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Introduction

Brain–computer interface (BCI) provides a direct 
communication channel between a subject’s brain and a 
computer by using electroencephalogram (EEG) signals.[1] It 
improves the quality of life for some patients that suffer 
from a neurological disorder called locked-in syndrome, 
e.g., the amyotrophic lateral sclerosis (ALS). Some existing 
implementations of BCI are mainly based on utilizing the 
P300 wave, which was shown for the first time in[2] to be 
an event-related potential and was later utilized in[3] as a 
control signal in BCI systems. The P300 wave is a positive 
deflection in the EEG around 300 ms after visual or auditory 
stimuli for normal young adults.

The visual P300-BCI is a synchronous device that enables 
subjects to spell words or demand an object by focusing 
their attention on symbols or images in a matrix displayed 
on a computer screen. In this BCI protocol, the sequence of 
symbols or images is flashed in a random order and the subject 
tries to discriminate a desired symbol or image (target) during 
a random sequence of target and non-target stimuli (oddball 
paradigm).[1,3] In the oddball paradigm, the subject focus 
is on detecting target events, and ignores the non-target 
events. Target events, on the average, produce larger P300 
potentials than non-target events.[4] Thus, by detecting the 
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P300-ERP pertaining to a target image, the subject’s intention 
can be recognized, and a sequence of such detections can 
lead to, for instance, spelling a word that was intended by 
the subject. Extracting P300-ERPs from background EEG and 
environmental noise is the main challenge in ERP analysis. 
The ERP has low signal-to-noise ratio (SNR) and is a transient 
signal, making ERPs difficult to detect. In spite of this, it is 
very desirable to correctly detect ERPs by efficiently utilizing 
a minimal number of EEG channels to reduce calculations.

Typically, a P300-based BCI system has four components, 
namely preprocessing, feature extraction, channel 
selection, and classification. Although improving any one 
of these parts can improve the performance of the system 
as a whole, in this paper, we focus on feature extraction 
and channel selection. In many existing P300-BCI systems, 
due to the large number of electrodes and long durations of 
recorded EEG signals, one has to deal with extensive data 
streams that produce a large number of features, which 
in turn would cause over-fitting in the classifier. Using a 
minimal set of effective features and channels prevents the 
over-fitting problem and reduces calculations. As for feature 
extraction, in existing schemes, either a set of effective 
features is extracted for a given channel set as in[5- 7], or a 
set of effective channels is selected for given feature set as 
in.[8- 11] However, optimal choices for features and channels 
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are subject-dependent, and may depend on the BCI 
protocol as well. In this regard, we propose a scheme for 
joint selection of features and channels for each subject.

Feature Extraction

The discriminating features in P300-ERPs may be time-
dependent, frequency-dependent, or time–frequency-
dependent. In[8,11], pre-processed signal samples, and in[12], 
frequency-domain features (Fourier transforms of segmented 
ERPs) are fed to the classification algorithm. However, 
since the ERP is a transient signal, time–frequency features 
are more appropriate. Time–frequency features can be 
obtained by the wavelet transform, which is an efficient tool 
for multi-resolution analysis of non-stationary and transient 
signals. In[13], the continuous wavelet transform (CWT) is 
used for extracting time-frequency features of the EEG, 
and the T-student algorithm is applied for choosing those 
features that are more effective and discriminant, resulting 
in significant improvements. One obvious drawback of the 
CWT is that it requires excessive calculations.

The discrete wavelet transform (DWT) is used as a powerful 
denoising and feature extraction tool to detect the P300-ERPs 
from EEG epochs. In[14,15] a Daubechies 4 wavelet is used for 
removing noise and unwanted frequency components from 
the EEG in adults and young people. In[9], the DWT is applied 
to the dataset IIb of BCI competition 2005. Although the 
results are relatively accurate, the number of channels and 
features are excessive. In[16], the discriminating features are 
the coefficients of the DWT of the signal, and a weighted 
feature vector is used for further improvements. It was noted 
that the effective features are in 1–8 Hz frequency band.

In this paper, we take the coefficients in the effective sub-
bands of the DWT of EEG signals as their discriminating 
features, where effective sub-bands are identified via the 
five-fold cross-validation procedure. The mother wavelet is 
Daubechies 4 (db4), which is suitable for detecting changes 
in EEG signals.[17] The beginning part of the impulse response 
of the decomposition low pass filter and the end part of the 
impulse response of the decomposition high pass filter for the 
db4 are near zero in the MATLAB wavelet toolbox. We force 
such small values to zero by truncating the corresponding 
DWT coefficients, which causes 12% to 30% reduction in the 
number of features, yet produces satisfactory results.

Channel Selection

In[12], all EEG electrodes (64 channels) are used for signal 
classification. Although it involves a significant amount 
of calculations, the accuracy of BCI results is not very 
satisfactory. To address such shortcomings, various methods 
have been proposed in the literature to identify the more 
effective channels. In[8,9], the training data is divided into 
several partitions (17 partitions in[8] and 10 partitions in[9]), 

and for each partition, effective channels are obtained by 
recursively eliminating the lesser effective channels. Then the 
classifier algorithm is applied on each partition, and voting 
is used on the outputs of classifiers to detect P300-ERPs. 
Although partitioning of the training data and using a 
separate classifier for each partition reduces calculations, 
but as we will show later, further improvements are possible.

Another approach is to use the Fisher criterion score 
(FCS)[18,19] to identify the effective channels, which may 
result in not selecting a number of highly correlated 
channels. A channel is effective for signal classification if the 
sum of FCSs for all features in that channel has a high value. 
In contrast, the Bhattacharyya criterion is simpler, and is 
calculated directly from the feature vector of each channel 
individually. The main drawback of these methods is that 
correlated channels that may produce better results may not 
be selected because of their low FCSs. In[20], a binary version 
of PSO algorithm is used for channel selection among all EEG 
channels that may include correlated channels. Although 
they showed that their method outperforms sequential 
floating forward search algorithm, but selecting from all 
channels (without first eliminating the lesser effective ones) 
increases calculations with no apparent benefit.

We present a two stage approach for identifying a 
minimal subset of effective channels. We begin by sorting 
channels using the Bhattacharyya distance in decreasing 
order and eliminate 50% of channels that have smaller 
distances. We then identify the more effective channels 
in the remaining channels using the improved binary 
particle swarm optimization (IBPSO) algorithm. In this 
way, we limit the search space and processing time of the  
IBPSO algorithm.

The rest of this paper is organized as follows. The two 
P300-BCI datasets that we use are described in Section 2. 
In Section 3, we present our proposed scheme that includes 
preprocessing, feature extraction and minimal feature 
selection, classification, and the two-step channel selection. 
Section 4 contains experimental results. Discussion and 
conclusions are given in Sections 5 and 6, respectively.

