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A B S T R A C T

Brian Computer Interface (BCI) is a direct communication pathway between the brain and an external device. BCIs are often aimed at 
assisting, augmenting or repairing human cognitive or sensory‑motor functions. Electroencephalogram (EEG) separation into target 
and non‑target ones, based on presence of P300 signal, is a difficult task mainly due to their natural low signal to noise ratio. In this 
paper, a new algorithm is introduced to enhance EEG signals and improve their signal to noise ratio. Our denoising method is based 
on multi‑resolution analysis via Independent Component Analysis Fundamentals. We have suggested combination of negentropy as 
a feature of signal and sub‑band information from wavelet transform. The proposed method is finally tested with dataset from BCI 
Competition 2003, and has given results that compare favorably.

Key words: Brian computer interface, denoising, independent component analysis, negentropy, P300 speller, wavelet transform

Original Article

Enhancing P300 Wave of BCI Systems Via Negentropy in 
Adaptive Wavelet Denoising
Zahra Vahabi1, Rassoul Amirfattahi1,2, Abdolreza Mirzaei3

1Digital Signal Processing Research Lab, 2Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, 
3Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

INTRODUCTION

The Brian Computer interface (BCI) system is a set of signal 
processing components and sensors that allows acquiring 
and analyzing brain activities with the goal of establishing a 
communication channel directly between the brain and an 
external device, such as a computer, neuroprosthesis, and 
etc, by analyzing electroencephalographic (EEG) activities 
that reflect the functions of the brain.[1,2]

There are many BCI systems based on EEG rhythms, such 
as Alpha, Beta, Mu, Slow Cortical Potentials (SCPs), Event 
Related Synchronization/Desynchronization (ERS/ERD) 
phenomena, Steady-State Visual Evoked Potential (SSVEPs), 
P300 component of the Evoked-Related potentials (ERP’s) 
and so on.[3]

P300 Based BCI was first introduced by Farwell and Donchin 
in 1988, for controlling an external device.[4-8]

The P300 (P3) wave is an event related potential elicited 
by task-relevant, infrequent stimuli. This wave is considered 
to be an endogenous potential as its occurrence links to 
a person’s reaction to the stimulus, not to the physical 
attributes of a stimulus. This is a positive ERP, which its 
occurrence is over the parietal cortex with a latency of about 
300 ms after rare or task relevant stimuli. Mainly, the P300 

is thought to reflect tasks involved in stimulus evaluation or 
categorization.[9]

Within BCI, P300 potentials can provide a means of 
detecting a person’s intention concerning on the choice 
of object. Detecting the P300 peaks in the EEG accurately 
is the main goal. In a P300 speller, therefore, variety of 
feature extraction and classification procedures have 
been implemented, improving the performance. A good 
preprocessing step could enhance the signal to noise ratio 
(SNR) and help to have simple, more accurate algorithm 
for feature extraction and classification. More reliable and 
ever fast signal processing methods for preprocessing the 
recorded data are crucial in the improvement of practical 
BCI systems.

Single-trial ERP detection is understood to be challenging, 
as P300 waves and other task related signal components 
have a large amount of noise (artifacts-ongoing task and 
unrelated neural activities).[9,10]

A preprocessing step for P300 detection is applied 
to enhance the SNR, and to remove both interfering 
physiological signals as those related to ocular, muscular 
and cardiac activities, and non-physiological artifacts, 
such as electrode movements, broken wire contacts, 
and power line noise. To detect the specific patterns, 
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we extract features in brain signals encode the patient’s 
motor intentions or reflect the user commands. Translating 
feature into control signals is aimed at last step to sent to 
an external device.[1,11]

Several methods, based on Independent Component 
Analysis (ICA), Fourier Transform, and Wavelet Transform 
(WT), were thus proposed to enhance the SNR and to 
remove the artifacts from EEG signals.[10,12]

The major drawback of ICA-based method is that they 
are supervised and they are not specifically designed 
to separate brain waves. For instance, ICA is a popular 
method to EEG denoising, but after the decomposition in 
independent components (IC), it is necessary to select (by 
spatio-temporal prior or manually) the ICs which contained 
the evoked potentials.

