
© 2016 Journal of Medical Signals & Sensors | Published by Wolters Kluwer ‑ Medknow 183

INTRODUCTION

Leukemia is the eleventh most common cancer worldwide 
with more than 250,000–300,000 new cases each year,[1] 
and the fifth common cancer among people in Iran.[2] It 
refers to the cancer of blood or the bone marrow where 
blood cells are produced. Figure 1 shows that how stem 
cells become mature and evolve into several components 
of blood. Leukemia is characterized by the proliferation 
of abnormal white blood cells (WBCs) in the bone marrow 
without responding to cell growth inhibitors. As a result of 
this, the number of immature WBCs increases in the bone 
marrow. Therefore, one of the most significant symptoms 
of leukemia is the presence of an excess number of blast 
cells in peripheral blood, so routinely, blood smear is 
examined under a microscope for proper identification and 

A B S T R A C T

Acute myelogenous leukemia (AML) is a subtype of acute leukemia, which is characterized by the accumulation of myeloid blasts 
in the bone marrow. Careful microscopic examination of stained blood smear or bone marrow aspirate is still the most significant 
diagnostic methodology for initial AML screening and considered as the first step toward diagnosis. It is time-consuming and due 
to the elusive nature of the signs and symptoms of AML; wrong diagnosis may occur by pathologists. Therefore, the need for 
automation of leukemia detection has arisen. In this paper, an automatic technique for identification and detection of AML and 
its prevalent subtypes, i.e., M2–M5 is presented. At first, microscopic images are acquired from blood smears of patients with 
AML and normal cases. After applying image preprocessing, color segmentation strategy is applied for segmenting white blood 
cells from other blood components and then discriminative features, i.e., irregularity, nucleus-cytoplasm ratio, Hausdorff dimension, 
shape, color, and texture features are extracted from the entire nucleus in the whole images containing multiple nuclei. Images are 
classified to cancerous and noncancerous images by binary support vector machine (SVM) classifier with 10-fold cross validation 
technique. Classifier performance is evaluated by three parameters, i.e., sensitivity, specificity, and accuracy. Cancerous images are 
also classified into their prevalent subtypes by multi‑SVM classifier. The results show that the proposed algorithm has achieved an 
acceptable performance for diagnosis of AML and its common subtypes. Therefore, it can be used as an assistant diagnostic tool 
for pathologists.
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classification of blast cells by hematologists.[3] Leukemia 
can be pathologically classified into two categories on 
a broader sense: (1) Acute leukemia which progresses 
quickly; and (2) chronic leukemia which progresses slowly. 
In addition, it can also be categorized based on the affected 
cell type as (1) myelogenous leukemia and (2) lymphocytic 
leukemia. These two subtypes can also be further classified 
into several subcategories. Therefore, specialists generally 
divide leukemia into four major groups [Figure  2]. In the 
present paper, acute myelogenous leukemia (AML) was 
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only considered. AML is the second most common type 
of leukemia diagnosed in both adults and children.[4] The 
FAB classification system divides AML into eight subtypes, 
M0–M7, based on the type of cell from which leukemia 
developed and its degree of maturity. According to the 
hematologists’ opinion, more than 80% of the people with 
AML are included in the M2–M5 subtypes. Therefore, these 
four subtypes of AML, i.e., M2–M5 are much more prevalent 
than other subtypes, i.e., M0, M1, M6, and M7. The aim 
of this paper is to diagnose only the prevalent subtypes of 
AML. When the marrow contains more than 30% blasts, AML 
is confirmed. Due to its rapid spread into the bloodstream 
and other vital organs, it is fatal if left untreated.[4] For the 
recovery of patients, particularly in the case of children, 
early diagnosis of the disease is fundamental.[5] The precise 
cause of AML is still unknown. Moreover, the symptoms of 
the disease are fever, weakness, tiredness, or aches in bones 
or joints, which are very similar to the symptoms of the flu or 
other common diseases.[5] As a result, AML is often difficult 
to diagnose, but if the described symptoms are present, 
blood tests, such as a full blood count, renal function, 
electrolytes, and liver exam have to be done.[5] Since there 
is no staging for AML, choosing the type of treatment can 
vary from chemotherapy, radiation therapy, bone marrow 
transplant, and biological therapy.[6]

