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INTRODUCTION

Coronary artery disease (CAD) occurs when the coronaries 
are occluded and become constricted, which leads to 
the heart being deprived of oxygen and other nutrients 
and eventually arresting. According to the most recent 
statistics by the World Health Organization, CAD is one 
of the most prevalent causes of death in the world and 
affects an increasing number of people.[1] X-ray angiography 
is considered as the gold standard for the assessment of 
stenosis in the coronary arteries. In this procedure, a 
catheter is inserted into one of the two major veins, and 
a radiopaque contrast agent (i.e., dye) is injected into the 
bloodstream to make the arteries in the heart visible in 
X-ray images. Coronary angiography enables the radiologist 
or cardiologist to see any narrowing of the blood vessels 
(i.e., stenosis). Angiogram analysis is performed for both 
diagnostic and interventional purposes. Each sequence of 
coronary angiograms includes two or three cardiac cycles. 
However, according to blood flow and cardiac motion 
patterns, the vessel tree is not properly visible in all of 
the images in a sequence. Although it is rather easy for a 
physician to tell when the contrast medium appears in a 
fluoroscopy scene and makes judgments accordingly, an 
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X-ray coronary angiography has been a gold standard in the clinical diagnosis and interventional treatment of coronary arterial 
diseases for decades. In angiography, a sequence of images is obtained, a few of which are suitable for physician inspection. This 
paper proposes an automatic algorithm for the extraction of one or more frames from an angiogram sequence, which is most suitable 
for diagnosis and analysis by experts or processors. The algorithm consists of two stages: In the first stage, the background and 
illumination in the angiogram sequence are omitted. By analyzing the histogram of the sequence, a feature is attributed to each 
frame. These features, determining the visibility of the vessel tree, are clustered by a fuzzy c-means method. In the second stage, the 
cardiac phase for each frame is specified. Using the results of both stages, the best frames in an angiogram sequence are obtained. 
To evaluate the proposed method, it has been tested on angiogram sequences from several patients. The results demonstrate the 
accuracy of the method. The performance and speed of our method indicate its usefulness in clinical applications.

Key words: Algorithms, coronary angiography, coronary vessels, humans, lighting, X-rays

Extraction of the Best Frames in Coronary Angiograms for 
Diagnosis and Analysis
Maryam Taghizadeh Dehkordi
Department of Engineering, Shahrekord University, Shahrekord 115, Iran

Submission: 21-01-2016 Accepted: 26-05-2016

automatic contrast inflow detection algorithm is desired 
for many computer-assisted interventions. A few examples 
include: (1) In a stent enhancement application such 
as,[2] the algorithm needs to discard frames with contrast 
medium since they could undermine the visibility of stent 
enhancement. For this purpose, the algorithm needs to 
determine whether there is contrast injection during the 
acquisition. If there is, the algorithm has to estimate at 
which frame the contrast inflow begins to appear and only 
precontrast frames should be processed. (2) To improve the 
overlay of a three-dimensional (3D) model when contrast 
agent is present,[3] the system has to know the presence 
of contrast medium so that it can register the vessel/aorta 
with a presegmented vessel/aorta model. (3) To provide 
automatic road mapping,[4] the algorithm needs to know 
when the contrast agent appears in the fluoroscopy to 
disable the overlay. All these interventional procedures can 
be streamlined with a robust and automatic contrast inflow 
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detection algorithm such that the physician can obtain 
desired information with less interactions or constraints.