P300-BCI Datasets

In order to benchmark our proposed scheme, we use two 
different P300-BCI datasets, namely the dataset IIb from the 
third edition of BCI competition 2005 for two subjects,[21] 
and data recorded in a P300 environment control paradigm 
by Hoffmann et al.[11] for eight subjects. The protocol of each 
dataset is briefly explained below.

Dataset 1
The P300 speller paradigm[3] of BCI competition 2005 displays 
a 6 6×  matrix of characters [Figure 1a] to each subject. Each 
row and each column in the display are flashed at random, 
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and the subject’s task is to focus on characters in a given 
word, one character at a time. Two out of 12 illuminated 
rows or columns contain the desired letter (in one row and 
in one column). Thus, one P300-ERP is produced when the 
row/column of the expected letter is illuminated.[21]

This dataset was recorded for two different subjects A and 
B. For each subject, 64 channels are sampled at the rate of 
240 samples per second for 15 trials per character. Figure 1b 
shows the position of EEG electrodes. The recorded EEG 
is band-pass filtered from 0.1 to 60 Hz. As the 60 Hz cut-
off is way above the highest frequency components of 
P300, we will low pass filter the dataset signals to further 
reduce their additive noise. The training and the testing 
datasets consist of 85 and 100 characters, respectively. As 
such, the number of corresponding epochs for each subject 
are 85 12 15=15300× ×  and 100 12 15=18000× × , 
respectively.

Dataset 2

In this dataset, as shown in Figure 2a, six images include 
a television, a telephone, a lamp, a door, a window, and a 
radio are shown on a laptop screen to eight subjects (four 
disabled and four healthy subjects).[11] The disabled subjects 
were all wheelchair-bound but had varying communication 
and limb muscle control abilities. The images are flashed in 
a random sequence, one image at a time, one image being 
the target one, and the rest are non-targets. A block consists 
of six images, each flashed once. Similar to the P300 speller 
paradigm, when the target image is flashed, a P300-ERP is 
produced. For each subject, the dataset consists of four 
sessions, each having six runs. The numbers of blocks are 
randomly chosen between 20 and 25, i.e., on the average, 
22.5 blocks of six flashes were displayed in one run. Hence, 
on the average, each subject generates 540 target trials 
(4 sessions × 6 runs × 1 target × 22.5 blocks = 540) and 
2700 non-target trials (4 sessions × 6 runs × 5 nontargets 
× 22.5 blocks = 2700). The sampling rate of EEG signals is 
2048 samples per second and 32 electrodes are recorded 
from Figure 2b.

Materials and Methods

Figure 3a and b show the block diagrams for training and 
testing of our proposed scheme, respectively. For training, 
the preprocessing module includes filtering, artifact 
reduction, and data segmentation. Features are extracted by 
discrete wavelet transform, and truncated to remove near-
zero coefficients. A five-fold cross-validation procedure[22] is 
utilized to select the best sub-bands by using BLDA classifier 
on the first eight channels selected by the Bhattacharyya 
criterion. As in[8], the extracted features are normalized to 
zero mean and unit variance. To select the best channels, we 
disregard 50% of channels whose Bhattacharyya distances are 
smaller than those of the remaining channels (32 channels 

for Dataset 1 and 16 channels for Dataset 2), and apply the 
remaining channels together with their selected sub-bands 
to the IBPSO module. In the sequel, the main modules in 
each block diagram in Figure 3a and b are described.

Preprocessing

In general, ERP epochs are heavily contaminated by noise, 
and are difficult to detect in few trials. As in[5,6], signals from 
each channel are band-pass filtered (0.1–30.0 Hz) using a 6th  
order forward–backward Butterworth filter. The bandwidth 
of 0.1–30.0 Hz covers the frequency range of important 
EEG rhythms (delta (0.5–4.0 Hz), theta (4.0–7.5 Hz), alpha 
(8.0–13.0 Hz), and beta (14.0–26.0 Hz)). The Windsorizing 
method described in[11] is used to reduce the effects of large 
amplitude outliers caused by eye movements, blinking, or 
subject’s movements. In doing so, signal amplitudes above 
the 90th  and below the 10th  percentiles are clipped. After 
each flash, we use the first 700 ms of recorded signals 
in both datasets. This window is long enough to capture 
all required time features for an efficient classification, 
although, the P300 component is expected to occur around 
300 ms after the stimulus.[8]

Sorting Channels by Bhattacharyya Distance

The efficiency of each channel can be measured based on 

Figure 1: (a) The matrix used in the P300 speller paradigm (b) the position 
of electrodes

ba

Figure 2: (a) Six images used in[11], (b) the position of electrodes

ba
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its ability to discriminate signals pertaining to target and 
non-target patterns in the training dataset. To do so, we 
use a statistical measure, e.g., the Bhattacharyya distance 
(BD) that reveals the degree of difference between the two 
respective patterns via a real valued scalar[23,24] defined by

BD=
1
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where ⋅  denotes the determinant of a matrix, m1 is the 
mean vector of target pattern signals, m2 is the mean 
vector of non-target pattern signals, and C1 and C2 are the 
corresponding covariance matrices.

The value of BD provides a quantitative measure for 
sorting channels based on their pre-processed signal 
samples in the training datasets. To obtain target and non-

target preprocessed signal samples, each segment of the 
preprocessed signal is down sampled by a factor of 4, which 
still satisfies the Nyquist rate for the preprocessing band pass 
filter. For example, Figure 4 shows the BD values for Subject 
A in the P300 speller dataset IIb, obtained by extracting 
42 preprocessed signal samples from a single channel. 
We use the sorted channels for two purposes, namely, 
for selecting eight initial channels that will be utilized for 
finding the best sub-bands of wavelet coefficients, and for 
identifying those channels that can be used by the IBPSO 
algorithm.

Feature Extraction

Wavelet transform (WT) has been extensively used in ERP 
analysis due to its ability to effectively explore both the 
time-domain and the frequency-domain features of ERP.[22] It 
is also superior to the short time Fourier transform (STFT). 
This is because the STFT’s window is fixed, resulting in a 
possible loss of some information on fast changing signals; 
which is in contrast to WT that estimates the low frequency 
information of the signal by using expanded windows and 

Figure 3: (a) Block diagram of the proposed scheme for training, and (b) for testing

(a) (b)



Perseh and Sharafat: Feature and channel selection by DWT and IBPSO in P300- based BCI

Journal of Medical Signals & Sensors

Vol 2  | Issue 3  |  Jul-Sep 2012132

the high frequency information by utilizing short windows. 
As such, WT can provide an efficient analysis of non-
stationary and transient signals.