Wavelet denoising techniques have been adopted for signal 
enhancement applications. EEG signal is first mapped 
to discrete wavelet domain by means of multiresolution 
analysis. Details of coefficients related to additive noise 
could be eliminated using a contrast or adaptive threshold 
level. Finally, signal is reconstructed back to time domain 
using remaining wavelet coefficients.

Donoho[13] suggested a denoising technique in the 
wavelet domain in order to enhance the domain. It is by 
thresholding the wavelet coefficients in the orthogonal 
wavelet domain. Two thresholding algorithms were 
proposed, namely the soft thresholding and hard 
thresholding.

So, to denoising the signal, choosing a good threshold and 
algorithm would help having more clear signals.

In this paper, we propose a new unsupervised algorithm 
to automatically estimate noise subspace from raw EEG 
signal. The aim is to provide a new method to increasing 
the spelling debit.

In particular, our algorithm is an adaptive wavelet 
denoising, which is one of the best methods for signal 
denoising. The threshold on each WT levels are different 
and dependence of negentropy. Negentropy is the mainly 
parameter that ICA work based on. Negentropy of each 
level in WT is calculated and the lowest level negentropy 
is introduced for certifiable parameter. Other levels 
negentropy compare with this one and independency 
of such levels and the main (the lowest level) acquired. 
This independency, determines the threshold. So 
the threshold must be increased to eliminate the  
noise.

This paper is organized as follows: Section 2 describes 
the P300 subspace and the BCI Enhancement. Section 3 

describes Independent Component Analysis and Wavelet 
Transform whereas. Section 4 presents our proposed 
algorithm. In the last parts, Sections 5 and 6 have simulated 
results and conclusion.

METHODOLOGY

On the P300 based BCI, the user was presented with a screen 
that is a 6*6 character matrix with 36 symbols. The user 
then, one by one, focuses on letters of an expected word. 
The columns and rows of the matrix are randomly flashed. 
Concerning the letter of the word, there are 12 illuminations 
(six columns and six rows) which provide the visual stimulus. 
Two flashes (one column and one row) out of the twelve 
intensifications decide a character which the user wants to 
say. It is expected that the evoked waveforms are different 
from others.[1,11] Each row and column in the matrix was 
randomly illuminated for 100 ms. After illumination of 
a row/column for 75 ms, the matrix was blank. For each 
character, sets of 12 illuminations were repeated 15 times. 
So there were 180 illuminations for each character. After all 
illuminations, the matrix is blank for 2.5 s.[11]

To improve and validate signal processing and classification 
methods for BCIs, some BCI groups organized an online BCI 
data bank, known as the BCI competition datasets. These 
datasets consist of continuous single-trials of EEG activity, 
one part is training data and another part is test data, which 
is unlabeled. Initially, the labels for test data were not 
available for the purpose of the competition. The labels for 
testing sets are released and the data sets became available 
for developing new methods towards improving BCI studies. 
This paper uses EEG signals of the BCI competitions 2003 
dataset-IIb which are recorded from a P300/ERP based BCI 
word speller.[1]

Reducing noise of signals will help P300 detection. We 
proposed methods to enhance EEG with adaptive WT via 
ICA concepts. It is demonstrated that channel Cz has mainly 
data and more accurate to detect P300, so most of the 
studies rely on this record.[9]

INDEPENDENT COMPONENT ANALYSIS

To alleviate the influence of noise, in this research, an 
independent component analysis ICA-based denoising 
scheme is proposed and integrated with adaptive wavelet 
denoising.