Robust contrast inflow detection in a large scale is 
challenging. Little work has been done in the literature. 
Ideally, sharp changes of the overall intensity histograms 
along the temporal domain can be used as potential 
candidates indicating when contrast inflow appears. 
Nevertheless, this works poorly in practice since moving 
diaphragm and other darker regions can often appear in 
cardiac X-ray images and mislead the algorithm. Condurache 
et al.[4] proposed a method which applies morphological 
operations and a difference of Gaussians filter to generate 
a vessel map. A threshold is then applied to the histogram 
of the vessel map to decide whether contrast medium 
appears. Based on our experience, the main challenge 
of automatic contrast inflow detection lies in the high 
variability of data, especially when the images are often 
acquired using low-dose radiation where the contrast 
medium is weakly detectable by a traditional filter. Previous 
methods[4] were evaluated only on a limited number of data 
sets and are empirically set parameters. They can hardly 
be generalized to work in different clinical applications. 
In a study by Chen et al.[5] a learning-based framework for 
automatic detection contrast inflow is proposed. In a study 
by Syeda-Mahmood et al.,[6] two different methods of frame 
selection are described, one based on Frangi filter and the 
other based on detecting parallel curves formed from edges 
in angiography images. Furthermore, in the reconstruction 
of the 3D structure of coronary arteries, the images at 
end-diastole (ED) are preferred because they correspond 
to the most relaxed and stable state during heart motion 
and consequently reduce superimpositions and potential 
asynchronism.[7,8] We propose that the frames which show 
the full-vessel tree and are in the ED state can be considered 
as the best frames for diagnosis and analysis by experts or 
computer methods. Hence, it is desirable to develop an 
automatic mechanism for selecting one or more of these 
images from the angiogram set.

In this paper, we have proposed an algorithm. It consists 
of two stages. In the first stage, the visibility of the vessel 
tree in each frame is obtained by using the histogram 
information as its feature, and the features are clustered by 
the fuzzy c-means method. In the second stage, the cardiac 
phases for each frame are obtained by acquiring the vessels’ 
displacements in consecutive frames. Then, the frames in 
which both the vessel tree is full and the cardiac phase is ED 
are selected as the best frames.

This method has less complexity than the method of contrast 
inflow detection mentioned before and is proper for clinical 
application. In addition, to the best of our knowledge, this 
is the first paper to extract the best frames in angiography 
videos by combination of visibility of the vessel tree and the 
cardiac phases.

The remainder of this paper is organized as follows: The 
proposed method is described in Section 2. Experimental 
results on real angiography images are presented and 
assessed in Section 3. Section 4 is devoted to conclusions.

PROPOSED METHOD

For angiogram analysis, the best frames should have two 
properties: (1) the complete vessel tree should be clearly 
visible and (2) the frames must be in the ED state. Therefore, 
the following proposed method consists of two stages.

First Stage

In this stage, the visibility of the vessel tree in each frame 
is determined by enhancing the frames and using the 
histogram feature.

For enhancing each radiograph, we use the method proposed 
in the study by Dehkordi et al.[9] In this technique, a temporal 
Fourier transformation is applied in the logarithm domain 
to angiograms to omit the background and compensate the 
illumination.

Let T denote the number of frames in a cardiac cycle. Each 
image is defined by function I(x, y, t), where t = 0:T − 1 
is the frame number and x, y are spatial coordinates. The 
image intensity, at each pixel, is the product of illumination 
(the amount of source illumination incident on the scene 
being viewed) and reflectance (the amount of illumination 
reflected by the objects in the scene). We denote illumination 
by L(x, y, t) and reflectance by R (x, y, t). Since angiograms 
are grayscale images,

I(x, y, t) = R(x, y, t) . L(x, y, t) (1)

where L(x, y, t) represents the illumination which can be seen 
as equivalent to the intensity of the incident X-ray energy 
passed to the film while R(x, y, t) represents the reflectance 
or equivalently represents the change in body absorption of 
the penetrating X-ray energy.

Taking the logarithm of Eq. 1

log I(x, y, t) = log R(x, y, t) + log L(x, y, t) (2)

Since illumination variations lie mainly in the low-frequency 
band, they can be reduced by low-pass filtering. On the 
other hand, static or slowly moving organs, such as ribs, 
spines, and lung, comprising the background in an X-ray 
are eliminated in the same process. Accordingly, using a 
temporal Fourier transformation in the logarithm domain 
and omitting low-frequency components, artifacts, and 
illumination nonuniformity can be removed as needed, 
as presented in the study by Dehkordi et al.[9] Given a 
sequence of T frames of images I(x, y, t),	0	≤	 t	≤	T – 1, 
the discrete Fourier transform in the logarithm domain are 
obtained as
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Then

FI(x, y, k) = FR(x, y, k) + FL(x, y, k),	0	≤	k ≤	T – 1 (6)