Wavelet analysis can be performed either in the continuous 
mode (CWT) or in the discrete mode (DWT). The DWT 
involves less computation, is simpler than CWT, and can 
be implemented via digital filtering techniques. The DWT 
decomposes signal x n[ ]  into different frequency sub-bands 
with different resolutions using the scaling function 
(φ j k n, [ ]) and the wavelet function (ψ j k n, [ ]), where j  and 
k  are integers. These functions are the dilated and shifted 
version of φ n[ ] and ψ n[ ], defined by

φ φj k

j
jnn k,

2= 2 2[ ] − 
−

− � (2)

ψ ψj k

j
jnn k,

2= 2 2[ ] − 
−

− � (3)

The DWT projects the original signal into a set of basis 
functions built from translations and scaling of the 
wavelet function (also called the mother wavelet). The 
DWT coefficients are obtained by convolving x n[ ]  with 
ψ j k n, [ ]. The DWT employs a discrete-time mother wavelet 
whose dilation and translation parameters are integers. The 
contracted and dilated versions of the wavelet function will 
match the high-frequency and low-frequency components 
of the original signal, respectively. The DWT can be 
implemented by multi-resolution analysis (MRA) through 
the application of digital filter banks.[25] The procedure for 
MRA via dyadic filter banks for decomposing a signal x n[ ]  
is schematically shown in Figure 5. Each stage consists of a 
high-pass filter ( h nHigh [ ] ) corresponding to ψ j k n, [ ] , a low-
pass filter ( h nLow [ ] ) corresponding to φ j k n, [ ], and two down 
samplers. The decomposition process of x n[ ]  via dyadic 
filter banks is described below.
1.	 A mother wavelet is chosen to obtain the filters’ impulse 

responses h nLow [ ]  and h nHigh [ ]
2.	 The values of A n1 [ ]  and D n1 [ ]  are obtained by 

convolving x n[ ]  with h nLow [ ]  and h nHigh [ ] , respectively
3.	 The values of A n1 [ ]  and D n1 [ ]  are divided by 2 

to get the approximation coefficients CA n1 [ ]  (i.e., 
the low frequency part of the signal), and the detail 
coefficients CD n1 [ ]  (i.e., the high frequency part of the 
signal), respectively. This is the first level of wavelet 
decomposition.

4.	 The DWT decomposition process continues the same 
as in 1) above for the low-pass branch in Figure 5. The 
values of CA n1 [ ]  is further decomposed to CA n2 [ ]  and 
CD n2 [ ]  by using h nLow [ ] , h nHigh [ ] , and the two down-
samplers.

5.	 By continuing the wavelet decomposition up to 
level j , the output of the dyadic wavelet transform will be 
the detail coefficients CD CDj1, ,

 and the approximation 
coefficients CAj  (i.e., the approximation coefficients of 
the last decomposition level). Each of these j +1  parts 

of the wavelet coefficients corresponds to the signal 
information within a specific frequency sub-band.

Obtaining wavelet coefficients for the j th  level can be 
summarized by

A n CA n h nj j[ ] [ ] [ ]−= 1  Low � (4)

D n CA n h nj j[ ] [ ] [ ]−= 1  High � (5)

CA n A nj j[ ] [ ]= 2 � (6)

CD n D nj j[ ] [ ]= 2 � (7)

Note that because of down-sampling in the dyadic structure 
in Figure 5, the DWT is a shift-varying transform.[26] In 
contrast, the stationary wavelet transform (SWT), is shift-
invariant.[27] In the SWT, the scales are dyadic but time steps 
at each level are not. Moreover, the SWT is a non-orthogonal 
transform with temporal redundancies.[28] In our case, using 
the shift-invariant SWT that entails more calculations, does 
not significantly improve the classification accuracy as 
compared to using the DWT.

Selection of a mother wavelet and a proper decomposition 
level are very important in the DWT. Choosing the mother 
wavelet for detecting P300-ERPs can be difficult because 
many wavelet properties cannot be jointly optimized.[29] The 
Daubechies family of wavelets are very smooth, orthogonal, 
and easy to implement. In[4,17,30], the Daubechies order-4 (db4)  

Figure 5: Decomposing of × (n) using filter banks

Figure 4: The values of Bhattacharyya distance for each channel for subject 
A in the P300 speller dataset IIb
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wavelet has been employed for decomposing EEG signals. 
We also choose the db4 mother wavelet, as it resembles the 
P300 component in ERPs.[17]

Effective frequency components in ERPs specify the number 
of decomposition levels, which are chosen such that those 
segments of the signal that are highly correlated with the 
frequencies required for classification of the signal are 
retained in the wavelet coefficients[31] To have a sufficient 
number of low-frequency components, we decompose the 
signal into six levels. Since the bandwidth of the signal 
is limited to 0.1–30 Hz, we focus on those subbands and 
their corresponding coefficients that pertain to 0.1–30 Hz. 
For selecting the best DWT sub-bands for each subject, we 
compute all DWT coefficients within 0–30 Hz for the first 
eight channels selected by the Bhattacharyya criterion in 
the training dataset. We then truncate the DWT coefficients 
as explained in Section III-D, and obtain all possible 
combinations of the truncated DWT coefficients of those 
sub-bands that do not overlap in frequency.

For performance evaluation, the training set is randomly 
partitioned into five subsets using the five-fold cross-
validation procedure,[22] where a single subset is reserved 
for validation and the remaining four are used for training. 
The cross-validation process is then repeated five times, 
when each of the five subsets are used exactly once as 
the validation data. The results are averaged to obtain a 
single estimation. The performance of each validation set 
is determined by the channel classification score denoted 
by Ccs  in (8) below, taken from,[8] where fp , tp  and fn  
are the numbers of false positives, true positives and false 
negatives, respectively.

C
t

t f fcs
p

p p n

= .
+ +

� (8)

The reason for using this criterion is that Ccs  does not 
include the number of true negatives, which is important 
for unbalanced datasets. This causes the feature selection 
to focus on those feature vectors that give positive scores 
to true positives and false positives, which are fewer in 
number than true negatives and false negatives. For feature 
selection, classifier performances are evaluated on target 
and non-target features (binary classification) and not on 
character or image recognition performances.

Minimal Feature Selection

By using suitable feature extraction and selection processes, 
the computation cost decreases and classification performance 
improves. In general, not all extracted features are useful for 
classification, as some features are irrelevant or redundant 
and reduce classification accuracy. We now show that using 
all wavelet coefficients in each level results in an expanded 
feature set and may reduce the classification accuracy.

Figure 6 shows the impulse response of the decomposition 
low-pass and high-pass filters corresponding to db4 mother 
wavelet in which the first 3 coefficients of h nLow [ ]  and the 
last 3 coefficients of h nHigh [ ]  are near zero. We use this 
property of db4 decomposition filters to reduce the number 
of features. The values of A n1 [ ]  and D n1 [ ]  in Figure 5 are 
obtained by convolving x n[ ]  with h nLow [ ] , and x n[ ]  with 
h nHigh [ ] , respectively. Hence, the first 3 values of A n1 [ ]  and 
the last three values of D n1 [ ]  are near zero. The down-
sampled values of A n1 [ ]  and D n1 [ ]  provide CA n1 [ ]  and 
CD n1 [ ]  coefficients, respectively. Thus, the first two values 
of CA n1 [ ]  and at least the last value of CD n1 [ ]  are near 
zero. Since x n[ ]  is unknown, we have no information on 
the number of first near zero values of CD n1 [ ] .