The methodology of Independent Component Analysis (ICA) 
was first introduced in the context of neural networks.[14] 
Delorme et al.[15,16] utilized ICA as an important algorithm for 
EEG analysis. The goal of ICA is to separate instantaneously 
mixed signals into their independent sources, without 
knowledge of mixing process. One practical application 
of ICA decomposition is the Evoked Related Potential 
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and electroencephalogram analysis. The recorded signal 
can be considered as different sources in the brain and 
various artifacts that generate electrical signals. ICA 
is presented of interesting sources[17] or automated 
classification of epileptiform activity[18] and artifact  
removal.[19]

Hidden information is called the independent components 
(ICs) of the data. The noise information usually cannot be 
directly obtained from the observed data. Thus, ICA can be 
used to detect and remove the noise via the identification of 
the ICs of the time series data, and improve the performance 
of the specific patterns in brain activity.

Let X x x x xm
T= [ , , ,..., ]1 2 3  be a multivariate data matrix of 

size m * n, m ≤ n consisting of observed mixture signals xi
(size 1*n, i=1,2., n).

In the ICA model, the matrix X can be introduced as:[18,19]

x AS a si i
i

m

= =
=
∑

1

 (1)

Where si is the i-th row of the m*n source matrix S and ai is 
the i-th column of the m*m unknown mixing matrix. Vectors 
si are the latent source signals that cannot be observed from 
the mixture signals xi. The ICA algorithm aims at finding an 
m*m de-mixing matrix W such as:

Y y wxi= =[ ]  (2)

Where yi is the i-th row of the matrix Y (i=1,2, … m). The 
vectors yi must be as statistically independent as possible, 
and are called as independent components. When de-mixing 
matrix W completely is the inverse of mixing matrix A, ICs 
(yi) can be used to estimate the latent source signal si.

The ICA algorithm is formulated as an optimization problem 
by setting up the measure statistical independence of ICs as 
an objective function. To do this, using some optimization 
techniques for solving the de-mixing matrix W is suggested. 
In general, the ICs are obtained by using the de-mixing 
matrix W to multiply the original matrix. This matrix can 
be determined by using an algorithm which maximized the 
statistical independence of ICs. The statistical independence 
obtained by ICs with non-gaussian distribution.[18] The 
negentropy can measure the non-Gaussianity of the ICs 
such as:

J y H y H ygauss( ) ( ) ( )= −  (3)

Where ygauss is a Gaussian random vector having the same 
covariance matrix like y. H is the entropy of random vector 
y defined by H with density p(y):

H y p y p y dy( ) ( ) log ( )= −∫  (4)

The negentropy is zero if and only if the vector has a Gaussian 
distribution and it is always non-negative parameter. Since 
the problem in using negentropy is computationally very 
difficult, an approximation of this parameter is proposed as 
follows:[1,10,20]

J y E G y E G v( ) [ { ( )} { ( )}]≈ − 2 (5)

Where E stand for entropy, v is a Gaussian variable of zero 
mean and unit variance, and y is a random variable with 
same mean and variance. G is a non-quadratic function, and 
is given by G y y( ) exp( / )= − 2 2  in this study.[3]

We can find the de-mixing matrix with optimization. This 
maximization in described method, FASTICA, is achieved 
using an approximate Newton iteration. After every 
iteration, to prevent all vectors from converging to the 
same maximum, (that would yield several times the same 
source), the p-th output has to be de-correlated from the 
previously estimated sources. A deflation scheme based on 
a Gram-Schmidt orthogonalization is a simple way to do 
this.[9,10,21]

WAVELET TRANSFORM

It has been shown that EEG is a classical non stationary 
signal. Short time fourier transform (STFT), which was a 
time-frequency analysis method, was applied to analyze 
brain signals, but it has been noted that the transform 
depends critically on the window. Wavelet Transform 
(WT), that is a multi-resolution analysis method, brings 
solution to this task and give a more accurate temporal 
localization.[22] In the research of brain signal enhancement, 
a more accurate local band denoising required Wavelet 
Transform that could help to eliminate noise, which 
we were interested in, and that can generate spectral 
resolution.[22,23]

