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INTRODUCTION

The radiological examinations in dentistry can be classified 
into intraoral (with film or the sensor placed in the mouth) 
and extraoral imaging techniques. Extraoral imaging 
includes (1) panoramic X‑ray showing a curved section 
of the whole‑maxillo‑facial block (more or less mandible 
shape), and (2) cephalometric X‑ray showing a projection, as 
parallel as possible, of the whole skull. The cephalometric 
X‑ray may be achieved from the lateral side or from the 
anterior‑‑‑posterior view.

There is no doubt that having an exact and noiseless view 
of such images can offer an invaluable help to the dentist 
in better diagnosis and treatment. Most of prevalent 
techniques of dental imaging are going to be acquired, 
processed, and even evaluated in digital form; however, 
the low contrast and the noise pollution are inevitable 
problems. The proposed method tries in reduction of 
noise level in different kinds of the mentioned dental 
image types and provides a better visualization for 
the dentist and a good contrast to the noise ratio by 
numerical computation. Furthermore, the method is 

of benefit to real‑time image processing due to its fast  
response.

Several papers reported current methods in dental noise 
reduction, first of which proposed by Goebel[1] in 2005 
and was based on removal of a multiplying background 
using polynomial scaling and the A‑Trous multiresolution 
transform. In 2006, Frosio[2] proposed a mixture model made 
up of two Gaussian distributions and one inverted lognormal 
distribution to analyze the image histogram. A  similar 
approach was also proposed by Sayadi[3] for enhancing 
digital cephalic radiography using mixture models and local 
gamma correction. In 2008, Frosio introduced a filter based 
on the classical switching scheme in which the pulses were 
first detected and then corrected through a median filter.[4,5] 
One year later, Lucchese[6] reported a principled method 
for setting the regularization parameter in total variation 
filtering, which was based on the analysis of the distribution 
of the gray levels on the noisy image. Along with this 
research, Frosio[7] proposed a statistical based impulsive 
noise removal. The application of anisotropic nonlinear 
tensor‑based diffusion[8] in dental images was also reported 
in 2009 and 2010 by Kroon[9,10] for cone‑beam CT images. 
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Ju[11] also proposed the application of Ridgelet transform for 
denoising of the root canal image in dental films. In 2010, 
Serafini[12] used a gradient projection method for image 
denoising and deblurring on dental radiographies. More 
recently, in 2011, Bonettini[13,14] reported the application of 
the extra gradient method for total variation‑based image 
restoration from Poisson data and interior point methods 
for edge‑preserving removal of Poisson noise in dental 
radiographies.

In spite of the sophistication of the recently proposed 
methods, most algorithms have not yet attained a 
desirable level of applicability. All show an outstanding 
performance when the image model corresponds to 
the algorithm assumptions but fail in general and create 
artifacts or remove image fine structures. Among a great 
deal of denoising and deblurring methods introduced 
for digital images[15‑17] the mentioned list seems too 
short for a wide variety of dental images, the quality of 
which is of fundamental importance in diagnosis and 
treatment of diseases pertaining to dentistry. Dental image 
denoising problem seems to be better solved if a powerful 
signal/noise‑separating tool (e.g., wavelet analysis) is 
incorporated in the noise‑reducing diffusion process. In 
simple words, multiresolution and sparsity properties of 
wavelet transform on the top of edge preservation ability 
of nonlinear diffusion can make a significant help to the 
noise reduction process.[18]

Having this in mind, we proposed the application of 
wavelet diffusion in dental image denoising. Three 
different approaches to selecting the constant value of the 
nonlinear diffusion are proposed: the manual selection 
of l, semi‑automatic calculation of l, and the automatic 
method. In the final approach, a classification of image to 
homogenous and nonhomogenous areas is required subject 
to modeling the distribution of wavelet modulus. Two novel 
plans in this application are proposed: Laplace‑mixture 
model and circular symmetric Laplacian model.

The rest of this paper is organized as follows: In the “Material” 
section the material is illustrated and the proposed method 
is further elaborated in the “Wavelet Diffusion,” “The 
Manual and Semiautomatic Method,” and “The Automatic 
Method” sections. Quantitative results on natural noisy 
dental images are reported in the “Experimental Results” 
section. The method is discussed and conclusions are drawn 
in the “Discussion and Conclusion” section.

