute Validator+
function JavaScript

Unique Redeploy Mongoose + schema
constraint + attribute unique
Not null Redeploy Mongoose + schema
constraint + attribute required
Primary Redeploy identifier when
key creating the

document object
Index Redeploy index
Foreign key Redeploy Foreign key
relational Ship To migrate To migrate
Dependence Redeploy Schema in
between fields Mongoose
View (stored To migrate To migrate
select query)
Trigger To migrate To migrate
Structure Not supported not supported
definition and without and without
queries added value added value
CRUD Redeploy Insert, delete
operation , update, and

find operations
join tables To migrate To migrate
usual Redeploy aggregation,
functions time management,

and string functions

Figure 11: Elements to migrate and find its implementation in
MongoDB

approach to improve it by other scientific researchers. During
this section, we unveiled our approach to analyzing and model-
ing the two pole systems of migration: source and destination,
by presenting the elements of the source system to be migrated,
then the proposal for a storage model to simplify the tasks,

which come after, as well as the data storage models for the
other system, without forgetting the modeling of the function-
ing of MongoDB and Mongoose to understand our projection
system better. Finally, this part is concluded with the proposal
of our philosophy of correspondence between these two sys-
tems. The work during this section builds our guide which will
guide us in the steps that follow, thus delimiting the perimeter,
the framework of our work, and the lines of action for our in-
tegral approach. This Analysis and Modeling form a research
stage, presented to the community of researchers either to use
it for other reasons or to criticize them to improve and enrich it.

4. Foundations of our TMSDRDND Migration Approach

4.1. Alignment and Adopted Principles
Before starting to define our approach, which is based on

the analysis and design made in the chapters above, we have
deemed it useful to outline a set of principles and characteristics
to be attributed to our approach for the highlight. These char-
acteristics and principles align with the development of the ap-
proach, and during its stability phase reach the maturity phase.
These characteristics and principles can be summarized:

• Modular: this is the first principle adopted which makes
it possible to divide the overall objective and the inte-
gral treatment of the approach into sub-parts, to serve the
simplicity of its perception, the understanding of its ob-
jective, their maintenance, their improvement, their evo-
lution, their correction and criticism by other researchers
or interested units, as well as its development, the verifi-
cation and validation by unit tests, the speed of execution
because they make it possible to launch the execution of
several parts simultaneously and to increase the perfor-
mance

• Structured: to improve the internal architecture of the
approach and facilitate its design and implementation.

• Global: because it covers all elements of the relational
database.

When designing its foundations, and given that MongoDB as
the destination system for this migration uses JSON as the data
storage base, and Mongoose to mount the data structure, as well
as JavaScript or NodeJS as the language to enrich the Mongoose
schemas and to add other features that do not exist in the native
MongoDB system, also without forgetting the characteristics
and principles mentioned above, we have decided to divide our
approach into three axes, the first two of which run in parallel
and that these three axes complement each other to end up in
a single point. These axes will attack the structural component
which is oriented towards the creation of schemas equivalent to
the data structures of relational systems under Mongoose, the
second axis aims to recreate the semantic components with the
appropriate transformations, in JavaScript or NodeJS functions
and programs in one file which is separate from the first file of
schemas, to build the functional and semantic aspect of BDDs
in the MongoDB system, as for the third axis, it will use an

9

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 10

Figure 12: The architecture of “TMSDRDND Approach”

ETL to extract data from relational databases and perform the
necessary transformations using results from the first two axes
to load the data into JSON files, forming the database resulting
from the migration.

4.2. Global Architecture

The architecture of our approach, named ”TMSDRDND
Approach”, aims to define a precise framework for its process-
ing, which subdivides the databases into three types of data,
each of which is transformed according to a specific model
to MongoDB system. This architecture is clear in the figure
12: Figure 12 above presents the architecture of our overall
approach, showing its layers and steps, as well as the results
that will be established following the models and meta-models
developed in the previous chapter. For the TMSDRDND Ap-
proach to be complete, it must be based on the models that de-
scribe the relational system and the MongoDB system, and in
turn, they must be following the meta-model of each system.
In the definition of the TMSDRDND Approach, we will go
through two stages: the first, in the ”TSRSNLayer” layer, which
aims to transform the structural and semantic data into the Mon-
goDB model according to a set of transformations, which re-
spect the model defined previously, by producing a file which
controls the structure and another in JavaScript which contains
the functions stored and ready to be used. While the ”MDRSN
Layer” layer, consists of using an ETL, which will begin its
processing by extracting the data according to the proposed
models, then it carries out the necessary transformations ac-
cording to the transformation rules of the ”TSRSNLayer” layer.
Finally, it loads the data from the source into JSON files by ex-
ploiting the result files of the processing of the ”TSRSNLayer”
layer. During processing in the first layer, two operations are
launched: the first to process the structural component and the
second to process the semantic component. These two layers
cannot run in parallel hence the reason for the separation into
two layers. In the following paragraphs, we will reveal the

Table 2: Matching Table Constituents in MONGODB

Element Corresponding
Table Collection
Column Field
Row Document
Data Type Type of each field
Dependency Schema in
between fields Mongoose
Null Deleting the Field
values from the document
Automatic Field with a
fields value returned by a

JavaScript function
Constraint will be covered

in the next section

different rules for transforming each element of the relational
database into the MongoDB system according to each compo-
nent, whether structural, semantic, or data.

4.3. The structural component of the TMSDRDND approach

4.3.1. Transform tables
The tables in a relational database represent the most inter-

esting structure that includes the database data, which will be
exploited by the other components of the database. Note that
this table has a name, and a set of columns, each of which has a
specific name and type. This structure implicitly defines the de-
pendency between the different fields of the table. Tables also
contain the rows of data and other rules that ensure that the data
is valid. For this transformation, our approach proposes the ta-
ble 2 to define the corresponding of each element of the table:

considering that the table is a main element of relational
systems by representing data containers; Table 2 above presents
the conversion and the correspondence between its elements to-
wards the constituents of the MongoDB documents developed
in the models of the previous chapter. Since the different el-
ements of the second column of the table already exist in the
MongoDB system, we can consider that the table 2 defines the
different rules for transforming the components of a table from
the relational database to MongoDB, respecting the specifics
of MongoDB. This correspondence will be applied during the
transformation phase of the data structure. tables in the rela-
tional model use a fixed structure, which will be applied to all
rows of data. In the case of the absence of data in a line com-
pared to the structure of the table, then the system stores in
its place the NULL value to fill its reserved space. However,
in MongoDB, storage is based on documents in JSON files,
whose structure is flexible and does not add NULL values to
documents. For this reason, a transformation has been pro-
posed that processes tables vertically and at the same time hori-
zontally, considering the particular cases of automatic columns,
constraints, NULLS values, and the other elements of Table 3.
This way will make it possible to transform each line into a
Document and the whole of the table into a collection of docu-
ments. At this level, there will be a program that takes care of

10

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 11

Figure 13: Transformation of ”default value” constraint in
MongoDB

Figure 14: Transforming the “Unique” Constraint in MongoDB

applying the rules of Table 3 during the transformation of each
Document, which guarantees a total and fluid transformation of
all the tables.