In particular, the Wavelet Transform forms a signal 
representation which is local in time and frequency domains. 
The WT relies on smoothing the time domain signal at 
various scales; thus, if  s x( ) represents as wavelet at scales, 
the WT of such a function like f x L R( ) ( )∈ 2  is defined as a 
convolution:[24]

Wf s x f xs( , ) * ( )=  (6)

The scaled wavelet are constructed from a ‘Mother’ wavelet, 
 ( )x :

 s x s x s( ) ( / ) ( / )= 1 (7)

With a Gaussian function, G(x), the ‘Mother’ wavelet will be 
defined as:[6]

 ( )
( )

x
dG x
dx

=  (8)
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Figure 3: A+.5 line with m=1.4566 and a=0.9566; so we have a=0 for 
determining the wavelet function

From knowledge of the modulus maxima of WT, the signal 
f(x) may be reconstructed to a good approximation. These 
maxima propose a compact representation idea for noise 
removal.

The existing research uses a lipschits exponent method 
based on least square. Lipschitz exponent-a (L.E.a) is 
a criteria to quantize locally regulation of function in 
mathematics.[13,25] L.E.a, at one point, can reflect the signal 
singularity in that area of function. This means that its 
smoothness increases and signal singularity diminishes 
with a.[26]

Order 0 1≤ < , and assuming that a constant (C) exists that 
makes:

∀ ∈ − ≤ −x R f x f x C x x, ( ) ( )0 0


 (9)

The lipschitz exponent at x0 point is called  . If the 
function is nth differentiable, but nth derivative of f x( ) is 
uncontinuously,  the  lipschitz exponent of ∫f(x)dx is up to 
 +1 when n n≤ < + 1 (n being the nearest integer  
to  ).[1,23]

So it is possible to characterize isolated singularities when 
they occur in a smooth signal. Furthermore, for such point 
like x in the neighbor of x0, where f(x) is  -Lipschitz at 
x0, the modulus maxima of the WT evolve with scale s, 
according to:

Wf s x( , )  ≤ ASa (10)

Where A is a constant.[1]

To determine  , WT of one typical EEG segment calculated 
and by formula (10) it’s Lipschitz have to be zero 
[Figures 1-3].

NOISE REMOVAL

Adaptive Wavelet Denoising has many good results in 
biomedical signals, and ICA has many advantages in EEG 
denoising. Therefore, it is possible to combine them to 
reach the better SNR. The SNR was defined as the ratio 
of standard deviations of the clean ERP signal and one of 
the surrogate EEGs. Note that, for lower SNR, the ERPs are 
hardly recognizable in the single-trial. ICA approach helps 
us to use adaptive thresholding via wavelet to choose 
thresholds of denoising [Figure 4].

As shown in Figure 4, adaptive wavelet denoising is a 
method of noise removal. So we applied Wavelet Transform 
on Signal. Then, the level C−3, the lowest frequency is kept, 
which is more noiseless and similar to original signal. 
Other levels (d n− ) must denoised with sufficient thresholds 
(such as Tn). With adaptive wavelet thresholding, user 

Figure 1: Wavelet transform of EEG

Figure 2: XY plane to know the point of singularites

can denoised each level with interested threshold and 
function.[13]

To have WT coefficients only for singularities and no other 
points, a proper wavelet need to detect singularities in 
a signal (sufficient number of moments must be zero). 
EEG signal has peaks at some points, like discontinuous 
regions; so we choose   (lipschitz Regularity) to  
be zero.
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Now, the signal has to be input of WT because SNR of 
EEG is low; we propose to have three analysis levels by 
soft thresholding. Usually the levels of transform can 
be changed (most three to five), but in more practical 
denoising, three levels work well. Our experiment certify 
this suggestion.[13,23]

Soft thresholding is a useful tool to denoising signals with 
low SNRs, but hard thresholding could generate more noise. 
It can be simply defined by[13] [Figure 5]:

δ λ λ λsof tthresholding J J Jd d sign d

where is heav

( , ) ( ) ( )

(.)