MATERIALS AND METHODS

Material

For evaluation of our algorithm, we used 104  images of 
cephal‑lateral, 38 images of anterior‑‑posterior, 27 images 
of intraoral radiology, and 12  panoramic images. The 

intraoral and panoramic datasets were recorded in Dental 
Department of Isfahan University of Medical Sciences and 
the rest of the dataset is obtained in Dental Department 
of Shahid Beheshti University. The dental apparatus for 
cephal‑lateral, anterior‑posterior, and panoramic imaging 
was a Planmeca ProMax X‑ray unit, and for intraoral 
images, a Planmeca intra X‑ray unit was utilized along with 
two sizes of Planmeca ProSensor sets in 33.6×23.4 mm 
and 39.7×25.1 mm with a resolution of 17  lines per  
millimeter.

Wavelet Diffusion

To clear up our method, we should consider that the 
nonlinear diffusion[8] technique relies on the gradient 
operator to distinguish signal from noise. Such a method 
often cannot achieve a precise separation of signal and 
noise. During last decades, discrete wavelet transform has 
also been introduced as a powerful denoising method;[19] 
however, wavelet shrinkage suffers from ringing artifact. 
To eliminate this artifact several methods such as cycle 
spinning[20] were suggested which usually increase the 
computational complexity.

Dental image denoising problem is better solved if a 
powerful signal/noise‑separating tool (e.g., wavelet 
analysis) is incorporated in the noise‑reducing diffusion 
process. In simple words, multiresolution and sparsity 
properties of wavelet transform on the top of edge 
preservation ability of nonlinear diffusion can make 
a significant help to the noise reduction process.[18] 
Furthermore, the time complexity of this proposed 
method is considerably lower than conventional nonlinear 
diffusion. This combination was employed by Yue[21] for 
speckle suppression in ultrasound images and it was 
proved that a single step of nonlinear diffusion can be 
considered equivalent to a single shrinkage iteration of 
coefficients of MallatZhong dyadic  wavelet  transform 
(MZDWT).[22]

Two years later in 2008, Rajpoot[23] extended the diffusion 
wavelet idea by investigating the ability of conventionally 
used orthogonal and biorthogonal filters like Haar, 
Daubechies, and Coiflet (undecimated form) to be replaced 
by quadratic MallatZhong filters. The steps of wavelet 
diffusion can therefore be classified in next steps:[23]

•	 Wavelet decomposition into lowfrequency subband 
( Aj ) and high frequency subbands (Wj

i ) 
•	 Regularization of high frequency coefficients (Wj

i ) by 
multiplication with a function p

•	 Wavelet reconstruction from lowfrequency subband 
( Aj ) and regularized high frequency subbands ( %Wj

i )

A two level structure of wavelet diffusion is shown in 
Figure 1[23].
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Regularization is the second step of the algorithm 
and the regularization function should be defined as 
P x y g x yj j j ( , ) ( ( , ) )( ) = −1  where g x yj( ( , ) )  can be of 
the form
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And  j x y,( )  is an edge estimate for each pixel which can 
be approximated by the modulus of high‑frequency wavelet 
subbands at each scale j  by

 j j
H

j
V

j
Dx y W x y W x y W x y, � ( ( , )) ( ( , )) ( ( , )) .( ) = + +2 2 2 � (2)

In implementation of algorithms based on nonlinear 
diffusion (Perona‑Malik diffusion, Anisotropic Diffusion, or 
new wavelet‑based approaches), the selection of proper 
value for the constant l  (in eq. 1) has a profound effect 
on performance of the denoising algorithm. We, therefore, 
proposed three different approaches in selection of this 
value. The first approach is manual selection of l  and 
finding an acceptable result with trial and error. The 
second method (semiautomatic) tries in calculating of l 
based on the information obtained from a homogenous 
area in the image, the location of which should be 
determined by the user. And, finally, in the third approach, 

the homogenous area is found automatically using a 
likelihood classification and cross‑scale edge consistence. 
The classification of the image to homogenous and 
nonhomogenous areas is subject to modeling the 
distribution of wavelet modulus which is proposed to be 
a Laplace‑mixture model or a circular symmetric laplacian  
model.

The Manual and Semiautomatic Method

Using a manual manner, we tried the mentioned method 
utilizing Haar wavelet with different values of l  (in eq. 1) 
and for different levels of shrinkage, the outcomes of which 
are presented in the results.