Since the first two values of CA n1 [ ]  and the first three values 
of h nLow [ ]  are near zero, and A n CA n h nLow2 1=[ ] [ ] [ ] , the 
first five values of A n2 [ ]  are near zero, and so the first three 
values of CA n2 [ ]  (which is the down sampled A n2 [ ] ) are 
near zero. Besides, since the last three values of h nHigh [ ]  are 
near zero and D n CA n h nHigh2 1=[ ] [ ] [ ] , the first two values 
and the last three values of D n2 [ ]  are near zero. Thus, the 
first value and at least the last value of CD n2 [ ]  are zero. 
Similarly, the first three values of CA nj [ ] , and the first two 
values and at least the last value of CD nj [ ]  are near zero. 
Figure 7 shows the truncated coefficients of a segment of 
EEG signal for ( CA3 - CA6 ) and ( CD3 - CD6 ). The eliminated 
and remaining coefficients are identified by ( o ) and ( ∞ ), 
respectively. Not that truncating the DWT coefficients 
reduces the number of features by 12 to 30%.

Classification Algorithm

Classification accuracy, simplicity, and fast training are three 
important factors for choosing a classifier. In the literature, 
different classification methods are used in the P300-BCI 
applications, among which are the Fisher linear discriminant 
analysis (FLDA),[13] the support vector machine (SVM),[8,12] and 

Figure 6: The values of decomposition low-pass and high-pass coefficients 
for the db4 mother wavelet
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the Bayesian linear discriminant analysis (BLDA).[10,11] The FLDA 
is a simple, fast, and easy to use classifier but its performance 
deteriorates when many electrodes or features are used. This 
problem is solved by using BLDA, which uses regularization 
to prevent over-fitting to high-dimensional and noisy data 
sets. In the Bayesian analysis, the degree of regularization 
is estimated quickly, robustly and automatically from the 
training data without needing the complex cross-validation 
procedures for tuning its parameters.[11]

In[10,32], it is shown that the BLDA outperforms the SVM 
and some other classifiers for all tested cases, and its 
complexity is low. Hence, we use the two-class BLDA 
classifier (which is similar than the one described in[11]) to 
classify target and non-target EEG signals. Training features 
include a set of d -dimensional feature vectors for each 
class x j j j dj

x x x=[ , , , ]
1 2

  and the corresponding class-label 
y j ∈ −{ 1,1} , where j  is the feature vector number. The 

basic assumption in the Bayesian regression is that the 
feature matrix X x x x=[ , , , ]1 2  Ni

 and its corresponding label 
vector y =[ , , , ]1 2y y yNi  are linearly related, i.e., 

y w X+n= T
� (9)

where w =[ , , , ]1 2w w wd

T  is a projection vector to be 
optimized, n =[ , , , ]1 2n n nNi

 is an additive white Gaussian 
noise vector, and Ni is the number of feature vectors in the 
i th  class. The likelihood function for w in the regression is 

p e

l
T

( ) =
2

2
2

|| ||2

X, y w| ,
w X y

β
β
π

β





− − � (10)

where b is the inverse variance of noise, and l  is the 
number of cases in the training set. For the Bayesian setting, 

the prior distribution of weight vector w is assumed to be 
Gaussian, defined by

p e
i

d
i

l
l T

( | ) =
2=1

2
2w α

α
π

α∏





− ′( )w I w( ) � (11)

where ai is the inverse variance of the prior distribution for 
weight w1, and ′I ( )α  is a d d×  dimensional square matrix, 
with ai ’s along its diagonal. When both prior and likelihood 
distributions of w are Gaussian, in[11] it is shown that the 
posterior distribution is also Gaussian with covariance C 
and mean m

C XX I= ( )
1

β β αT + ′( )− � (12)

m CXy= b � (13)

The predictive distribution of the target y
∧
 for an unobserved 

input vector x
∧
 is also Gaussian, whose mean and variance 

are 

µ =mT x
∧
� (14)

and 

σ
β

2 =
1
+ x x

T∧ ∧
C � (15)

For both of the P300-BCI datasets, we only use the mean 
value of the predictive distribution for taking decisions.

Channel Selection Algorithm

Efficiency of our P300-BCI depends on utilizing effective 
channels. In doing so, we apply the following two-step 
channel selection algorithm.

Figure 7: A segment of EEG signal and its truncated approximation and detail coefficients for different decomposition levels of the db4 mother wavelet
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Step 1: In Step 1, we reduce to half the number of channels 
(from 64 to 32, or from 32 to 16) by using the Bhattacharyya 
distance. We sort BD values in decreasing order, and select 
the first half of channels with larger BD values.

Step 2: In Step 2, we employ an optimization algorithm to 
choose the more effective channels from channels selected 
in Step 1.

In[33], five different optimization approaches, namely, 
genetic, mimetic, ant-colony optimization, shuffled 
frog leaping, and particle swarm optimization (PSO) 
algorithms are compared for solving two benchmark 
continuous optimization test problems. It is shown 
that the PSO method outperforms the other methods 
in terms of convergence speed and accuracy of results, 
while being the second best in terms of processing time. 
In[34], statistical analysis and formal hypothesis testing 
are utilized to show that the PSO algorithm has the same 
effectiveness (finding the true global optimal solution) 
as the genetic algorithm (GA), but with significantly less 
calculations. Moreover, in[35], it is shown that when binary 
PSO (BPSO) is used for feature selection in the diagnosis 
of coronary artery disease, it yields better results than 
the GA. The BPSO is also used for channel selection in the 
motor imagery-based BCI.[20]

The PSO algorithm is a population-based search scheme 
based on the movement and flocking of birds that are called 
particles. Each particle flies in a n -dimensional search space 
with a certain velocity based on its own previously acquired 
knowledge and other particles experiences in the swarm. 
The position and the velocity of the i th  particle are denoted 
by x i i in

x x= , ,
1
( ) and v i i in

v v= , ,
1
( ), respectively. For 

each time step ∅t , the corresponding velocity is applied to 
move each particle to its next position by

x x xi i it t t t t( ) = ( ) ( ) .+ + ×∆ ∆ � (16)

The step size ∅t  is usually set to 1, so at each iteration, the 
velocity and the position of each particle are updated by 

v v p x g xi
t

i
t

i
t

i
t t

i
tw c r c r+ × + × × −( ) + × × −( )1

1 1 2 2= � (17)

and 

x x vi
t

i
t

i
t+ +1 = ,� (18)

respectively, where pi
t
 is the position of particle i  with 

the highest value of Ccs
 up to iteration t , and g t is pi

t 
with the highest value of Ccs  among all particles. Also, 
c1  and c2  are positive-valued learning factors, r1  and r2  
are random numbers in [0, 1], and w  is the inertia weight 
that represents the confidence of the particle to its current 
position, obtained from 

w w
w w

t
t= max

max min

max

−
−

× � (19)

in which wmin  and wmax  are the final and the initial weights, 
respectively, tmax  is the last iteration, and t  is the current 
iteration. A large inertia weight facilitates a global search, 
while a small inertia weight facilitates a local search. From 
(19), we observe that the inertia weight decreases linearly 
from a relatively large value to a small value through 
the course of the PSO run. A linearly decreasing weight 
provides a better performance as compared to a fixed 
weight setting.