= − >ΙΙ

ΙΙ yyside function

 (12)

d J ’s are the elements in each level of WT and  is the 
threshold for denoising each element.

We change above function fewness, to have a better signal 
power.

δ λ
λ

λsoft thresholding new J
J

Jd k
d

d

where

( ) = −






>( )( , ) *

(

dJ

2

Π

Π ..) , .is heavyside function k = 2

 (13)

By WT, we have subspaces of Cz channel complex with 
noise. ICA separate ICs by maximizing negentropy of 
sources. We want to use this idea to find proper threshold 
in each branch.

Figure 4: Adaptive wavelet thresholdings

Figure 5: Function of dsoft thresholding(new) (dJ, l)

Figure 6: EEG signal via Cz channel in ERP

Applying some preprocessing steps before using an ICA 
algorithm is very useful to separate ICs. Therefore, we 
discuss some techniques that make the ICA estimation so 
simpler and in better condition.
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The most basic preprocessing step is to center x, i.e. to make 
x a zero-mean variable, subtract its mean vector m=E{x}. 
This process does not mean that the mean couldn’t be 
estimated.

We can complete the estimation of mixing matrix A with 
centered data, by adding the mean vector of s, back 
to the centered estimates of it. A m−1  gives the mean 
vector of s (in the preprocessing m was subtracted as the  
mean).[12]

Whitening the observed variables is another useful 
preprocessing strategy in ICA. This means that after 
centering and before the application of the ICA 
algorithm, we linearly transform the observed vector 
X to obtain a new white vector X, i.e. its components 
are uncorrelated and their variances equal one. In 
other words, the covariance matrix of X is the identity  
matrix:

E XX IT{ } =  (14)

Using the eigen-value decomposition (EVD) of the 
covariance matrix, E xx EDET T{ } =  is one of the popular 
method for whitening, where E is the orthogonal matrix of 
eigenvectors of E xxT{ } and D is the diagonal matrix of its 
eigenvalues, D=diag(d1.,., dn).[3,12] Note that E xxT{ } can be 
estimated from the available sample x(1), ., x(T). We can see 
that whitening can now be done by:

x Ed E xT
~

= − 1
2  (15)

Where, the matrix D−1 2/  is computed by a simple 
component-wise operation as D diag d dn

− − −=1 2
1

1 2 1 2/ / /( ,..., ). 

The mixing matrix transforms into a new one, A
~

, where it is 
orthogonal:[3,12]

x ED E As A sT
~

/
~

= =−1 2  (16)

E x x A E ss A A A I
T

T
T T

{ } { }
~ ~ ~ ~ ~ ~

= = =  (17)

Centering and whitening prepare subspace signals to 
denoising. In universal denoising, the parameter has to be 
introduced by:[13,23]

λ δ δ= =
( )−

2
0 6795

1
* log

.
,

e
N k

where
median d

 (18)

Where in this function,   stand for variance of noise, d k−1, ’s 
are the first subspace elements (1≤K≤N), N imply length 
of trail and  is the threshold. In universal thresholding, 
the same threshold (above formula) was used for all 
sub-bands.

But we compute negentropy for each branch. One of 
the sub-bands that have lower frequencies is like to 
signal, so its negentropy is important. Other subspace 
negentropies have compared to this one and their 
differences change the threshold of denoising. To 
adaptive wavelet thresholding, SURE has introduced to 
fine the best threshold in each band. In this approach, 
threshold from zero to universal value changed and 
SURE like follow formula computed then threshold that 
associated minimum SURE determined and used for that 
band. We have improved SURE by negentropy feature. So 
the SURE can change like this:

SURE N d d

N lenght of sig
Convential J J K J K

J

= − < +

=
∑ ∑2 * ( ) min( , ), ,ΙΙ  

nnal

d signal elements

to universal

SURE N nege

J K

New J

,

* (

=

=

= −

 0

2 ΙΙ nntropy negentropy

d

negentropy negentr

J K C

J K

J K

,

,

,

)

min( , )

<

+

=

∑
∑ 

oopy of signal elements

negentropy negentropy of C subbsnd

to u
C =

= 0 nniversal N Nc d * ( / )1−

(19)

If SNR is less, we can increase the Wavelet Transform and 
denoise each level accurately. But in practice, the WT levels 
for denoising are three to five.[13,23] In this application, we 
found that three levels could be sufficient. So negentropy 
of three levels wavelet decomposition from EEG were 
computed; then each one has denoised by adaptive soft 
thresholding obtained by their negentropy. These 
subspaces, reconstructed in time/domain transform. This 
approach suggests very good denoising method and SNR 
results.

Denoising Algorithm of EEG Signals via Adaptive 
Wavelet �resholding by ICA Concepts

1. Averaging Cz (premier) channel after one complete 

Table 1: Comparing different methods on achieved signals to noise ratios of some signals
SNR of 
signal 1

SNR of 
signal 2

SNR of 
signal 3

SNR of 
signal 4

SNR of 
signal 5

SNR of 
signal 6

SNR of 
signal 7

SNR of 
signal 8

Averages of SNR’s (with 
standard deviation)

ICA denoising method 4.4992 4.5524 4.5623 4.6095 4.5726 4.6102 4.5880 4.5941 4.5735 (0.036)
Wavelet denoising method 4.5411 4.5333 4.6402 4.6529 4.7203 4.7387 4.6219 4.6745 4.6403 (0.074)
Wavelet denoising method via ICA 4.6521 4.6578 4.7291 4.6899 4.8256 4.7126 4.8005 4.7565 4.7280 (0.063)
SNR - Signal to noise ratio; ICA - Independent component analysis
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Figure 7: Noisy EEG of Cz channel (top) and its 12 segments (down)
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Figure 8: Denoised EEG of Cz channel by ICA (top) and its 12 segments (down)
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Figure 9: Denoised EEG of Cz channel by adaptive wavelet thesholdings (top) and its 12 segments (down)
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Figure 10: Denoised EEG of Cz channel by proposed algorithm (top) and it’s 12 segments (down)
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iteration with P300 speller
2. Seriate these 12 parts to one signal
3. Wavelet analysis on the signal 3 level (can be  

changed).
4. Computing negentropy of all subspaces and sequential 

differences
5. Determining adaptive threshold for denoising each 

level
6. Have a soft thresholding in each plane
7. Reconstruct EEG of denoised subspaces.

SIMULATION AND RESULTS

EEG signals in each iteration were averaged, and 
12 averaged parts let to determine ERP Eliminating 
artifacts caused to develop clear EEG signals. This 
algorithm applied on BCI Competition 2003 database (IIb) 
and interesting results appeared [Figures 6-10]. In the EEG 
data with average SNR of 4.4667 dB, we have tested ICA, 
Wavelet Thresholding (Soft Thresholding with Universal 
criteria), and Adaptive Wavelet Thresholding via ICA 
concepts algorithm to compare them for enhancement 
of ERP detection. Sequentially, averaged SNR=4.5933 dB, 
SNR=4.6700 dB, and SNR=4.7442 dB obtained. 
Therefore, the proposed method could be more accurate 
to EEG enhancement. Some simulation results can be 
seen as follows in Table 1.

CONCLUSION

This paper has introduced a new algorithm to enhance 
ERP signals. SNR of EEG is very low. We aim to eliminate 
artifacts. We proposed a method based on adaptive 
wavelet thresholding via ICA concepts. Negentropy is the 
most important feature to diagnose noises. This method 
was compared with two usual algorithms such as ICA and 
WT. Algorithms were tested on signals from dataset BCI 
competition 2003. The proposed method could be more 
accurate to EEG enhancement.
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