Furthermore, we examined semiautomatic and automatic 
methods for deciding on the value of the best l  for each 
image. In the semiautomatic method, according to,[21] the 
user choused a homogenous area of the image (X_homo), 
which could be simply located for dental images with a wide 
consistent region. Then, the wavelet transform was applied 
on X_homo and  j

homo x y,( )  was calculated as the modulus 
of high‑frequency wavelet subbands, in a similar manner to
� , j x y( ) . Then a new scale was defined:
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Now, the best fitting l could be estimated for each level by

Figure 1: A two‑level structure of wavelet diffusion[23]
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The Automatic Method

Rayleigh mixture model
In the automatic method for l  value, Yue[21] used a likelihood 
classification and cross‑scale edge consistence to find the 
homogenous areas of an image, automatically. They tried to 
find a threshold for classification of image to edge‑related 
class and the noise‑related category. So, a Rayleigh model 
was proposed for the speckle‑related modulus, since they 
assumed that both of speckle‑related and edge‑related 
wavelet coefficients are Gaussian distributed:

p x noise
x x

n n

| exp( ) = −� � ( ).� � 2

2

22
� (5)

Similarly, p x edge|( )�has the same form with � � e
2 .

Therefore the distribution of the wavelet modulus could be 
estimated by a Rayleigh‑mixture model:

p x p x noise p x edgen n( ) = ( )+ − ( ) | |( )1 � (6)

parameters of which can be estimated by the well‑known 
expectation‑maximization (EM) method that is an iterative 
numerical algorithm. The requested threshold for each 
scale can then be estimated by
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A coarse‑to‑fine classification method[24] can be used to 
determine the homogenous region U j :
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K  may be changed and the higher amount of K make more 
coefficients close to edges contributed in calculation of the 
threshold.

The Laplace‑mixture Model

In this paper, we also proposed another aspect in 
modeling the speckle‑related and edge‑related modulus. 
In 2006, Rabbani[25] suggested to design a maximum a 
posterior (MAP) estimator which relies on Laplace mixture 
distributions to better model the heavy‑tailed property of 
wavelet coefficients. We use a similar idea to model the 
speckle‑related modulus. Therefore, the wavelet modulus 

will be in the form of two Laplace pdfs:

p a Laplace a Laplace

a

ω ω σ ω σ

σ σ
ω

( ) = ( )+ −( ) ( ) =

−

. , . ,

exp

� �

� �

1 2

1 1

1

1

2

2





+ − −







( ) exp .

� �1
1

2

2

2 2

a
σ σ

ω � (9)

For this mixture model, we use the EM algorithm to 
estimate its parameters. This iterative algorithm has two 
steps. S k m �( , ) denotes variable S�at point �k  for iteration 
m�and we start the algorithm with m = 0  (first iteration), 
assuming the observed data  (k), the E‑step calculates the 
responsibility factors:
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where M is the number of coefficients and the parameters 
1
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The Circular Symmetric Laplacian Model

The most important novelty of this paper is based on 
modeling the speckle‑related modulus with a circular 
symmetric Laplacian[26,27] model. It is well known that one 
of the most important properties of the wavelet transforms 
is the persistence, i.e., the large/small values of wavelet 
coefficients tend to propagate across scales. This property 
means that the bivariate pdfs, such as circular symmetric 
Laplacian pdf,[26] which exploit the dependence between 
coefficients, better model the statistical properties of 
wavelet coefficients in comparison with univariate pdfs.[26] 
In this paper, we use a mixture of two circular symmetric 
Laplacian pdfs to describe the above property. Then we 
define a parent‑child schematics of the wavelet domain as 
illustrated in Figure 2.

Consequently,   in (9) should now be described by  % :

  ( ) ( ,� ( ))�k k k² = ( )1 2 � (13)

where 1 k( )  and 2 k( )  are the values in parent and child 
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scales. The following circular symmetric Laplacian pdf with 
local variance is proposed in order to describe that 1 k( )  
and 2 k( )  are uncorrelated while are dependent[26]:
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The bivarate mixture model then can be written as
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In the EM algorithm, the formulas will change to
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EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the 
proposed algorithms on different dental images. According 
to a great deal of similar papers, the denoising performance 
may be evaluated in different ways[16] like the method noise, 
the mean square error, PSNR, contrast‑to‑noise ratio (CNR), 
and the visual quality of the restored images. We chose 

Figure 3: The selected ROI samples

CNR and the visual quality for this performance because 
this application is designed for natural noisy images 
(i.e.,  the noisy images are not constructed manually); 
therefore, methods like PSNR and mean‑square error are 
not acceptable since we have no golden noise‑free image 
to which we may compare the denoised results of the 
proposed algorithm.