The velocity and the position of particles are confined to 
[ ]−v vmax max  and [ ]−x xmax max , respectively. This is to reduce 
the chances of particles flying out of the search space. 
Selecting the value of vmax  is very important, since for 
very small values of vmax , the step size has to be very small 
as well, which may cause the algorithm to trap in a local 
minima, or may take too long to converge. Also, for very 
large values of vmax , a particle may go out of the search 
space, or its acceleration may exceed its limit.[36]

Assessment of all particles’ positions is based on the 
value of Ccs  score in (8) on the validation sets by using 
the BLDA classifier. The value of Ccs  denotes the particle’s 
position in a 64 or 32 dimensional space according to the 
five-fold cross-validation procedure that was described 
in Section 3.3.

In our problem, each particle is defined as a group of 
channels from the set of 32 or 16 channels selected by the 
Bhattacharyya criterion. We wish to prune the less effective 
channels and keep the more effective channels in the set of 
32 or 16 selected channels (binary decision). In[37], the BPSO 
is used to search binary spaces on each dimension, where 
the position vector of each particle is binary-valued, and the 
velocity of a particle i  was used to obtain the probability 
that the d th  bit of its position vector, i.e., xid , takes on 
the value of 1 or 0. The velocity updating equation in the 
BPSO is the same as PSO, but the position of the d th  bit is 
updated by 

x
v

id
t id

t
+1 =

1 < ( )

0

if rand sigmoid

                    otherwise





� (20)

where rand is a random number generated at t , and 

sigmoid( ) =
1

1
v

e
id
t

vid
t

+ −
 maps the velocity to [0,1]. When the 

value of vid  is very large (positive or negative) the probability 
of a change in the bit value is one or zero, respectively.

We apply the BPSO algorithm to the set of Bhattacharyya 
pre-selected channels to choose the more effective 
channels, where each channel is an element of the vector 
that represents a particle. The value of each element can be 
either 1 or 0, where 1 means selection and 0 means rejection 
of the channel. As an example, for binary values of x1 and x2, 
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at iteration t  in Figure 8, the corresponding two particles 
are x1 1= , , , ,t

Z Z ZC FC PO AF{ } and x2 1 8= , , , ,t
Z PZCP FC F PO{ }.

The PSO algorithm suffers from the possibility of convergence 
to a local minima. In[38], a modified PSO is proposed that 
solves this problem by utilizing chaotic sequences for the 
weights in order to find a global solution that is better than 
the solution obtained by the PSO algorithm. The chaotic 
sequences are obtained by

f f ft t t= 11 1µ × × −( )− − � (21)

where m is a control parameter that determines whether f  
tends to a fixed value, oscillates between a limited sequence 
of values, or behaves chaotically in an unpredictable manner. 
Also, the behavior of the system is influenced by the initial 
value of f . By choosing ∝= 4 and f0 0,0.25,0.5,0.75,1∉{ } , 
the value of f  corresponds to a chaotic sequence. Now, the 
new inertia weight is obtained by multiplying (19) by (21).

w w fnew = × � (22)

Unlike the PSO algorithm in which the weight decreases 
monotonically from wmax  to wmin , in the improved PSO, 

Table 1: The 32 channels sorted by BD criteria for subjects 
A and B

Subject Sorted channels

A Cz CP P CP FC C PO F FC O

C FC CP F FC P PO
Z Z Z Z

Z

, , , , , , , , ,

, , , , , ,
2 1 1 7 1

2 2 1 3 4 1 ,, , , ,

, , , , , , , , , ,
6 4 8

8 8 3 4 1 2 4 3 3 3

C CP P O

AF AF PO C C F F F CP P AF
Z

Z P P

B PO C CP C O PO CP FC PO CP

C I P CP FC F AF
Z Z Z

Z Z

8 2 1 7 2 2 3

1 1 1 4

, , , , , , , , ,

, , , , , , ZZ Z Z

Z

PO C F PO

O P FC P O CP AF C P P CP P

, , , ,

, , , , , , , , , , ,
4 4

2 2 6 1 4 3 3 6 8 6

BD – Bhattacharyya distance

Figure 9: Variations in the conventional weight and in the proposed new weight[38]

Figure 8: Binary particles in the IBPSO algorithm, where one means 
selection and zero means rejection of the channel

the new weight decreases and oscillates simultaneously 
as shown in Figure 9. We were inspired by the work in[38] 
to use the improved weights in BPSO algorithm and utilize 
the improved BPSO (IBPSO) to identify the more effective 
channels.

Results

Experimental Result of Dataset 1

We now present the results of applying our proposed 
scheme to dataset IIb of BCI competition III in[21]. First, we 
compute the Bhattacharyya distance of each channel for 
subjects A and B by using target and non-target preprocessed 
signal samples. We sort the BD values in decreasing order, 
and select the first half of channels with larger BD values. 
The selected 32 channels for subjects A and B are listed in 
Table 1, respectively. We use the first eight channels of each 
subject, i.e., C CP P CP FC C PO FZ Z Z Z, , , , , , ,2 1 1 7[ ]  for subject A and 
PO C CP C O PO CP FCZ Z8 2 1 7 2 2, , , , , , ,[ ]  for subject B, to select the 

best truncated DWT coefficients as explained in Section 
3.3. We begin by eliminating the near-zero coefficients 
from the beginning and the end parts of the DWT of single 
trial training data, as per Section 3.4; and obtain all possible 
combinations of the truncated DWT coefficients within 
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Table 2: Parameter values for IBPSO
No of particles 10
Max. Iteration no 200
Weight parameters wmax=0.9, wmin=0.1
Learning factors c1=c2=2
Velocity constrains vmax=5, vmin=-5
Control parameter m=4

Initial value of f A random number between [0,1]>, except for 0, 
0.25, 0.5, 0.75, 1.