The Purpose of Doing the Research

The most important diagnostic methodology for initial AML 
screening is microscopic examination of blood smear, which 
still remains as a standard leukemia diagnosis technique, 
regardless of advanced techniques such as flow cytometer, 
immunophenotyping, cytogenetics, molecular probing, 
etc. Manual examination of the slides is accompanied by 
inconsistent and subjective reports since they are subjected 
to bias such as operator experience, tiredness, and etc. 
For instance, the manual examination has an error rate 
between 30% and 40% depending on the experience of the 
hematologist.[7] In addition, diagnostic confusion may occur 

due to the imitation of similar signs by other disorders.[8] 
Thus, these factors can lead to the wrong diagnosis. As a 
result, we need a cost-effective and robust automated system 
for leukemia screening which can greatly improve the output 
without being affected by operator’s ability and fatigue 
levels. Image processing techniques can assist pathologists 
to have more accurate diagnosis by improving the clarity of 
concerned features in WBC images. In addition, the cost of 
leukemia treatment can be overwhelming. The average cost of 
just one round of chemotherapy is $15,000.[9] Unfortunately, 
many patients require several rounds of chemotherapy to 
recover. The early and fast identification of the leukemia 
type greatly aids in providing the appropriate treatment for 
a particular type of leukemia.[10] Therefore, image processing 
techniques can decrease the cost of treatment by fast and 
parallel diagnosis in the early stages of the disease. In the 
past, digital image processing techniques have helped to 
analyze the cells that lead to more accurate, standard, and 
remote disease diagnosis systems. However, due to wide 
variation of cells in shape, size, edge, and position, there 
are a few complications in extracting the data from WBCs.
[11] Moreover, since illumination is imbalanced, the image 
contrast between the cell boundaries and the background 
varies depending on the condition during the capturing 
process.[12]

Many attempts have been done in the past to construct 
systems that aid in acute leukemia segmentation and 
classification. Broadly most of the methods are based on 
local image information. There are four main categories 
in segmentation techniques: (1) Thresholding techniques, 
(2) boundary-based segmentation, (3) region-based 
segmentation, and (4) hybrid techniques that combine 
boundary and region criteria.[13] For peripheral blood or 
bone marrow smears, region-based or edge-based schemes 
are the most popular.[14] A proper combination of both 
boundary and region information may present better results 
than those obtained by either method on its own.[13] Many 
segmentation algorithms were presented in the literature. 
Otsu segmentation and automated histogram thresholding 
were employed to segment WBCs from the blood smear 
images.[15-17] A two-step segmentation process using HSV 
color model was used.[18] Cell segmentation using active 
contour models was presented.[19] Color segmentation 
procedure applied to leukocyte images using mean shift 
was described.[20] A watershed segmentation algorithm for 
segmenting nucleus from the surrounding cytoplasm of 
cervical cancer images was proposed.[14] An unsupervised 

Figure 1: Production of blood cells in the bone marrow

Figure 2: Different types of leukemia
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color segmentation to bring out the WBCs from acute 
leukemia images was used.[6,21]

The usage of multilayer perceptron neural network in 
classifying AML and acute lymphoblastic leukemia (ALL) 
dataset was proposed. The result shows that the highest 
performance rate achieved was 58%.[22] On the other hand, 
modular neural network classifier was experimented and 
as the best performance, 75% was achieved.[23] K-nearest 
neighbor classifier was proposed for the classification of 
blast cells in acute leukemia into two types, i.e., AML and 
ALL. Twelve main features including color-based and shape-
based features were extracted from blasts. For this study, a 
total number of 1500 data, 750 data for ALL, and 750 data 
for AML were used. Out of 1500, 1200 was considered as 
the train data while the rest of the data was considered as 
the test data. The results have shown that k-NN produced 
good performance in classifying both AML and ALL with 
high percentage of accuracy up to 86%.[24]

An automatic blast counting method for acute leukemia 
detection in blood microscopic images was studied. For 
image segmentation, histogram‑based thresholding was 
performed on s-component of the HSV color space, followed 
by morphological erosion. Determination of the accurate 
threshold for separating nucleus from the cytoplasm is 
important, and no specific methods have been presented 
for its estimation.[25]