In order to have a meaningful comparison between 
mentioned algorithms, we use contrast‑to‑noise ratio 
(CNR)[28] defined as

MSNRROI
ROI= µ
σ

� (19)

CNR MSNR MSNRROI ROI
ROI ROI= − =

−
� �

�
1 2

1 2µ µ
σ

� (20)

where mROI is the mean signal value computed for a 
small region of interest (ROI). The desired ROI can be a 
homogeneous area of tissue with high signal intensity. The 
noise standard deviation (std)   is computed from a large 
region outside the object, which represents the background 
noise. The CNR represents the contrast between two ROIs. 
Figure  3 shows the images from which we selected ROI 
samples. The white circles show the noise ROIs and the 
black ones indicate the ROI representing a homogeneous 
area of tissue. Table 1 shows the CNR values for different 
dental images using discussed methods.

In Figure 4, the results of the manual method described 
in the “The Manual and Semiautomatic Method” section 
are shown. Figures  5‑8 are also demonstrating the 
performance of the automatic algorithm using the Rayleigh 

Figure 2: Illustration of neighborhood[26]



Kafieh, et al.: A mixture model in wavelet diffusion

Journal of Medical Signals & Sensors

Vol 2  | Issue 2  |  Apr-Jun 2012108

Figure 5: The comparison of different automatic methods in anterior‑posterior images. Left image is the original one, the performance of the automatic 
algorithm with the Rayleigh mixture model (middle left), Laplace mixture (middle right), and circular symmetric Laplacian (most right)

Table 1: The CNR values of various automatic methods
Original 
image

Rayleigh 
mixture 
model

Laplace 
mixture 
model

Circular symmetric 
Laplacian mixture 

model

Anterior posterior 2.9149 25.7589 27.2239 38.8813
Cephal‑lateral 41.6131 60.6960 69.6491 86.3141
Intraoral 13.6414 22.7863 28.3643 43.4711
Panoramic 6.0102 12.5698 13.9564 31.8771

mixture model, Laplace mixture, and circular symmetric  
Laplacian.

The other important aspect considered in dental image 
denoising is the ability of the filtering method in retaining 
the possible cavities on dental images. For this purpose, 
we collected new series of intraoral images with natural 
cavities on them and examined the cavity preserving ability 
of the method. Furthermore, we made radiographic images 
from a healthy extracted dent and then applied an artificial 
cavity to determine the mentioned ability. Figure  9 and 
10 demonstrate the results of the circular symmetric 

Laplacian mixture model method for cavity preserving. As 
it can be seen in Figure 9, the left column demonstrates 
two extracted dents with natural intrinsic cavities and the 

Figure 4: The results of choosing different values of l for different levels in the manual method
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right column shows the filtered images with the proposed 
method, preserving the local cavities. Similarly, it is obvious 
in Figure 10 that the manually applied cavity (Fig. 10, left) is 
filtered with the new method and the result (Fig. 10, right) 
has a good preservation on this cavity. The main advantage 
of this aspect is the reality that in clinical applications it is an 
important feature not to miss the cavities due to denoising 
and unfortunately this problem is prevalent in most of 
common denoising techniques which are usually found in 
software sold along with dental imaging equipment.

DISCUSSION AND CONCLUSION

In this paper, a particular combination of wavelet shrinkage 
and nonlinear diffusion for dental image denoising was 
proposed. For this purpose, wavelet diffusion was used 
and its threshold is selected automatically using the 
Laplacian mixture model and circular symmetric Laplacian 
mixture models for speckle‑related modulus. The circular 
symmetric Laplacian mixture model could make a better 
model of data because of its compatibility with heavy tailed 

Figure 8: The comparison of different automatic methods in panoramic images. The left image is the original one, the performance of the automatic algorithm 
with the Rayleigh mixture model (middle left), Laplace mixture (middle right), and circular symmetric Laplacian (most right)

Figure 6: The comparison of different automatic methods in Cephal‑lateral images. The left image is the original one, the performance of the automatic 
algorithm with the Rayleigh mixture model (middle left), Laplace mixture (middle right), and circular symmetric Laplacian (most right)

Figure 7: The comparison of different automatic methods in intraoral images. The left image is the original one, the performance of the automatic algorithm 
with the Rayleigh mixture model (middle left), Laplace mixture (middle right), and circular symmetric Laplacian (most right)
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structure of wavelet coefficients besides their interscale 
dependence and produced better CNR in comparison with 
other models. The method also has an acceptable speed 
even when implemented in MATLAB™ without using mex 
files  –  Math Works, Inc., Natick, MA, USA.[29] This sounds 
quite promising for real‑time application of this method in 
dental offices.
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