IBPSO – Improved binary particle swarm optimization

Figure 10: The mean classification accuracy over Subjects A and B for all 
DWT, truncated DWT, and SWT coefficients

0-30 Hz that do not overlap in frequency. The value of Ccs  
score in (8) for each combination set is obtained by the 
five-fold cross-validation procedure and the BLDA classifier. 
To compare the impact of using these coefficients vis-a-vis 
using all DWT and SWT coefficients, the mean classification 
accuracy for Subjects A and B are shown in Figure 10 for 
different trials by using the first 8 Bhattacharyya-selected 
channels. As can be seen, the classification accuracy for 
the SWT coefficients or for the selected sub-bands is not 
significantly better than those of the DWT coefficients. 
This also indicates that our results are not sensitive to 
varying shifts in the DWT. Our proposed scheme reduces 
the number of effective features about 20% for all DWT 
coefficients while maintaining accuracy.

As features, we apply the truncated coefficients of the 32 
channels that were selected via the BD criteria [Table 1] for 
Subjects A and B, respectively, to the IBPSO algorithm in order 
to reduce the number of channels even further. We run the 
algorithm for 6, 8, 10, 12, and 15 particles (a particle is a 
subset of the 32 channels selected via the BD criteria) and 
200 repetitions using the parameter values in Table 2, and 
observed that the highest Ccs  is obtained when the number 
of particles in the IBPSO algorithm is 10. Figure 11 shows 
that Ccs  for g t, i.e., C t

cs g( ), reaches its final value in less than 
200 iterations for both subjects. The mean values of Ccs  for 

pi
t

i=1,2, ,10

, i.e., C i
t

ics p
=1,2, ,10L

( ) , are also shown in Figure 11. 

Note that the value of C i
t

ics p
=1,2, ,10

( ) does not change after 
150 iterations for both subjects and its final value is the same 
as the final value of C t

cs g( ). This means that 200 iterations are 
sufficient and all ten position vectors pi are able to follow g.

The IBPSO algorithm is executed 7 times separately 
to verify the consistency of channel selection. In each 
run, a different channel set is obtained, which shows 
the existence of local minima in the IBPSO. Note that 
FC C C C C P P P PO PO PO O OZ Z Z Z1 3 1 6 3 1 7 8 1, , , , , , , , , , , ,{ }  channels for 

Subject A, and C C CP CP P P PO PO PO O IZ Z Z Z3 6 6 8 4 3 8, , , , , , , , , ,{ }  
channels for Subject B, are common among the six or seven 
sets. It shows that they are more important than the other 
channels. Note also that only C C PO OZ Z3 8, , ,{ }  channels are 
common in both sets, and the rest are subject-dependent, 
meaning that channel selection should be performed on 
each subject separately.

Figure 11: Variations of the Ccs score and the mean values of Ccs over ten 
particles for (a) subject A and (b) subject B

(a)

(b)

Table 3 contains the classification accuracy of each channel 
set for Subjects A and B in 1, 5, and 15 trials. To show 
that our proposed scheme extracts effective features, we 
compare the classification accuracies for down-sampled 
signal, the DWT features, and the truncated DWT features 
in Table 4 by using the first channel set of each subject 
in Table  3. As can be seen, the classification accuracy of 
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using the truncated DWT features in all trials except one 
item is equal to or higher than that of using the down-
sampled signal. Moreover, the results of using the DWT 
and the truncated DWT features are exactly the same for 
all trials, meaning that by truncating those coefficients 
whose values are near zero, the classification accuracy is  
not deteriorated.

Classification results for both Subjects A and B in 
different trials are shown in Table 5. Using BCI 2005 
evaluation criteria, we achieved a correct classification 
rate of 29%, 74.5%, and 97.5% in 1, 5, and 15 trials, 

Table 5: Mean classification accuracy of our scheme in % and the first ranked competitor in BCI competition 2005, dataset 
IIb, and[9,10] for subjects A and B

Number of trials

1 2 3 4 5 10 13 15

Our scheme 29 46 56.5 67 74.5 89 95.5 97.5
First ranked 25.5 42.5 57 64 73.5 87 95 96.5
[9] 31 46 56 65 71.5 87.5 90 95
[10] 28 – 53 – 71 – 94 97.5
BCI – Brain-computer interface

Table 3: Classification accuracy in % for selected channels by IBPSO in 1, 5, and 15 trials for subjects A and B
Subject Channel set Trials

1 5 15

A { , , , , , , , , , , , , , , , ,2 4 3 1 2 6 3 1 2 3 1 8FC FC C C C C C CP CP F F AF F P P P Pz Z P P Z Z Z ,, , , , , }7 8 1PO PO PO O OZ Z
21 68 97

{ , , , , , , , , , , , , , , , ,1 2 3 1 6 3 2 3 3 4 3 1FC FC FC C C C CP CP F AF F F F P P P POZ Z P Z Z 77 8 1, , , , }PO PO O OZ Z
20 66 98

{ , , , , , , , , , , , , , , , ,1 3 1 6 3 2 3 4 3 1 7FC FC C C C C CP CP CP AF F P P P PO PO PZ Z Z Z Z OO O OZ8 1, , } 20 67 97

{ , , , , , , , , , , , , , , , ,1 3 1 6 3 1 1 3 4 3 1 8 7FC C C C C CP CP F AF AF F P P P P PO POZ P Z Z ZZ ZPO O O, , , }8 1
19 66 98

{ , , , , , , , , , , , , , , , ,1 2 4 3 2 6 3 4 1 8 7FC FC FC C C C C CP AF F F P P P PO PO POZ Z Z Z Z 88 1, , }O OZ
21 67 97

{ , , , , , , , , , , , , , , , ,1 2 3 1 6 3 1 1 3 4 3 1 8FC FC C C C C CP CP F AF AF F P P P P POZ P Z Z 77 1, , , }PO O OZ Z
20 67 97

{ , , , , , , , , , , , , , , , ,1 3 1 4 3 4 3 4 3 7 8FC C C C C CP CP CP AF F F P P PO PO PO OZ Z Z Z Z 11, }OZ
20 65 97

B { , , , , , , , , , , , , , , , ,1 6 3 1 2 4 6 3 4 2 6 8 7
FC FC C C C C CP CP CP AF F P P P PO PO PZ Z Z OO PO O O IZ Z4 8 1, , , , } 37 81 98

{ , , , , , , , , , , , , , , , ,6 3 1 2 6 2 6 8 7 3 4FC C C C C CP CP AF P P P P PO PO PO PO PZ Z Z Z Z OO O O IZ Z8 2, , , } 36 79 99

{ , , , , , , , , , , , , , , , ,3 1 2 6 1 4 6 8 7 3 4 8C C C CP CP CP AF P P P P PO PO PO PO POZ Z Z Z OO O IZ Z, , }2
36 79 99

{ , , , , , , , , , , , , , , ,2 3 2 1 4 6 6 8 7 3 4 8 1FC C C C CP CP CP CP AF P P PO PO PO PO OZ Z Z ,, , }O IZ Z
37 78 99