Moreover, many authors have proposed methods for 
automated leukemia identification and detection. An 
automatic method for the early diagnosis of ALL in blood 
microscopic images was presented. At first, identification 
and segmentation of WBCs were done by means of image 
clustering. Then, different types of features, such as 
shape, color, fractal, texture, and Fourier descriptors were 
extracted from the sub images. Finally, an ensemble of 
classifiers is trained to recognize ALL. While this method 
is able to recognize lymphoid blasts up to a certain extent, 
the system is yet to be tested with myeloid blast samples.[26]

An abnormal localization of immature precursors (ALIP) 
detection method was proposed to investigate the relevance 
with AML relapse. At first, kernelized fuzzy C-means clustering 
was applied to separate the foreground and background. 
Then, image partition was introduced to separate the 
overlapping cells. After that, a set of features were extracted, 
and support vector machine (SVM) was applied to classify 
precursors based on the features. Thirty-seven patients with 
AML were examined. ALIP efficiently was detected. The 
investigation also demonstrates the strong correlations of 
AML relapse with ALIP.[27]

In the present paper, color segmentation strategy was 
employed for segregating WBCs from other blood 
components in AML images. Different features such as 

fractal dimension, shape features, texture features, and color 
features are extracted from the nucleus in the whole images, 
each of which contains multiple nuclei. SVM is employed for 
classifying whole images based on the extracted features 
into healthy and leukemic. The aim of the paper is to 
diagnose only prevalent subtypes of AML that are M2–M5. 
Therefore, leukemic images are classified into five classes, 
i.e., M2, M3, M4, M5, and a class which consists of other 
types of AML, i.e., M0, M1, M6, and M7. Rest of the paper 
is organized as follows: methods section focuses in detail 
on the complete and detailed framework of the proposed 
model including the image acquisition process, the image 
processing methods used to perform enhancement and 
segmentation features extracted from the whole images and 
classification method. Experimental results and evaluation of 
the proposed algorithm are presented in the results section 
and discussion section. Finally, conclusions and future work 
are discussed in the conclusion section.

METHODS

Automatic classification of the blood microscopic images 
consists of preprocessing, segmentation, postprocessing, 
feature extraction. and classification. The overall working 
principle is depicted in Figure 3. The blood smear image 
consists of red blood cells, WBCs, and platelets. In the 
proposed method, we use color image segmentation, and 
our purpose is to extract WBCs from the background and 
finally separate nucleus from WBCs. As per acute leukemia is 
concerned, the cytoplasm is scanty, so we have considered 

Classification using
support vector machine (SVM)

Post-processing including Edge
enhancement, Dilation, Filling

Pre-processing including
conversion of RGB to Lab

Image acquisition using digital
camera and light microscope 

Image segmentation using
K-means clustering 

Feature extraction from
all nucleus in the whole images

Figure 3: System overview
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only the nucleus as the region of interest and its essential 
features are extracted.

Image Acquisition

For preparing the database of this study, 17 patients 
with AML, who have been admitted to Shariati Hospital, 
including 9 males and 8 females, aged 16–69 years old, 
were considered. All cases were confirmed by clinical, 
blood, and bone marrow examination. Then, 27 peripheral 
blood smear and bone marrow slides of the 17 patients with 
AML and 10 normal persons were collected from Shariati 
Hospital pathology laboratories. These slides were prepared 
and stained using Giemsa staining for visualization of cell 
components. The images were captured with Olympus, a 
high‑resolution digital camera coupled with an optical 
laboratory microscope, under ×100 power objective oil 
immersed setting and with an effective magnification of 
1000. All acquired images were in JPEG format with the 
maximum resolution of the camera, 2592 × 1944 pixels, 
and with the 24 bit color depth. In this study, 330 digital 
images from the subtypes of AML, i.e., M0–M7, and normal 
blood samples have been acquired. Our data set consisted 
of 165 images from AML patients and 165 images from 
normal persons. Images from AML patients were comprised 
of five classes – M2, M3, M4, M5, and a class which includes 
M0, M1, M6, and M7 – with 33 samples in each class. To 
speed up the performance of the system, the resolution of 
the images was reduced to 184 × 138 pixels.