4.3.2. Transform Rules: default, unique, Not Null, and check
In the definition of the tables, sometimes to check the valid-

ity of the data to be entered for some columns, we must add to
some columns rules that control their data. For example, enter-
ing a negative age makes no sense and can generate false results
during calculation operations. To this end, database designers
have created check rules to define the validity interval of data
to simplify its control. Also, they created a unique constraint,
not null and default to better control the domains of validity of
the data. In this section, and when defining the rules for trans-
forming the various components of the relational database to
the MongoDB system, we will transform each element when
defining the schemas of the corresponding documents thanks to
the attributes offered by Mongoose. In the figures 13 to 18, we
present the transformation rules of these constraints in the form
of examples:

• The constraint that defines the Default value:

Figure 13 illustrates how to transform the ”Default” constraint
applied by relational systems. The addition of this constraint in
the mongoose schemas allows the application of the same rule
of the default value applied to a data column in the relational
system. This constraint will force the existence of a data field
in all the documents formed based on this schema, and if the
document is provided without this value, then the system will
add this mandatory attribute with a value proposed by default.
This mechanism allows us to not lose this information building
the structure of the relational systems during the migration, by
finding its corresponding and at the same time allowing us to
keep the existence of certain attributes so that they are used
during the analysis.

• Constraint defining the uniqueness of the Value in the
column:

Figure 14 illustrates how to transform the ”unique” constraint
applied by relational systems. The addition of this constraint in

Figure 15: Transforming the “Not Null” Constraint in Mon-
goDB

Figure 16: Value interval constraint transformation

the mongoose schemas allows applying the same rule of the
unique value applied to a data column in the relational sys-
tem. This rule made it possible to store a set of data and at
the same time preserve the uniqueness of some information for
each stored document. This mechanism can serve the search by
this attribute later

• The constraint that prohibits the null value in a column
(Not Null):

Figure 15 illustrates how to transform the ”Not Null” constraint
applied to values of one column by relational systems. Adding
this constraint in Mongoose schemas enforces the same non-
empty value rule applied to a data column in the relational sys-
tem. This rule made it possible to oblige the stored documents
to have this attribute obligatorily and with a value. this rule
makes it possible to specify the minimal structure of the docu-
ments of this schema.

• Check the validity domain of the data (Check constraint)/For
data that belongs to an integer interval:

Figure 16 illustrates how to transform the check constraint ap-
plied by relational systems to define a validity interval for nu-
merical data. Adding this constraint in Mongoose schemas en-
forces the same rule applied to a column of data in the relational
system to define the valid range of data stored in all documents.
This rule made it possible to apply functional rules that meet the
requirements of database users so that the information stored in
the documents makes sense and allows us to make decisions.
The figure 16 shows an example in which the valid range of
data is based on numeric values, which we can specify as their
minimum and maximum value.

• Check the validity domain of the data (Check constraint)/For
data that belongs to a list of values:

In figure 17, we present our transformation to define valid data,
this rule allows you to specify the valid data, but this time in the
form of a list of accepted values.

11

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 12

Figure 17: Transformation of the constraint that checks mem-
bership in a list of values

Figure 18: Transformation of the constraint that checks regular
expressions

• Check the validity domain of the data (Check constraint)/For
data that respects a rule or regular expression:

Figure 18 illustrates how to transform the ”check” constraint
applied by relational systems, which aims to define regular ex-
pressions to validate the data to be stored according to a specific
field. These rules and constraints come for more control over
the data to be stored in our database and to offer more credibil-
ity and reliability of the stored data, in projection in the func-
tional requirements of the database. These constraints represent
information from the database that frames other information.
Older researchers neglect this information in their migration ap-
proaches. In our approach and thanks to Mongoose, we found
an adequate transformation to these constraints for MongoDB
to keep the advantages offered by the relational model.

4.3.3. Transform primary keys
The primary key in the tables of relational databases plays

the role of the identifier to identify one row among several, and
therefore its value must be unique and not null to meet the need.
Generally, relational databases build an index for each primary
key. In MongoDB, we find that for each newly created docu-
ment, MongoDB assigns it a unique and non-zero identifier to
identify it among several. This is exactly the role of the pri-
mary key in the relational system, except that sometimes the
primary key in the relational system carries in addition to its
role additional and useful information, which does not exist in
the MongoDB mechanism. So in our transformation, we keep
the identifier assigned by MongoDB and we add a new field to
the documents to represent the transformation of the primary
key from the relational tables. For this transformation, we pro-
pose the following method which transforms the primary key
into an ordinary field with unique and not null characteristics,
without forgetting its index. But for document id, it will be
added automatically by MongoDB. The figure19 shows an ex-
ample that explains this transformation: Figure 19 illustrates

Figure 19: Transformation of the primary key in MongoDB

how to transform the primary key applied by relational sys-
tems. This figure shows that the transformation of the primary
keys is a composition of the previous transformations of the Not
Null and unique constraints with the establishment of an index
linked to this primary key. This mechanism is implemented au-
tomatically by relational systems to guarantee that information
having a meaning and generally entered by a user, is unique and
not empty throughout the data container so that it is the iden-
tifier of a line of data and the base of the search indexes. This
mechanism does not exist in MongoDB, and for more preci-
sion, MongoDB adds for each Data document new automatic
and unique information as an identifier in the form of a code
without any meaning whose objective is to keep the uniqueness
of this document. this last mechanism makes it possible to store
the same document several times without any control over the
data contained, but rather MongoDB adds for each one a new
code so that it is the identifier without any final intention. How-
ever, the notion of the primary key relates to a verification of
uniqueness based on the stored data themselves and is no longer
based on new information added systematically. This can gen-
erate errors when extracting or deriving new data because of
ambiguities during processing. Older migration approaches ne-
glect the transformation of primary keys and treat them as ordi-
nary attributes. Thanks to the Mongoose schemes, we managed
to find an adequate transformation to the primary keys to offer
their reasons for being in the relational system alongside the
identifier offered by MongoDB.