{ , , , , , , , , , , , , , , , ,1 6 3 1 2 4 4 6 8 3 4 8FC FC C C C C CP CP F P P P PO PO PO PO OZ Z Z Z 11, , }O IZ Z
36 81 97

{ , , , , , , , , , , , , , , , ,2 3 2 2 4 6 4 6 8 7 3 4FC C C C CP CP CP CP AF F P P P PO PO POz Z Z Z PPO O IZ Z8 , , } 36 78 99

{ , , , , , , , , , , , , , , , ,1 3 2 4 1 2 6 4 2 8 3 4FC C C C C CP CP CP CP F P P P PO PO PO PZ Z Z Z OO O IZ Z8 , , } 36 79 98

IBPSO – Improved binary particle swarm optimization

Table 4: Classification accuracy in % for the down-sampled signal, the DWT coefficients and the truncated DWT coefficients
Subject Type of features Number of trials

1 2 3 4 5 10 13 15

A Signal samples 19 33 45 56 63 82 92 93
CA3 21 37 49 59 68 83 94 97
Trun. CA3 21 37 49 59 68 83 94 97

B Signal samples 37 54 65 75 78 94 93 96
CA4 37 55 64 75 81 95 97 98
Trun. CA4 37 55 64 75 81 95 97 98

DWT – Discrete wavelet transform

respectively, as compared to the three best results of the 
BCI competition [9,10,21] shown in Table 5. As can be seen, 
in almost all trials, our results are better than those 
in[9,10,21], where the aim is accurate classification with less  
calculations.

In Table 6, we compare the number of channels in our 
approach with those of the three best results in the BCI 
competition. Note that we use fewer channels than the 
first ranked competitor.[9,10] Besides, we use the BLDA 
classifier that needs less calculations as compared to  
the SVM.
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Figure 12: The mean classification accuracy for 8 subjects for all DWT, 
truncated DWT, and SWT coefficients

Experimental Result of Dataset 2

We use the data recorded in the first three sessions and the 
last session as the training and the test data, respectively, 
for disabled subjects (Subject 1-Subject 4) and able-bodied 
subjects (Subject 6-Subject 9). Data for Subject 5 is not 
considered in this paper for reasons stated in[11] The EEG 
signals was down sampled from 2048 to 256 samples per 
second by selecting every 8th  sample from the bandpass-
filtered data as described in Section 3.1. For each session, the 
single trials corresponding to first 20 blocks of flashes were 
extracted via preprocessing. Hence, a single trial includes 
180 samples per trial, as compared to 168 samples per trial 
for dataset 1. Each block consists of six flashing images, and 
so the training data is comprised of 360 target trials and 
1800 non-target trials. The test data consists of 120 target 
and 600 non-target trials. For each subject, we reduce the 
number of channels from 32 to 16 by using the sorted BD 
values in decreasing order. The first eight channels were 
used to select the best truncated sub-bands as described 
in Sections 3.3 and 3.4. Table 7 shows the best truncated 
DWT coefficients and their length for each subject by using 
the five-fold cross-validation procedure with cost function 
Ccs  and BLDA classifier. Note that in Figure 12, the mean 
classification accuracy for eight subjects, corresponding 
to the truncated DWT coefficients in Table 7, are exactly 
the same as those of utilizing all DWT coefficients (no 
truncation). Besides, note that using a higher number of 
SWT features is not very beneficial.

In order to select the final channel sets, we run the IBPSO 
algorithm by using the selected truncated DWT coefficients 
for 16 remaining channels that were identified via the 
BD criteria. Since the number of input channels to IBPSO 
algorithm in this dataset is half of the input channels in 
the previous dataset, we used 100 iterations instead of 
200 iterations. The other parameters of the IBPSO algorithm 
are stated in Table 2. For each subject, we run the IBPSO 

algorithm seven times by using Ccs , the BLDA classifier 
and five fold cross-validation procedure. In each run, we 
observed that the values of C t

cs g( ) and C i
t

ics p
=1,2, ,10L

( ) do not 
change after 80 iterations for all subjects, which indicates 
that 100 iterations are sufficient. Table 8 shows the best 
selected channel set in 7 runs of the IBPSO for each subject. 
For each subject, some channel sets were similar in 7 runs, 
which shows better convergence of the IBPSO algorithm as 
compared to dataset 1 due to fewer input channels.

For each subject, feature vectors are the truncated DWT 
coefficients in Table 7, and the channel sets are obtained 
by the IBPSO algorithm. Hence, we obtained seven different 
feature vectors corresponding to seven output channel sets 

Table 8: The best selected channel-sets by IBPSO for all 
8 subjects
Subject The best channel set

1 F P PO O O P F FP F CP Z Z1 7 3 1 2 8 4 2, , , , , , , , ,

2 F AF F P P O O FP Z Z1 3 7 7 1 2, , , , , , ,

3 P P P PO O O PO FC FZ Z Z7 3 3 1 4 2, , , , , , , ,

4 F C P P CP FCP Z1 3 7 2 2, , , , ,

6 F AF P P C FC FP CP Z1 3 7 8 4 2 2, , , , , , ,
7 P P O FZ Z7 2, , ,

8 F CP P P O O PO P C FC FPP Z1 5 7 3 1 4 8 4 2 2, , , , , , , , , ,

9 C P P O O PZ3 7 1 2 8, , , , ,

IBPSO – Improved binary particle swarm optimization

Table 6: No. of channels and classifiers’ types in our scheme 
and the three best competitors in BCI competition 2005, 
dataset IIb
Algorithms Number of channels Classifiers

Subject A Subject B

Our scheme 22 21 BLDA
First ranked Almost all 64 Almost all 64 Ensemble SVM
[9] Almost all 64 Almost all 64 Ensemble FLD
[10] 32 32 BLDA
BCI – Brain-computer interface; BLDA – Bayesian linear discriminant analysis; 
SVM – Support vector machine; FLD – Fisher linear discriminant

Table 7: The best selected features (truncated DWT 
coefficients) and length of the feature vector using the 
five-fold cross-validation procedure and BLDA classifier for 
8 subjects
Subject The best feature vector Feat. length

S1 Truncated CA3 25
S2 Truncated CA4 14
S3 Truncated CA3 25
S4 Truncated CA4 14
S6 Truncated CA4 14
S7 Truncated CA3 25
S8 Truncated CA4 14
S9 Truncated [CA6, CD5, CD4] 29

DWT – Discrete wavelet transform; BLDA – Bayesian linear discriminant analysis
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of the IBPSO. Extracted feature vectors from single trials 
(including targets and non-targets) are used to train a BLDA 
classifier. Classification accuracy is computed by using the 
extracted features of the test data (the data from the fourth 
session) over different trials and for seven channel sets.