Preprocessing

Because of the excessive staining and also during the 
image acquisition process, noise may be accumulated in 
the images. Therefore, selective median filtering followed 
by unsharp masking was applied to all of the images.[28] 
Selective median filtering was performed to preserve minute 
edge details of the microscopic images.

Conversion of RGB to Lab
Typically, an image can be represented with the help of 
three color components. The images generated by digital 
microscopes are usually in RGB color space, which are difficult 
to segment. In practice, various reasons such as camera 
settings, varying illumination, and aging stain may cause the 
blood cells and image background to vary greatly with respect 
to color and intensity. For making the cell segmentation 

robust with respect to these variations, reducing memory 
requirement and improving the computational time, an 
adaptive procedure is used: The RGB input image is converted 
into the CIELAB or more correctly, the CIEL*a*b* color 
space.[29,30] This color space consists of a luminosity layer 
L*, which represents the lightness of the color, chromaticity 
layers, a* that represents its position between red/magenta 
and green, and b* that represents its position between yellow 
and blue. Since all the color information is in a* and b* layers, 
we use these two components for nucleus segmentation. 
Moreover, the perceptual difference between colors is 
proportional to the  Cartesian distance in the CIELAB color 
space. Therefore, the color differences between two samples 
can be calculated using Euclidean distance. L*a*b produces a 
proportional change visually for a change of the same amount 
in color value due to its perceptual uniformity. Therefore, every 
minute difference in the color value is noticed visually. Figure 
4 presents an example of RGB to CIELAB color conversion.[31]

Image Segmentation

The purpose of image segmentation was to extract 
important information from an input image. It plays a 
key role since the efficiency of the subsequent feature 
extraction and classification relies greatly on correct 
segmentation. K-means clustering algorithm is one of 
the most popular clustering algorithms from an image 
segmentation perspective. It is a center-based clustering 
algorithm which is efficiently employed for clustering large 
and high-dimensional databases.[32] This technique clusters 
the data into fixed number of clusters so that the means of 
these clusters are placed as far away as possible from each 
other. Every data point is associated to the nearest mean 
and belongs to one of the clusters.[33]

In this system, color-based clustering segmentation is 
performed for extracting the nuclei of the leukocytes. In 
fact, each pixel of an object has two values (a* and b*). 
Depending on these two values, we classify each pixel into 
four clusters, because we want to segment the entire image 
into four regions, i.e., nucleus, cytoplasm, other cells (e.g., 
erythrocytes), and background stain. Therefore, each pixel 
in the Lab color space was classified into any of the four 
clusters by calculating the Euclidean distance between the 
pixel and each color indicator so that each pixel of the entire 
image will be labeled to a particular color depending on 
the minimum distance from each indicator. Since we want 

Figure 4: Example of RGB to Lab conversion and segmentation result
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to extract nucleus features, we have considered the cluster 
which contains nucleus. The cluster related to the nuclei will 
be determined experimentally. Based on the experimental 
results, the cluster with the minimum red color was the 
cluster related to the nuclei. Therefore, the mean “a*” and 
“b*” values were calculated for each cluster center and the 
cluster with the minimum value was considered as cluster 
of nuclei. Figure 4 presents an example of segmentation 
procedure.[31]

Postprocessing

In some of the segmented images, only the edges of the 
nuclei were obtained as opposed to the whole images of 
the nuclei. This shortcoming was overcome by employing 
morphological filtering which improves the perceptibility 
and visibility of the concerned region. It should be noted 
that selecting the size of the structuring element is 
important for morphological operators. The size should 
be smaller than the minimum size of the nucleus that 
will be determined. Since all the objects smaller than the 
structuring element were eliminated. On the other hand, it 
must be large enough to eliminate the stain artifacts areas.  
To obtain the desired outcome, the following actions were 
performed.