4.3.4. Transform foreign keys
Foreign keys in relational databases and MongoDB

Foreign keys in relational databases play a very important and
complex role. Beginners believe they are simple fields that
carry values like any other. However, foreign keys refer to other
information in other tables or the same table, representing a re-
lationship or association between several tables, and defining
rules that control the addition, update, and deletion of rows in
different tables, linked together by these foreign keys. These
last rules are named by the referential integrity constraints. Ref-
erential integrity constraints play a very important role to avoid
entering unmatched data into the other tables, the purpose of
which is to link the tables so that they receive data that de-
scribes a single global entity, but this information is dispatched
on several tables according to their structures and fields of in-
formation. This relationship, which represents an association
between several tables and is materialized by the primary key
and the foreign key, can be used in several forms to generate a
lot of direct or indirect useful information. This is the power
of the relationship system. In relational databases, it is possible

12

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 13

to enable or disable the mechanism related to foreign keys, and
also possible to change this mechanism a bit by what is called a
violation of referential constraints, whose objective is to over-
ride the rejection of a delete or modify operation in a table re-
lated to the primary key of another table by setting to NULL
as value, set to a default value or propagation of the triggering
update operation this event. The mechanism related to foreign
keys is very powerful, which aims to harmonize data between
tables, and that an operation on one table can affect another, to
create integrity between the data entered, also to keep a level of
the data link between the tables, to not have data in tables which
do not have a continuation or complement in the other tables.
This says that the tables even if they are visually independent,
basically are linked together or functionally form a single table
without data redundancy and with minimal storage. According
to this concept, it can be said that thanks to the foreign keys,
the tables form a single table with articulations, which escape
the duplicate data and increase the optimization of the stored
data with a definition of the dependency between the fields, the
determination identifiers of the units stored in the tables and
the creation of supervisors to supervise the rows of the tables in
relation. This mechanism subsequently made it possible to gen-
erate more information not stored in the tables and to develop
the model and the data exploitation languages and other very
interesting tools. Unfortunately, this concept does not exist in
MongoDB, nor through Mongoose, and MongoDB users add
fields in the same way just to create the opportunity to be able
to link rows from these tables to render dispatched information
across multiple data collections or to generate other useful in-
formation. To better understand the notion of the foreign key,
we can summarize the functionalities of this special field as well
as the operations linked with it by the following list:

• Linking rows of related tables

• The link between the two tables

• Supervision of CRUD operations of related tables

• Reading data dispatched between tables

• Generate other information not stored in tables and ex-
pand calculation possibilities

• Prohibit certain operations

• Propagate or correct other operations and information (prop-
erties on update cascade, etc.)

• Verify data integrity (types, size, and match)

• Admit the activation and deactivation of its service

• Allow creation or deletion operations.

In this phase, it is legitimate to ask the following question: what
is the point of recreating the same concept of the foreign key in
a MongoDB database? In MongoDB, we can add a field to a
document by specifying that it is referenced by another field
in another document (the form of foreign keys in MongoDB),

Figure 20: Setting a foreign key in MongoDB by reference

but for MongoDB, it stops there, and it doesn’t have any ad-
ditional effect. Of course, you can notice that in this case the
two fields are linked, but the action on one of the two fields
of the first document will have no effect on the other field of
the other document, which allows us to say that even this writ-
ing is possible, but the two fields are independent and each
can have any value without any effect on the other. In Mon-
goDB, a document can play the same role as a row of data in
the relational model. By the same logic, we can say that doc-
uments in MongoDB are not linked to each other even if they
have fields whose definition references another field in the other
document. In the figure 20, we present an example that defines
the writing of the foreign key in MongoDB: Figure 20 illus-
trates how to define foreign keys in MongoDB using schemas
in Mongoose, providing an example of a schema whose name
is ”userSchema” to enclose the Documents represented by this
schema. The schema of the example in figure 20 includes an at-
tribute named ”company” to reference another document from
another schema named ”Company” and its type is exactly the
type of the identifier of this latter schema. At this level, it is fun-
damental to say that the power and the spirit of the relational
system are contained in the associations and their operations.
These associations will disappear from the conceptual level to
the logical level during Merise modeling and are replaced by
one or more foreign keys so that they are exploitable by the join
operation at the time of data selection to reap its fruits. From
this explanation, it is clear that a transformation of a foreign key
is part of the transformation of a trace of a relation between two
tables. To eliminate confusion, we explain each feature of the
foreign key with a simple description as follows:

• The link between the rows of related tables: it allows
you to define a link between two fields, the first of which
plays the role of a primary key and the other the role of
the foreign key.

• The link between two tables: through the link between
the primary key and the foreign key, it is clear that one
contains data and the other contains their complement of

13

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 14

data.

• Allow or refuse creation or deletion operations: it pro-
hibits the deletion of a row from the source table as long
as the value of the primary key is used in the other table
as the value of the foreign key, also it prohibits the en-
try of a foreign key value without it existing in the other
table as a primary key.

• Supervise CRUD operations in related tables: Monitor
CRUD operations in foreign key-related tables to verify
data and achieve the previous functionality.

• Render the data dispatched between tables: it allows the
link of the rows of the tables in relations by using the
similarity of the values of the primary key and the foreign
key to building a long row of data and form from the two
rows coming from the two tables.

• Generate other information not stored in the tables and
expand the possibilities of calculation: it allows the ap-
plication of various conditions between the values of the
primary key and the foreign key to building each time a
new calculation formula according to the need.

• Propagate or correct other operations and information:
By violating constraints by adding one of the properties:
on delete set to null, on delete set default, on delete cas-
cade, on update set null, on update set to default, on up-
date cascade

• Verify data integrity: the foreign key requires referential
integrity constraints that ensure equality of data types,
sizes, and values between the primary and foreign fields

• Admit the activation and deactivation of its service: the
existence of the foreign key implements the functional-
ities mentioned above, which makes the insertion, dele-
tion, and modification of data quite restrictive, which blocks
the system in certain cases particular, and makes this mech-
anism beneficial, it is possible to activate or deactivate it
as needed without it being deleted.

From this, it is clear that writing the foreign key in a document
under MongoDB only favors the restitution of data sequences
dispatched in several documents, as well as the generation of
new data not stored in the documents. In the figure 21, we
present the different advantages of the foreign key in the re-
lational model: Figure 21 comes to offer an overview of the
functionalities offered by foreign keys and the implicit mecha-
nism implemented by relational systems to guarantee the role
and operation of foreign keys. From figure 21, it is clear that
foreign keys represent the only way to link the rows of data to
extract the integral information dispatched between the tables
linked and the containers, and also to derive other new informa-
tion, without forgetting that foreign keys form the means of re-
lational systems to guarantee consistency by supervising CRUD
operations in tables linked together by foreign keys. Based on
the figure 21 and before diving into the proper transformation
of the foreign key, it is useful to discuss their functionalities

Figure 21: Foreign key features and mechanisms

concerning the destination system (MongoDB), to see which
functionalities require a transformation to MongoDB and the
others which their transformation does not have any benefit in
the future database in the destination system.
The projection of foreign key functionality in the MongoDB
system
After watchful reading of the two systems, it is clear that:

• In the relational model, the foreign key defines a rela-
tionship between two tables to supervise the CRUD op-
erations applied to these tables to keep the consistency
between their data by a close link between their rows. If
we want to transform this mechanism in MongoDB, then
we will have difficulties at the level of collections (Cor-
responding table in MongoDB), because they bring to-
gether documents of different natures and structures. In
addition, documents can have different data and struc-
tures. At this level and thanks to Mongoose, we can
define a schema that defines a structure for Documents
that represent the same species or the same class of data.
In this structure, you can define a relation between the
structures of all documents. Mongoose does not allow
the definition of a structure on the collections, and there-
fore one cannot define a binding between the collections
at the MongoDB or Mongoose level, so the binding be-
tween the documents is largely sufficient to replace the
bindings defined by the foreign key.