Applying high-pass temporal filtering, H(x, y, k) = (1 – e−βt), 
Eq. 6 leads to

F–I(x, y, k) = FI(x, y, k)(1	−	e−βk)

 = FR(x, y, k)(1	−	e−βk) + FL(x, y, k)(1	−	e−βk) (7)

 = F–R(x, y, k) + F–L(x, y, k),

in which β is a positive constant. In coronary angiograms, 
β = 9 is appropriate. The inverse Fourier transform of Eq. 7  
is obtained as following:
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The first and second terms in Eq. 8 remove the background 
and illumination, respectively. Therefore, a new sequence 
of images Ĩ(x, y, t) = log Ĩ(x, y, t),	0	≤	t	≤	T	−	1	is	obtained	in	
which the artifacts are corrected.

In Figure 1, the histograms of the sequences I(x, y, t) and 
Ĩ(x, y, t) are compared. Figure 1a corresponds to the 4th, 
14th, and 25th frames in I(x, y, t) sequence with no, slight, 
and full contrast agent, respectively. Figure 1b shows the 
histograms of the three frames Ĩ(x, y, 4), Ĩ(x, y, 14), Ĩ(x, y, 25) 
approximately exhibiting Gaussian distributions. Since 
the histogram is a probability distribution function, this 
observation is consistent with the central limit theorem, 
and therefore, according to the central limit theorem 
and the sum of random variables in logarithm, quasi-
Gaussian shape of the histogram is acceptable. For more 
accuracy, the measures of fit of three histograms for a 
Gaussian function, obtained by MATLAB curve fitting 
toolbox, are shown in Table 1. According to Table 1, it 
can be concluded that distribution of the histogram of 
each frame in sequence Ĩ(x, y, t), 0	 ≤	 t	 ≤	 T	 −	 1	 has	
a quasi-Gaussian. It is observed that the mean of the 
distribution of the histograms are about 150; as a result, 
for comparing the histograms and obtaining feature, 
theirs means are set to 150. Since the filled arteries 

Figure 1: Histograms of three frames, (a) 4th (black), 14th (red) and the 25 (green) of the sequence I (x, y, t). (b) Corresponding Ĩ(x, y, t) frames. (c) The 
logarithmic scale of the histograms in (b)

c

b
a



Dehkordi: Automatic selection of the best frames in coronary angiograms

Journal of Medical Signals & Sensors

Vol 6  | Issue 3  |  Jul-Sep 2016 153

are darker than the image background, smaller values 
in the histogram indicate the presence of the contrast 
agent. Therefore, in frames with higher contrast, the 
stretch the distribution is further to the left. For a 
better demonstration, the logarithmic scale of the set 
histograms in Figure 1b is shown in Figure 1c.

We propose the feature to be the intensity on the left 
extent of each histogram that makes zero the histograms. 
In Figure 2a, the features are depicted for a sequence of 
39 frames of 2D angiograms. As shown in Figure 2a, the 
maximum features are related to contrast free frames; the 
median features are related to contrast flowing into or 
being washed, and the minimum features are related to the 
whole vessel tree filled by contrast agent.

Therefore, the proposed features for the three frames must 
be classified into three clusters: (1) contrast free, (2) contrast 
flowing into or being washed, (3) the whole vessel tree filled 
by contrast agent. We chose the fuzzy c-means clustering 
algorithm for this purpose.

Fuzzy c-means clustering
In fuzzy clustering, each sample has a specific possibility 
of belonging to each cluster. This method, developed by 
Dunn,[10] and improved by Bezdek,[11] is frequently used 
in pattern recognition. Let x = (x1, x2, x3,…,xN) be a finite 
collection of n elements to be partitioned into C clusters 
according to a given criterion. Fuzzy clustering is based on 
the minimization of the following objective function:
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The final step is reached with max (| |)( )
ij ij

k+1
ij
(k)u u− <ε, where 

e is a termination factor selected between 0 and 1 and 
k is the iteration step. This procedure converges to a local 
minimum or a saddle point of Jm.

The classification result of the data in Figure 3a is shown in 
Figure 4b, where C = 3 and v1 = max(X), v2 = min(X), and 
v3 = (v1 + v2)/2 are used for initialization.