To compare the classification accuracy of our scheme with that 
of the method proposed in[11], we use the same pre-processed 
signal samples and the same four different channel sets 
consisting of 4, 8, 16, and 32 electrodes. In both cases, we 
use the data from the first three sessions for each subject to 

Figure 13: Classification accuracy of the best channel set and the average classification accuracies over 7 channel sets in our approach and those obtained by 
using the method in[11] for CHset 2, for disabled subjects (subject 1-subject 4) and able-bodied subjects (subject 6-subject 9)
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select features and channels, and train the classifier; and the 
data from the fourth session to compute the classification 
accuracy. Note that the four channel sets used in[11] are 
CHset1 ={ , , , }F C P OZ Z Z Z , CHset2 ={ , , , , , , , }3 4 7 8F C P O P P P PZ Z Z Z , 
CHset3 ={ , , , , , , , , , , , , , , ,3 4 7 8 1 2 3 4 1 2 1F C P O P P P P FC FC C C CP CP O OZ Z Z Z 22}, 
and CH all 32 channelsset4 ={ }  in Figure 2b. Figure 13 
compares the classification accuracies of the best channel 
set and the average classification accuracies over seven 
channel sets in our approach with those in[11] for CHset2  for 
each subject. For the best channel set, the performance of 
our method for all subjects and trials except for one case (the 
first trial of Subject 2) is significantly better than those in[11] 
for CHset2. As shown in Figure 13, the average classification 
accuracy over seven chanwnel sets except for very few trials 
for Subjects 1, 2, 3, 8, 9 is better than those in[11] for CHset2. 
The performance of our proposed scheme for both disabled 
and able-bodied subjects does not differ much.

In Figure 14, the average classification accuracy for all 
subjects in our proposed scheme for the truncated DWT 
coefficients and the channels identified by the IBPSO 
algorithm is compared with those in[11] that utilizes the 
down-sampled signal and four different channel sets. As can 
be seen, compared to CHset1 , CHset2 , and CHset3  channel 
sets, our proposed scheme performs better or the same 
as in.[11] Moreover, the average classification accuracy over 
seven sets of channels obtained by the IBPSO algorithm 
is approximately the same as those in[11] for CHset4  (with 

32 channels), while we use less channels (with average 
6.9 channels per subject).

Note that the results of using down-sampled signal and four 
different channel sets in Figures 13 and 14 are different from 
those in[11] due to the fact that classification accuracy in the 
latter is obtained by averaging over four sessions, whereas 
we only use the fourth session to compute classification 
accuracy. For a better comparison, we repeated our 
proposed procedure four times, and each time, we used 
three different sessions for selecting features and channels, 
and for training the classifier. The fourth session is used 
for computing the classifier accuracy. Figure 15 compares 
the average classification accuracy of our method over four 
sessions and over all subjects with those in[11] for 8 channels 
and 32 channels. As can be seen, the average classification 
accuracy of our method (with average 7.3 channels 
per subject) over four sessions and over all subjects is 
approximately the same as the best result (with 32 channels) 
in[11], confirming the results in Figures 13 and 14.

Discussion

Analysis of EEG signals in the BCI system consists of 
preprocessing, feature extraction, channel selection, and 
data classification. While in[8-11] the focus is mainly on channel 
selection, and in[7,13], the focus is on feature selection, we 
focus on both channel and feature selection with a view 

Figure 14: The average classification accuracy for all subjects in our proposed scheme (truncated DWT coefficients for best run and an average of 7 runs for 
the IBPSO algorithm) and those in[11] for CHset 1, CHset 2, CHset 3, and CHset 4 channel sets



Perseh and Sharafat: Feature and channel selection by DWT and IBPSO in P300- based BCI

Journal of Medical Signals & Sensors

Vol 2  | Issue 3  |  Jul-Sep 2012142

to improving classification accuracy. The proposed scheme 
needs less features and provides more accurate classifications 
for almost all trials and subjects in real time. However, our 
method for selecting proper features and channels during 
training is not as simple as those in[10,11].

We truncated the DWT coefficients to reduce the number 
of features, while in[9] all DWT coefficients in each level are 
used. Furthermore, the number of features in our scheme 
is less than the number of preprocessed signal samples 
in[8,10,11]. Note that, we can reduce the number of features up 
to 30% while maintaining the same accuracy in different trials 
for all subjects. We also showed that using shift-invariant 
wavelet transform with a large number of features does not 
produce better results than using DWT that is shift-varying 
[Figures 10 and 12].

In order to improve the accuracy, we removed ineffective 
channels by applying a two-step channel selection algorithm 
(Bhattacharyya distance and IBPSO algorithm). For dataset 1, 
we used 22 channels for Subject A, and 21 Channels for Subject 
B. This is in contrast to[8,9,12] that use almost all 64 channels 
and more features, resulting in more calculations. In dataset 
1 for some trials, the performance of our scheme is below 
that of the first ranked competitor and.[9,10] For Subject B, 
our proposed algorithm provides better results as compared 
to[8,10] for all trials. In dataset 2, we can approximately achieve 
the same classification accuracy with an average 6.9 channels 
per subject as compared to[10] with 32 channels and more 
features. Compared to three other channel sets (i.e., 4, 8, and 
16 channels) in[10], our results are better or equal in all trials.

Another important issue in BCI is choosing a classifier that 
provides fast discrimination between classes. SVM is a well-
known and powerful classifier used by the first and the second 
ranked competitors, but it requires more calculations to tune 
its parameters, and gets worse when the training data is 
extensive. In this study, we use the BLDA classifier instead of 

SVM as in.[10,11] As can be seen in Table 5, the accuracy of our 
proposed classifier in almost all trials is higher than those of 
the first ranked competitor. In[9], the FLDA classifier (which is 
slightly simpler than the BLDA classifier) is used for evaluating 
classification accuracy in a configuration that consists of 10 
parallel classifiers. However, our proposed scheme is more 
accurate than,[9] except for Subject A with less than five trials.

The results show that the selected channels and sub-bands 
were different among subjects in both datasets. This 
indicates that the set of optimal electrodes and the set of 
optimal DWT sub-bands are subject dependent.

Conclusions

Three performance indicators, namely computation cost, 
real time, and accuracy, are essential in BCI applications. 
To achieve these objectives, we proposed a new scheme 
for selecting a minimal set of features by utilizing DWT 
and mother wavelet db4, and choose the more effective 
channels. In particular, we used truncated wavelets when 
the coefficients’ values are small (near zero) and selected 
optimal DWT sub-bands for each subject. We also used 
the BD and the IBPSO algorithm to select fewer channels 
for attaining accurate classification as compared to existing 
methods. In particular, using BD to eliminate one half 
of channels significantly reduces calculations in the two 
different P300-BCI datasets that include 10 disabled and 
able-bodied subjects. Our method is subject-dependent, and 
uses a two-stage procedure in the training phase to select 
the best sets of sub-bands and channels, resulting is more 
accurate classification, with less features and less channels.
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