• Thanks to Mongoose, you can add a control that con-
trols the validity of a document when creating, modify-
ing, or deleting through a method to be developed. This
method will offer control of CRUD operations in all the
concerned Documents, as well as their descendants ac-
cording to the figure 8.

For this, we propose the following list which summarizes an
analysis of the nine features of the foreign key cited above to
have for each feature a value among these three values: ex-
ists, needs to define its transformation, or has no value added in
MongoDB.

14

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 15

Table 3: Actions Embedded in Foreign Keys

Functionality Positioning in MongoDB
Linking rows of related tables To migrate
The link between the two tables To migrate
Allow or deny create To migrate
or delete operations.
Monitoring CRUD operations To migrate
of related tables
Restitute data dispatched Exist
between tables
Generate other information Exist
not stored in tables and
expand calculation possibilities
Propagate or correct other To migrate
operations and information
(properties on update cascade, etc.)
Verify data integrity Without adding value
(types, size, and match)
Admit the activation and To migrate
deactivation of its service

Table 3 presents an exhaustive list of foreign key features
and classifies them into three categories: features that already
exist in MongoDB, features that require a specific migration to
create real foreign keys in MongoDB, and the rest of the fea-
tures whose transformation are irrelevant for MongoDB.
The transformation of the foreign key to the MongoDB sys-
tem
To transform a foreign key from a relational database table to
MongoDB, this field must be added to the schema defining the
documents of the same species, with the addition of a valida-
tor as an attribute in this schema, to validate or invalidate the
CRUD operations applied to their documents. This validator is
developed as a JavaScript method to concretize the mechanism
of the foreign key. This validator should be added to all doc-
ument schemas affected by this foreign key relationship, each
of which monitors one or more CRUD operations. By bring-
ing this mechanism closer, we add validators to the documents
that hold the primary key to control the modification and dele-
tion operations, also for the schema that holds the foreign key,
we add validators to control all possible update operations. In
the figure 22, we present a small example that shows the gen-
eral structure of this transformation with the validator field and
the foreign key field: Figure 22 shows how to transform for-
eign keys by our approach, exploiting the MongoDB way ex-
plained in figure 20, and adding another validator attribute to
guarantee the implementation of JavaScript functions to repre-
sent the features of the foreign keys presented in Figure 21, as
well as to migrate the functionality explained in Table 2. The
JavaScript functions represent a direct implementation of sev-
eral implicit functionality and operations that we need to de-
velop as part of this transformation. These are attributes with
an automatic mechanism implemented by the relational system
to manage the update of dispatched rows in several tables linked

Figure 22: Our foreign key transformation according to the
TMSDRDND approach

together via these attributes, intending to guarantee consistency
between the stored data. Also, they play a very important role
in the restitution of data dispatched in several tables, as well
as the derivation of new data. Knowing that these attributes
have no presence during the entity-association diagram, which
presents the basis of the relational model, and they would ap-
pear to replace or to represent the relations that have been sup-
pressed at the physical level, presenting one of the pillars of
the semantic aspect of relational systems alongside its structural
role. So its transformation leads to one of the solutions: find a
new transformation to the relationships between the tables and
get rid of the foreign keys or find a new transformation of the
foreign keys with their built-in mechanisms. In our approach,
we have proposed a transformation that is based on the sec-
ond choice knowing that it is close to relational data containers
and promotes all the advantages offered by foreign keys, which
involves the transformation of consistency from relational sys-
tems to MongoDB. It should be noted that researchers trans-
form these attributes as being ordinary fields, and neglect their
functions automatically integrated into relational systems.

4.3.5. Transform associations
During this section, we deal with the most critical part,

which transforms the relational aspect in relational databases
towards a non-relational system, keeping the possibility of gen-
erating other new information not stored in the database and
avoiding joins as much as possible. During this part, we will
see the transformation of associations between tables in a way
adapted to the object-oriented spirit used by JSON in Mon-
goDB, without losing the powers of relational systems. To bet-
ter understand our contribution in this part, we invite you to
discover the different rules for transforming the relationships
between the tables, which we have classified according to 6
types presented in the following graph: Figure 23 helps to clas-
sify the different relationships between tables into 6 different
types, each of which requires a specific rule to transform it
to fit the spirit of MongoDB. Watching the complexity of the
transformation of foreign keys, as well as the complexity of its

15

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 16

Figure 23: The different relations of the relational model

Figure 24: Transformation of many-to-many binary relation-
ships in the TMSDRDND approach

exploitation by MongoDB, then we decided to try as much as
possible to avoid or reduce foreign keys, by reducing the re-
lated collections. For this purpose, we propose the following
rules to transform the different types of associations between
tables, into forms adapted to the functioning of MongoDB and
close to the manipulation of objects and their exploitation.
Transformation rule 1: for binary relations of the type (many-
many): this type of association is considered complex, and we
propose for it as a transformation rule, the creation of a list
of identifiers of the documents with the left collection in each
related document from the right collection and another list of
identifiers of the related documents from the right collection in
each related document from the left collection. The association
will disappear and in return, the two lists appear in each docu-
ment with the disappeared association. This transformation is
explained by an example presented in the figure 24: Figure 24
illustrates how to transform a relationship of type (many-many)
according to rule 1 presented above, by presenting an example,
which includes two entities linked together via a relationship

Figure 25: Transformation of one-to-one binary relationships
in the TMSDRDND approach

of this type. This transformation will generate two collections
whose documents each include a list of identifiers of related
documents on the other side to simplify searches and minimize
the need for joins between these two collections. This way is
close in mind to dealing with objects on the one hand, and on
the other hand, it will greatly reduce the need to join the two
Collections, and it conforms to the join operation proposed in
our approach as a translation of relational join. These structures
must be defined in Mongoose.
Transformation rule 2: for binary relations of type (one-one):
We propose for this association to be removed and translated
to an internal document into a larger document, like the spirit
of the internal objects. The figure 25 shows an example to bet-
ter understand this transformation: Figure 25 illustrates how to
transform a relation of type (one-one) according to rule 2 pre-
sented above, by presenting an example, which includes two
entities linked together via a relation of this type. This transfor-
mation will generate a single collection whose documents each
include another linked document on the other side to simplify
searches and minimize the need for joins between these two
collections. The internal document may be absent to represent
the minimum cardinality 0 seen in the example in Figure 25. In
this case, and using the example in the figure 25 to clarify our
idea, the Module document on the (0,1) side will be the largest
element that will contain one more attribute, whose name is ex-
actly the name of the other participating entity in the relation,
”PraticaleSide” in our case, and its value is indeed the docu-
ment which represents a row in the table ”PraticaleSide” which
relates to its corresponding row in the table ’ ’Module”. The
minimum cardinality 0 will be translated in the Module docu-
ment’s schema in Mongoose by the [required: false] attribute,
and its meaning is that there are modules without the Practice
Side. In the exploitation phase of this model, we resort to using
the notation adopted by the objects to access the internal objects
without the need to do any joint operation. This transformation
eliminates the joins resulting from an association of this type,
knowing well that the main objective of this type of association
is the verification of the existence of a correspondent of each
document. This significantly reduces the total number of joins
in this new system.