In Figure 2b, the frames in categories 1, 2, and 3 are 
specified by green, red, and blue rectangles, respectively.

Cardiac Phase

Recently, developments have been made in 
electrocardiogram (ECG)-gated ED and end-systole (ES) 
frame selection to circumvent the severe image ambiguities 

Table 1: Goodness of fit for Gaussian function
SSE R2 Adjusted R2 RMSE

The fourth frame 0.03431 0.9933 0.9933 0.01165
The fourteenth frame 0.05751 0.9829 0.9828 0.01508
The twenty‑fourth frame 0.07596 0.9784 0.9828 0.01508
RMSE – Root mean squared error, SSE – Sum of squared error

Figure 2: The features of a sequence and corresponding frames. (a) The green, red, and blue rectangles are corresponding to categories 1, 2, and 3, 
respectively. (b) Classification of features in (a)

ba
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in X-ray angiography by synchronizing the ECG signal with 
the X-ray image data. Such ECG-gated methods, however, 
are not robust because unlike in a healthy patient, when a 
patient’s ECG is pathological, it is difficult to indicate the 
correct ED and ES frames because the QR- and T-waves of the 
ECG signal do not have good correspondence with ED and 
ES. This fact greatly limits the application of such ECG-based 
approach as most patients undergoing left ventricular 
angiography have irregular ECG signal. Moreover, since 
such kind of approaches requires strict synchronization 
between the ECG signal and the X-ray image data, the 
record delay, or noise may introduce additional error and 
lead to wrong detection results. Accordingly, there is a need 
for an improved system and method for finding ED and ES 
frames in an angiography series. In this stage, the cardiac 
phase in each frame is solely determined from the image 
sequence information, without any auxiliary mean such as 
an ECG signal. This goal is achieved by acquiring the vessels’ 

displacements in consecutive frames through the two steps 
described in the following.

Selection of control points
Strong edges in an image are proper landmark points. To find 
these points, the gradient image is obtained by applying the 
first derivative Gaussian filter with σ = 1. The calculated 
values are normalized in the range (0, 1). Selecting a proper 
threshold, a zero is attributed to any pixel falling under the 
threshold. The resulting image is called IG.

The local maxima of IG longer than the threshold are sorted 
in descending order. From the top of the sorted list, each 
two points with an Euclidean distance less than a certain 
amount, Dmin, are chosen as control points.

By decreasing Dmin the computational time of the template 
matching described in the following method increases. The 
reason is that the smaller Dmin leads to an increase in the 
number of increments of selective control points.

Displacement of control points
Template matching is used to determine the corresponding 
control points in the frames. Based on the previous studies,[12,13] 
the energy of the histogram of differences (EHD) measure 
provides an appropriate similarity measure in coronary 
angiography and is applied in the present study. It is defined as

EHD M L H g( , ) ( )=
−
∑ 2

g= G

G

 (12)

where H(g) is the normalized histogram of differences 
between the mask and live images, which can be written as

Figure 4: The diagram D(n) for a sequence. (a)The maximums and minimums of D(n) in each cardiac cycle are corresponding to frames in end‑diastolic and 
end‑systolic states, respectively. The frame number 15 marked by red arrow is in end‑diastolic state and the frame number 20 marked by blue arrow is in 
end‑systolic state. (b) The blue and red rectangles show the frames in cluster one and two, respectively

ba

Figure 3: The control points correspondence in two frames. (a) The control 
points of frame number 16. (b) The corresponding control points of frame 
number 16 in frame number 17 (green dots)

ba
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where g ∈	 (−G, G) ⊂ Z and δ(x, y) is the Kronecker delta 
function.

One of the most influential parameters in a template 
matching algorithm is the template size. Smaller images 
impose less computational burden at the cost of poorer 
resemblance quality. Based on the study by Buzug and 
Weese[14] with histogram-based similarity measures such as 
EHD, the size of 50 × 50 pixels is found to be optimum, for 
both computational burden and confidence level.