16

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 17

Figure 26: Transformation 1 of one-to-many binary relations in
the TMSDRDND approach

Transformation rule 3: for binary relations of type (one-many),
whose entity on the side of the cardinality (one) doesn’t partici-
pate in another relation: Also for this association, it is proposed
that it be deleted and translated by a list of internal documents
in a larger document. The figure 26 shows an example to bet-
ter understand this transformation: Figure 26 illustrates how to
transform a relation of type (one-many) according to rule 3 pre-
sented above, by presenting an example, which includes two
entities linked together via a relation of this type. This transfor-
mation will generate a single collection whose documents each
include a list of related documents on the other side to simplify
searches and minimize the need for joins between these two
collections. In this case, and using the example in the figure 26
to clarify our idea, the TrainingProgram document on the (1, N)
side will be the largest element that will contain one more at-
tribute, whose name is exactly the name of the other participat-
ing entity in the relation, ”Module” in our case, and its value is
indeed a list of the Modules documents which relate to the only
TrainingProgram they contain. We can have the cardinality (0,
N) instead of (1, N), and in this case, the minimum cardinal-
ity 0 will be translated in the schema of the TrainingProgram
documents in Mongoose by the attribute required: false, and its
meaning is that there is TrainingProgram which does not hold
any module. This structure brings the notion of internal or em-
bedded objects closer to other larger objects as in the case of
rule 2, which allows eliminating joins operation by this trans-
formation, creating a default join between external and internal
documents of our collections.
Transformation rule 4: for binary relations of type (one-many),
whose entity on the side of the cardinality (one) participates in
another relation: this association is considered a complex rela-
tion, of which we propose for it to be transformed according to
a rule similar to the second transformation rule presented above.
The figure 27 shows an explanatory example of this rule: Fig-
ure 27 illustrates how to transform a relationship of type (one-
many) according to rule 4 presented above which treats the type
of relationship with an option of participation of the entity on
the one side in another relationship, by presenting an example,
which comprises two entities linked together via a relationship
of this type. This transformation will generate two collections:
the first is identical to the situation in figure 26 and the second is
formed by documents of the entity on the one side to simplify
searches and minimize the need for joins between these two
collections and also to offer the possibility of participating in
other calculations depending on the relationship with the entity
on the one side. Transformation rule 5: for reflexive binary

Figure 27: Transformation 2 of one-much binary relations in
the TMSDRDND approach

relations: This type of relationship is designed in the logic of
relational databases to be the subject of successive joins and as
many times using the same table, also by building an object hi-
erarchy according to the direction of the relationship. This type
is generally approximated by ordinary binary relations, but it is
a very special type in its logic, modeling, and processing. The-
oretically, this kind of relationship favors an infinite number of
joins of such a table with itself using aliases. In this relationship
and especially at the moment of joining, we will create two vir-
tuous tables’ copies from the same table, so that the one placed
on the left plays a different role than the one that will be placed
on the other side, even if they are from the same table. But in
practice, we make a single join or double join of such a table
with itself. Consequently, we will transform this binary asso-
ciation according to the rules defined before transforming the
binary associations by considering their cardinalities.
Transformation rule 6: for non-binary relationships: for this
kind of complex association, it is proposed to convert it into
an independent file, by adding to the documents in the collec-
tion of this file attributes of the association if they exist and
other additional attributes, each of which represents a partici-
pating table in the association as a foreign key. The structure of
these documents must be defined using Mongoose. The figure
28 shows an example to better understand this transformation:
Figure 28 illustrates how to transform a non-binary relationship
according to rule 6 presented above, by presenting an example,
which includes three entities linked together by this type of re-
lationship. This transformation will generate four collections,
each of which groups the documents from one entity among
the three presented in the example, except for the fourth collec-
tion, which models the relationship between the documents of
the other collections using foreign keys, which each refers to
a participating document in this relation. It is the only trans-
formation identical to that used in the relational system, and
luckily this kind of relation represents almost 5 percent of the
relations forming a relational database. In the relational model,

17

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 18

Figure 28: Transformation of non-binary relations in the TMS-
DRDND approach

Figure 29: Defining indexes in MongoDB

these relations disappear and are replaced by foreign keys to
be restored thanks to the join operation. To transform the re-
lations, we must rely on the relations themselves to find a new
form without foreign keys and joins or we must base ourselves
on the transformation of the foreign keys and the join operation.
Given the difficulty of merging all tables into a data container
without going through foreign keys and given the importance of
the join operation in deriving new unstored data, so we leaned
towards transforming foreign keys and the join operation, as
well as the relationship transformations as shown above. This
way guarantees the power of derivation of the new data and ben-
efits from the resemblance between the tables to the relational
systems with the Documents in MongoDB to validate this trans-
formation.

4.3.6. Transform indexes
When a collection is created, MongoDB automatically gen-

erates an index on the -id field. This index cannot be deleted,
because it guarantees the uniqueness of this identifier. To cre-
ate an index yourself, you must use the create index function,
the syntax of which is as follows: Figure 29 shows the syntax
for creating an index yourself using the createIndex function.
This function accepts two parameters: the first represents the

Figure 30: Transformation of simple indexes using the TMS-
DRDND approach

Figure 31: Transformation of complex indexes using the TMS-
DRDND approach

attribute that makes the base of the index and the second allows
to express of the list of index options such as unique, name, par-
tialFilterExpression, sparse, expireAfterSeconds, hidden, and
storageEngine. The options parameter can be formed by one
or more options among these options presented [19]. Simple
indexes
Unique indexes guarantee that a given value will appear at most
once in the index. We have seen previously that such an index
was systematically placed on the id field of documents in a col-
lection and that it was also impossible to delete it! In the current
state of our people collection, we couldn’t put that kind of in-
dex on the name field because most of the values in this field
have multiple occurrences. On the other hand, we could create
a unique index on the firstname field, if each one of their values
is unique: Figure 30 illustrates how to define a simple index
based on a single attribute, through an example that shows that
an index is created for the attribute called ”prenom”. This kind
of index requires a unique option to guarantee the functioning
of the index which represents a means to speed up the search
in this collection. From now on, any attempt to insert a person
with a first name already present in one of the documents in our
collection will be refused. Putting a unique index on a field that
has a very high probability of containing duplicates is a pretty
bad decision. Moreover, now that our first name field is subject
to a uniqueness constraint, we will not be able to insert more
than one document that does not contain this field.
Complex indexes
An index can cover more than one field: this is called a com-
pound index. In this type of index, the order in which the fields
are listed is important. Let’s create a composite index named
idxNomAage which will focus on the name and then on the
age of the people: Figure 31 shows an example to clarify how
to create a complex index. The index created in this example
will be ordered documents in collections by increasing age val-
ues, then within each of the different age values, this index will
be ordered alphabetically by name. When a compound index
whose prefix is not a character string, an array or a subdoc-
ument is used with a collation. A query that doesn’t use the
correct collation for the indexed text field can, however, rely on
the index prefix. This element is not neglected by our integral
approach since it forms part of the data of relational databases
so as not to have the loss of data during migration between the
two systems: relational and MongoDB.

18

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 19

Figure 32: The different types of triggers (Triggers)

4.4. The transformation rules of the Semantics pane

4.4.1. Transform Triggers
Triggers are programs whose definitions contain two parts:

the second defines the processing and the service provided by
this program and the first presents the terms of its call, which is
automatically triggered following an insertion, modification or
delete a row from a specific table; when the trigger is called by
the ”Delete” operation, it therefore keeps the history of deleted
rows in a virtual table named ”deleted”, and if its call is de-
fined by the ”insert” operation, then it keeps the history of new
rows inserted in another virtual table named ”inserted”, also if
its call is triggered by an ”update” operation then this opera-
tion considers that the old values of these rows are considered
deleted and stored in the ”deleted” virtual table, at the same
time, it considers that the new version of these rows are con-
sidered as newly inserted rows, whose values will be stored in
the ”inserted” virtual table of the new version of the rows of
the table will be readable by the trigger Also the triggers can
use any physical table of the database in their treatment. The
main purpose of triggers is to control the movement of data for
a given table, embodied by insert, delete, or update operations.
In relational databases, these operations interact on the rows,
but in the case of MongoDB, we reason by the documents. On
the other hand, you can transform a row of data from a table in
the relational database into a document under MongoDB. This
can mean that the check that the trigger performs on a row of
data in the relational system will be translated in MongoDB by
a control of the document corresponding to this row of data.
In the figure 32, we present the four types of triggers: All of
these triggers presented in figure 32 have one of these objec-
tives: replace one or more operations with another processing
or prohibit this or these operations outright, so the trigger can be
defined to add additional processing of a CRUD operation to the
table of the trigger or others, and finally, we can have a trigger
to validate or cancel the CRUD operation triggering the trigger
following a condition to be respected. To better see the interest
of triggers, we propose the example of an air travel management
database and its reservations: theoretically in this example and
without the existence of triggers, the ”Reserver” table accepts
all the operations of insertion of a new line, this can generate
several reservations in a flight that far exceeds the capacity of
the aircraft used in this flight, creating the mismanagement of

Figure 33: The Modelization of the Functioning of the Triggers

customers and reservations. In this example, the other rules and
constraints can only control the data according to data columns,
but the management of flight reservation lines is only possible
through the mechanism of triggers which validate the reserva-
tion operations as long as they do not exceed the capacity of the
aircraft used in the flight concerned. The participants in a trig-
ger can be summarized by the figure 33: Figure 33 summarizes
the axes of action of the triggers, which are defined to serve
one single table, to ensure control of the operations for updat-
ing the data stored in this table. Also, this figure shows that it
is a type of action of the trigger in the case of the execution of
a monitored update operation, and the power to do actions on
the virtual tables of its table to develop its treatment. To trans-
form each trigger from the relational system to the MongoDB
system, we will create specific functions in Node.js, and place
them in Mongoose in the schema that defines the structure of the
documents concerned by this trigger. These schemas define the
structure of all documents in the collections stored in the JSON
file. Our functions were developed by NodeJs, which is con-
sidered their mother tongue to use JSON files. To complete the
principles of triggers, we need to bind the concerned operation,
which triggers the trigger, with its function developed through
the validation attribute in the schema hosted in Mongoose.

• To do this, we must identify the table monitored by the
trigger.

• The CRUD operation(s) that trigger execution of the trig-
ger.

• The nature of the trigger processing (complementary, val-
idation, or replacement).

• The condition to validate or invalidate the CRUD opera-
tion in the second case is the nature of the trigger.

During the transformation phase, we will develop the transfor-
mation of the table into a schema of the corresponding docu-
ments, by adding a part that adds the redefinition of the CRUD
operation that triggers the trigger, to add the method that per-
forms trigger processing in the same way as foreign keys. Re-
lational databases without triggers can lead to disasters. For

19

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 20

Figure 34: Views in MongoDB

Figure 35: Views in MongoDB – second version

example, the flight reservation table, which uses aircraft with
a specific capacity, can allow new rows to be inserted until the
capacity of the aircraft is exceeded, unless there is a trigger
controlling this insertion so that it does not exceed the capac-
ity of the aircraft. In our case, we consider any transforma-
tion of databases without trigger as a reform of a handicapped
database. Old migration works neglected this axis when pro-
cessing it, but we tried to find an adequate transformation to the
triggers. This step opens the door to future research to validate
or improve this transformation.

4.4.2. Transform Views
Views in relational databases are queries for the selection

or extraction of data stored permanently on the hard disk, the
result of which is calculated instantly following a call, and ac-
cording to a simple calculation formula or complex. The result
of a view is visualized as a table and also used as a table to use in
join operations or as a data source of another extraction query or
to interact on their rows either for l addition, deletion, or modi-
fication. When creating a view, you must specify the formula of
its query to save. This query represents a calculation formula,
an extraction that aims to select or derive other information not
stored in the database. This technique aims to subdivide a prob-
lem to simplify its solution or save a calculation formula that
must be re-executed several times. Our approach proposes to
transform this technique into MongoDB by one of the following
two methods: Figures 34 and 35 show two different examples
to present two different ways to create a view in MongoDB. The
first one uses the createView function and the second uses the
runCommand function which represents a command ready to
be executed at any time, and both functions need four parame-
ters to specify the name of the view, the data source of the view,
and the treatment that forms the basis of the view. Views oper-
ate equally on collections or other views and necessarily reside
in the same database. They are sort of read-only collections and
when they relate to collections, they can use the same indexes
as these. It is however impossible to modify the indexes of a
collection from a view based on this one, also it is impossible
to rename a view (it will have to be destroyed with a drop op-
eration, exactly as we did for collections that were used for our
many examples, then recreated it). Of these four parameters,
collation is the only one that is optional. The view name will
be the first of the required parameters, followed by the source
which designates the target view or collection, and the pipeline

Figure 36: Joins in the relational model [1]

which is an array containing your aggregation pipeline. If you
prefer to use commands, you will prefer the last syntax above:
The views are part of the components of relational databases
but unfortunately, it has been neglected in old migration work.
In our approach, this element has found a new transformation.
Its concept can be used in improving queries under MongoDB.