In addition, optimization procedures can be used to reduce 
the amount of computation needed for template matching. 
In the proposed model, the simple convergence hill-climbing 
method is used as.[15]

The results of executing one algorithm on two consecutive 
frames in a sequence are shown in Figure 3. The red dots 
are the control points of frame number 16, and the green 
dots are the corresponding control points of frame number 
16 in frame number 17. According to the cardiac motion 
pattern, if the control points in a frame are closer, the heart 
is in the systolic mode, and if farther apart, in the diastolic 
mode. Therefore, the sum average of the distances between 
control point’s pairs in each frame is considered as the 
frame state feature.

Let (P1n, P2n,…, PNn) denotes the positions ([x, y] coordinates) 
of N control points in frame n. Hence, the state feature is

D n
N N
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EXPERIMENTAL RESULTS

We have applied the above technique to several angiogram 
sequences. These sequences were obtained from Sina 
Cardiac Hospital, Isfahan, Iran. Their format is DICOM with 
512 pixel × 512 pixel frames. Each sequence includes two 
or three cardiac cycles.

Figure 4 depicts D(n) (n = 10,..,39) for one of the sequences. 
It includes thirty frames filled with contrast agent (selected 
according to stage 1 in section 2). Evidently, the local 
maxima and minima indicate ED and ES frames, respectively.

Figure 4a shows frame number 15 and number 20 marked 
by arrows and have maximum and minimum of D(n) in first 
cardiac, respectively. As seen in Figure 4, these frames are 
corresponded to ED and ES states, respectively.

According to Figure 4a, the frames can be placed into 
two clusters: (1) The frames in ED and close to it and 

(2) The frames in ES and close to it. Each sequence consists 
of several cardiac cycles which include systole and diastole 
phases. The movements in the two cycles can be different. 
Thus, the local minimum and maximum values in each cycle 
can be different. As a result, if the clustering is done in each 
cycle, the results will be better. Hence, first the number 
of local maxima, N, is calculated, and then the diagram is 
clustered by the Fuzzy c-means method. The number of 
clusters is 2 × N and the N clusters with larger centers, 
including the frames in the first class. In Figure 4b, the 
result of clustering Figure 4a is shown so that the blue and 
red rectangles show the frames in cluster one and two, 
respectively.

Selection of Best Frames

Finally, the frames in which the entire vessel tree is filled 
and the cardiac phase is ED are selected as the best 
frames. Therefore, following the procedure outlined, the 
best frames are obtained for analysis. In Figure 5, the 
frames (n = 10,.., 39) are shown according to the contrast 
feature, and cardiac phase, the horizontal axis is cardiac 
phase feature D(n) and the vertical axis is contrast feature. 
According to clustering results in Figures 2 and 4, the frames 
(13, 15, 16, 23, 24, 25, 26) drown in ellipse in Figure 5 are 
the best frames.

To evaluate the performance of the proposed method 
quantitatively, we randomly selected 20 X-ray coronary 
angiogram sequences from 15 patients obtained from 
Sina cardiac Hospital, Isfahan, Iran. The information of the 
patients and sequences is in Appendix A. The best frames 
were selected manually by two experts at this center as 
ground truth. The determination results of the best frames 
by the proposed method and the visual method is shown in 

Figure 5: The location of best frames: The blue circles are shown the 
location of frames according to contrast feature (vertical axis) and cardiac 
phase feature (horizontal axis) for a sequence of images. The best frames 
are in ellipse
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Table 2. The numbers seen in each row in Table 2 are according 
to the number of the best frame of a sequence determined 
by expert and the proposed method, respectively. As can 
be seen, the proposed method determines the best frames 
accuracy. In some sequences, such as the row number 6, 
the difference between of the best frames selected by the 
proposed method and experts is more. This happens due 
to C-arm position during angiography. Thus, in some of the 
frames with heart motion, some parts of the vessel tree are 
out of sight. As a result, for achieving more precise results 
during the heart motion, it is better than the doctor takes 
the images in a way that the whole vessel tree located in 
the frames.

We used missed detection and false detection. The twenty 
sequences include 870 frames as 84 frames are best frames. 
Missed detection denotes that the best frame is misclassified 
as a nonbest frame and missed-detection rate (MDR) is 
the number of missed detection over the total number of 
the best frames. False detection denotes a nonbest frame 
misclassified as a best frame. False-detection rate (FDR) 
is the number of false detection over the total number of 
nonbest frames.