4.4.3. Transform the join operation
The power of relational databases has presented by the joins

between the tables because, with their help of them, we can re-
construct the global information contained in all the tables. This
global information holds information on the objects in action
and their actions between them with visibility on the multiplic-
ity of each action. Also with the help of joins, we can deduce
other information, describing the flight of operations, effects,
and actions contained in our database, revealing the semantic
side of the data stored and not stored explicitly in the tables.
The joins show this information and represent a vital operation
that holds the spirit of the relational model. Without a join, no
one has the courage in the relational model to talk about the
normalization of tables, the separation of data by the entity, the
dependence between fields of the same entity, or the relation-
ship between tables. Joins are operations that tell developers
”go ahead and do whatever you want, I’m able to reconstruct
data distributed across tables, provided they have a common
field, and they’re chosen carefully ”. Therefore, the migration
and transformation of the join from the relational system to the
MongoDB system is an essential operation. In the relational
system, there are several types of joins, which are presented in
the following graph: Figure 36 shows the different types of join:
inner join, right join, left join, cross join, full join, and outer
join. These types of joins are used to extract the global infor-
mation dispatched in several data containers through the inner
join, on the other hand, the other types present non-normal join
options to serve essentially the derivation of new data which re-
quires a gymnastic join. To be able to transform the joins from
the relational system to the MongoDB system, it must be under-
stood that the join involves two stages: the Cartesian product
between two tables and the restriction according to a condition,

20

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 21

Figure 37: Join operation in the TMSDRDND approach

which then determines the type of join. However, the Carte-
sian product between the JSON files is not technically possible,
and if logically possible, will not be the right solution, espe-
cially with giant files. Indeed, suppose that each file contains
a million objects, then its product will contain 1000 Milliards
objects, to be transmitted to apply a restriction operation on all
these objects to have as a result, almost half of the square root
of this number of rows, which is not possible and is not opti-
mal. In this case, we must think of another solution that offers
the same result as joins but in a different way. The join opera-
tion forms the primary axis of relational systems to extract and
exploit the relationships between tables, but since it uses the
Cartesian product between tables, it will be the wrong solution
for BigData and BigTable because it exponentially increases the
volume of data to be processed. In our contribution, we suggest
transforming this operation by a JavaScript program, whose ob-
jective is to minimize the collections to be joined using the re-
striction condition, recursively with the construction of the new
virtual collection until ’on reaching the minimal virtual collec-
tion that represents the solution of the join. The figure 37 ap-
proximates the principle of this transformation: Figure 37 illus-
trates our way to transform the join operation which is based on
a condition of restriction to apply at the first time for one collec-
tion, which will subsequently be the restriction condition for the
other collection, and so on until all collections are completed to
produce the final result. This restriction will be applied to Doc-
uments by considering the notation of objects offered by the
spirit of JSON. It is a crucial operation for relational systems
and the pivotal element for exploiting relations for data deriva-
tion, but its mechanism is poorly designed in relational systems
and appears as its weakness in handling BigData. MongoDB
offers an alternative way of doing this that relies on pipelined
queries. Our approach proposes another form that is based on
iterative restrictions, and each represents the restriction condi-
tion of the other until the last table by forming small data con-
tainers so that they are merged to have a single result of joining.
This axis can be a way of research either to validate this way or
to improve this concept.

4.5. Data migration using an ETL
Data migration is the final step in our approach. This step

comes after building the schemas and models of our converted

Figure 38: Modeling of the migration ETL adopted by the
TMSDRDND Approach

database. Also, this phase concludes the work and at the same
time forms a practical test of our approach. This step uses all
the transformations carried out before in a well-defined order
to create the data container as well as its new functionalities
which will add up with the functionalities and powers of the
destination system (MongoDB), such as speed, availability, and
scalability. To better explain this step, we will propose an ar-
chitecture for our ETL which defines in detail the extraction
phase, then the transformation of the data according to the rules
defined in the previous steps, and finally the loading of the pro-
cessed and transformed data into the final files to import them
into MongoDB as the final version of the database. This final
version of the database must comply with the specificities of
the NoSQL system and precisely MongoDB also must have all
the data stored in the source database hosted in the relational
system, with the powers of the relational system such as the
generation of new data, the restitution of the global information
dispatched in several documents and the control of the validity
of the entered data.

4.5.1. The overall architecture of our ETL
To use ETL, we need to extract data from a relational system

according to its structural source to initiate the process of trans-
forming it according to its structural target. The final transfor-
mation can be accompanied by loading the data into the target
system according to the principle of multi-threaded parallelism.
In Figure 38 we show the ETL architecture used for this data
migration. Figure 38 presents the architecture of our ETL by
defining its three phases: extraction, transformation, and load-
ing of data. This architecture also presents the different stages
of each phase. According to this architecture, it is clear that the
extraction is directed by the schema of MongoDB as a desti-
nation system to know exactly the information we must extract
to transform it to their corresponding according to the specifici-
ties of MongoDB, and at the same time this step is driven by the
source system schema to know the location of the information
to be processed. Also according to this architecture, our system
performs a set of verification and validation tests to ensure the
database migration result.

21

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 22

4.5.2. The extraction phase
Data extraction starts at:

• Instantiation of the extractor, defining its configuration
as the extraction engine, by importing two schemas: the
schema of the extraction model, starting with the preci-
sion of the source data server, then establishing a connec-
tion with it, and then preparing the required at the begin-
ning of this phase: Objects, agents, and interfaces, and
finally install the target system schema produced by the
structural and semantic component transformation phase
to develop additional elements of various diagrams and
files of the target system.

• After import, the system loads the diagrams and models
of the individual components of the source, as well as the
prototypes and references of the components, and begins
the verification phase

• We then validate models, data structures, and processing
to avoid or minimize errors during the translation

• Finally, we start extracting the data and after validating
the model, load them into our objects precisely to put
all the data in the right place so as not to lose data and
transform all the data successfully.

4.5.3. The transformation phase
During this transformation phase, ETL starts with the fol-

lowing steps:

• Import and load transformation rules and filters created
by the first layer of the method.

• The ETL then performs the extraction of the data, copies
the extracted data, and puts each piece of information into
the corresponding object, which is the beginning of its
transformation process.

• Afterward, we need to order these objects and these pro-
cesses to facilitate the logical order to succeed in the
transformation phase.

• This step is followed by a normalization step to avoid
semantic errors, especially since the JavaScript language
is case-sensitive.

• After that, it’s time to start a general transformation.

• This step is followed by validation and integration of the
final data in preparation for data loading.

4.5.4. The loading phase
The final step can be to load the data into the target system

by importing the data in its final state. This step sets up the lat-
est version of the database in MongoDB, has it up and running,
and looks at the various constraints, rules, triggers, and other
components that make the database very rich and powerful.