Table 3 shows the MDR and FDR for all twenty angiogram 
sequences with the proposed method.

DISCUSSION

In this paper, a novel and automatic method was proposed 
to select the best frames which are most suitable for 
diagnosis and analysis by experts or digital processing in 
2D angiogram sequences. To our knowledge, this is the first 
method to extract the best frames in angiography videos by 
combining the visibility of the vessel tree and the cardiac 

phases. Therefore, this method consists of two stages. In 
the first stage, the visibility of vessel tree is determined 
by enhancing the frames and using the histogram feature. 
The distribution of histogram of frames after enhancing 
becomes quasi-Gaussian and appropriate for comparison. 
For comparing the histograms and identification features, 
the means of the histograms are set to 150 and the 
intensity on the left extent of each histogram that makes 
the histogram zeros is calculated as feature. Accordingly, 
in the view of image processing, the visibility of vessel tree 
has three states, so the features are classified into three 
categories. In the second stage, the cardiac phases for each 
frame are obtained by acquiring the vessels’ displacements 
in consecutive frames. The control points are selected on 
strong edges in a frame. Then, the corresponding control 
points in the next frames are obtained by template matching. 
According to the cardiac motion pattern, if the control 
points in a frame are closer, the heart is in the systolic mode, 
and if farther apart, in the diastolic mode. Therefore, the 
sum average of the distances between control point’s pairs 
in each frame is considered as the frame state feature. As 
seen in Figure 3, a few of the control points can be placed 
in area with no strong edge, but their effect on the feature 
is negligible because their displacement in two frames is 
very low. Finally, the frames in which the entire vessel tree 
is filled and the cardiac phase is ED are selected as the best 
frames. By By applying the proposed method to twenty 
angiogram videos including 870 frames, it is seen that this 
method determines the best frames with high accuracy and 
is proper for clinical application. Accordingly, for achieving 
these precise results, it is better that the videos were taken 
in a way that the whole vessel tree was located in the frames.

CONCLUSIONS

A novel and automatic method was proposed to select 
the best frames for diagnosis and analysis by experts or 
digital processing in 2D angiogram sequences. This method 
consists of two stages. In the first stage, the visibility 
feature of vessel tree is determined for each frame from its 
histogram, and then these features are clustered by fuzzy 
c-means method. Based on this feature, the cardiac phase 
for each frame is obtained in the second stage. Finally, 
frames with filled entire vessel tree and ED cardiac phase 
are selected as the best frames.

This method makes automatic selection of frames with 
higher contrast and determination of the corresponding 
cardiac phases possible.
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MDR – Missed‑detection rate, FDR – False‑detection rate
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Appendix A: Patients information and images
Patient Gender Age Frame Coronary 

angiography views
???

1 Female 57 41 LAO: 1.3 Cranial: 30.9
2 Male 72 57 RAO: 29.4 Caudal: 13.5
3 Female 56 33 RAO: 20.3 Caudal: 22.2
4 Female 63 53 RAO: 24.4 Cranial: 4
5 Male 58 35 RAO: 22.2 Caudal: 20.7
6 Male 74 50 RAO: 33.2 Caudal: 18.1
7 Male 76 45 LAO: 56.3 Cranial: 19.5

55 RAO: 33.2 Caudal: 18.1
8 Female 65 55 LAO: 37.6 Cranial: 0.7

40 LAO: 37.6 Cranial: 26.1
9 Female 51 48 RAO: 23.3 Caudal: 24.5
10 Male 82 55 RAO: 25.5 Caudal: 21.0
11 Male 51 48 RAO: 28.4 Caudal: 28.7
12 Female 64 40 LAO: 91.5 Cranial: 6.8

RAO: 30.3 Caudal: 15.5
13 Male 52 25 RAO: 0.3 Cranial: 30.1

LAO: 46.0 Cranial: 6.3
14 Female 72 42 RAO: 26.2 Caudal: 24.0

LAO: 89.7 Cranial: 0.3
15 Female 69 41 LAO: 4.6 Cranial: 40.3
LAO: Left anterior oblique, RAO: Right anterior oblique