5. Conclusion

Currently, NoSQL databases present powerful technologies
to manage BigData, which are implemented in environments
handling big masses of data like Google, Yahoo, Twitter, Face-
book, and search engines, because they need a power giant
in the storage and processing of these huge volumes of data
with a large number of users and simultaneous requests. Faced
with the limits presented by the old relational systems in the
management of BigData, and considering the data accumulated
by this old system during decades of exercise in the market,
which describes the feedback from the past, the situation of
the presence of these institutions, and their competitors, also
the future opportunities, then it is legitimate to think about mi-
grating this valuable information from relational systems to a
NoSQL system. With this in mind, several approaches and
studies are developed by researchers to satisfy this need, but
unfortunately, they did not achieve the objective because of the
weaknesses in their treatments or because of the lack of their
approaches, materialized by the absence of some main com-
ponents of these databases during its analysis and processing.
During this article, we have chosen MongoDB as the destina-
tion system for our migration approach, because it brings the
philosophy of relational systems closer and offers the possibil-
ity of transforming the majority of its components. Also during
this work, we proposed our new methodology for the analysis
and modeling of the two systems: source and destination of the
migration, by presenting the different stages of our methodol-
ogy. At the end of this step, we managed to present the models,
the meta-models of the two systems, the correspondence be-
tween their components that we qualify as necessary to start
the migration, as well as the components that require a spe-
cific translation. This work guided us towards the implemen-
tation of the overall architecture of our approach to migration,
which we called ”TMSDRDND”. This completed part defines
the framework and the perimeter of our approach and also rep-
resents the guide that clarifies our way of implementing this
approach and gives it the integral dimension. This architec-
ture shows that our approach is formed by two layers: the first
transforms the data structures and data of the semantics of re-
lational systems, while the second layer uses an ETL that we
have proposed its architecture and their mechanism, to physi-
cally migrate the data from the source system to the destination
system respecting the result of the first layer. We decided to
make two layers because they are separate and each requires
an admin launch. During the first layer, called ”TSRSNLayer”,
we process the two types of data: structural and semantic in
two stages which can be executed in parallel to produce two
files: the first presents the schemas which define the structure
minimum of the migration to the destination system, and the
second encompasses programs that approximate the semantics
of relational systems in MongoDB. The result of this layer will
be the pivot element to start the processing of the second layer
called ”MDRSNLayer”. Based on the first analytical part and
the overall architecture of our approach, we proceeded to de-
velop three other parts, each of which presents a set of rules and
the way to transform each component that is part of it. During

22

Erraji et al. / J. Nig. Soc. Phys. Sci. 5 (2023) 1089 23

the development of these three parts, we succeeded in dealing
with all the components of the parts: structural, semantic, and
the transfer of data via an ETL whose architecture and mecha-
nism has presented below. Knowing that there are components
that require the presentation of its mechanism implemented im-
plicitly and automatically in the relational system and not con-
sidered by MongoDB, to be able to propose the right transfor-
mation such as foreign keys, primary keys, the join operation,
triggers, and relationships between tables. This allowed us to
migrate a relational database completely with its advantages to
MongoDB, which we can reconcile by consistency at all times,
a clear data structure that defines the minimum data to be stored
for all documents, the data framing through validation condi-
tions, vertical and horizontal document validation, data deriva-
tion and extraction power, and storage optimization. In a sum-
mary, this approach guarantees the transformation of the ad-
vantages of the relational system to MongoDB by keeping the
advantages of MongoDB as a manager of BigData, by propos-
ing a new model, which can remove the need for relational
databases. This work presents a huge gain in the research com-
munity, an axis of scientific investment, and a real revolution in
the world of databases. In future work, we present an imple-
mentation for the different parts of the layers: ”TSRSNLayer”
and ”MDRSNLayer”, to pass to a heuristic definition, which
will be used in the elaboration of the agents, which concretizes
our intelligent approach.

References
[1] The digital universe of opportunities, Available:

https://www.emc.com/leadership/digitaluniverse/2014iview/executive-
summary.htm.

[2] Data is eating the world, Available:
https://whatsthebigdata.com/2017/04/18/idc-163-trillion-gigabytesof-
data-will-be-created-in-2025.

[3] O. J. Ibidoja, F. P. Shan, J. Sulaiman & M. K. M. Ali, “Robust M-
estimators and Machine Learning Algorithms for Improving the Predic-
tive Accuracy of Seaweed Contaminated Big Data”, Journal of the Nige-
rian Society of Physical Sciences 5 (2023) 1137.

[4] M. A. Okono, E. P. Agbo, B. J. Ekah, U. J. Ekah, E. B. Ettah & C. O.
Edet, “Statistical analysis and distribution of global solar radiation and
temperature over southern Nigeria”, Journal of the Nigerian Society of
Physical Sciences 4 (2022) 588.

[5] M. V. Sokolova, F. J. Gómez & L. N. Borisoglebskaya,“Migration from
an SQL to a hybrid SQL/NoSQL data model”, Journal of Management
Analytics 7 (2020) 1.

[6] V. F. de Oliveira, M. A. de Oliveira Pessoa, F. Junqueira & P. E. Miyagi,
“SQL and NoSQL Databases in the Context of Industry 4.0”, Machines
10.1 (2022) 20.

[7] I. Mearaj, P. Maheshwari & M. J. Kaur, “Data conversion from the tra-
ditional relational database to MongoDB using XAMPP and NoSQL”, In
2018 Fifth HCT Information Technology Trends (ITT) (2018) 94.

[8] M. G. Gopalan, C. Prasanna, Y. S. Krishna, B. Shanthini & A. Arulkumar,
“MYSQL to cassandra conversion engine.”, In 2017 Third International
Conference on Sensing, Signal Processing and Security (ICSSS) (2017)
503.

[9] Y. S. Wijaya & A. A. Arman, “A framework for data migration between
different datastore of NoSQL database”, In 2018 International Conference
on ICT for Smart Society (ICISS) (2018) 1.

[10] J. Kachaoui & A. Belangour, “MQL2SQL: A proposal data transforma-
tion algorithm from mongoDB to RDBMS.”, International Journal of Ad-
vanced Trends in Computer Science and Engineering in progress (2020).

[11] G. B. Solanke & K. Rajeswari, “Migration of relational database to Mon-
goDB and Data Analytics using Naı̈ve Bayes classifier based on Mapre-
duce approach”, In 2017 International Conference on Computing, Com-
munication, Control and Automation (ICCUBEA) (2017) 1.

[12] K. Černjeka, D. Jakšić & V. Jovanovic, “NoSQL document store transla-
tion to data vault based EDW”, In 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO) (2018) 1197.

[13] B. Namdeo & U. Suman, “Schema design advisor model for RDBMS to
NoSQL database migration”, International Journal of Information Tech-
nology 13 (2021) 277.

[14] S. Ghule & R. Vadali, “Transformation of SQL system to NoSQL system
and performing data analytics using SVM”, In 2017 International Confer-
ence on Trends in Electronics and Informatics (ICEI) (2017) (883).

[15] F. Yassine & M. A. Awad, “Migrating from SQL to NOSQL Database:
Practices and Analysis”, In 2018 International Conference on Innovations
in Information Technology (IIT) (2018) 58.

[16] K. Shiromoto, T. Hochin & H. Nomiya, “Integrated usage between re-
lational DBs and NoSQL DB”, In 2019 20th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD) (2019) 244.

[17] B. Jose & S. Abraham, “Exploring the merits of nosql: A study based on
mongodb”, In 2017 International Conference on Networks and Advances
in Computational Technologies (NetACT) (2017) (266).

[18] D. Sevilla Ruiz, S. F. Morales & J. Garcı́a Molina,“Inferring versioned
schemas from NoSQL databases and its applications”, In Conceptual
Modeling: 34th International Conference, ER 2015, Stockholm, Sweden,
Proceedings 34 (2015) 467.

[19] MongoDB Manual, Available:
https://www.mongodb.com/docs/manual/reference/method/db.collection.createIndex.

23