Edge enhancement
To improve the segmentation of grouped cells and 
subsequent edge detection, Sobel operator was used. 
This helps to enhance the borders of the membranes and 
the cells.[34]

Canny edge detection
To obtain outputs with continuous edges, canny edge 
detector was used.[35,36]

Dilation
To connect the separated points of the membrane in a better 
way, dilation was used which gives a good outline of the 

perimeter of the nuclei. In this paper, a 2 × 2 structuring 
element was used for dilation.

Hole-filling
To fill internal holes of the connected elements, hole-filling 
was used.

Feature Extraction

Feature extraction in image processing is a technique 
of redefining a large set of redundant data into a set of 
feature vectors of reduced dimension.[29] In this phase, 
the idea is to extract the descriptors that best approach 
the visual patterns to which the pathologists refer and 
at the same time most relevant to the subsequent step 
of classification. A correct choice of feature is a very 
crucial step, since feature selection greatly influences 
the classifier performance. Based on the expert opinion 
from a couple of hematologists, it was noticed that to 
construct an effective feature set, certain features should 
be considered, since they gave a good classification. 
Therefore, several features were extracted including 
Hausdorff dimension (HD), irregularity, nucleus-cytoplasm 
ratio (N:C ratio), shape features, texture features, and 
color features. These features were extracted from whole 
images in our system. Figure 5 gives the set of features 
chosen to classify the image database.

Hausdorff dimension
Fractals have been used in medicine and science earlier for 
various quantitative measurement.[37,38] One of the most 
important measures that indicates whether a particular 
nucleus represents a myeloblast or a mature myelocyte is 
perimeter roughness of the nucleus. In fact, myeloblast can 
be differentiated using perimeter roughness of the nucleus. 
All fractal dimensions are real numbers that characterize 
the fractalness (texture/roughness) of the objects. HD is 
an essential theoretical fractal dimensions and will be an 
essential quantitative measure for cell boundary roughness 

Figure 5: Feature set used for the proposed system
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measurement. The procedure for HD measurement using 
box counting method[39] is introduced below as an algorithm:
a.	 Binary image is obtained from the gray-level image of 

the blood sample by thresholding
b.	 Canny edge detection technique is employed to trace 

out the nucleus boundaries
c.	 A grid of (N) squares is superimposed over the edges, and 

then the edge occupied squares are counted; the finer the 
grid gets, the more accurate is the shape approximated

d.	 The HD may then be defined as in Eq. 1

	 HD =
( )
( )

log

log ( )

N

N s
� (1)

	 where, N is the number of squares in the superimposed 
grid and N (s) is the number of occupied squares or 
boxes. Higher HD signifies higher degree of roughness.

Irregularity
Irregularity of the nucleus boundary is a significant feature 
for labeling a WBC nucleus as a blast cell. The nucleus 
boundary can be represented by a contour of dimension 
two. For measuring irregularity of the contour, it is better to 
calculate distances from each contour point or edge pixels 
to a reference point. A convenient reference for the entire 
contour is the centroid or center of mass since most nucleus 
has irregular shapes. Euclidean distance measurement from 
the centroid to the contour points is described as follows:
a.	 Nucleus boundary pixel indices are obtained from the 

edge image obtained during HD measurement
b.	 Centroid coordinates of the nucleus region is calculated 

using the relations as defined in Eqs. 2 and 3
c.	 Euclidean distance is calculated from each boundary 

pixel to the centroid
d.	 Variance of all the distances from the centroid obtained 

in the third step is calculated to measure the irregularity 
of the nucleus boundary
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	 where (x, y) are the coordinates of the pixels along the 
contour and N is the total number of the pixels on the 
contour.

Shape features
All shape features are extracted from the binary equivalent 
image of the nucleus where the nucleus region is represented 
by nonzero pixels. According to the hematologists, the shape 
of the nucleus is an essential feature for discrimination 
of myeloblasts. For shape analysis of the nucleus, region, 
and boundary-based shape features are extracted. Based 
on the extracted features under two classes, i.e., region- 
and boundary-based, the quantitative evaluation of each 
nucleus is done. The shape features are as follows:

•	 Minor axis: The length of the shortest line which passes 
through the centroid of the nucleus, in pixel

•	 Major axis: The length of the longest line which passes 
through the centroid of the nucleus, in pixel

•	 Area: The area was determined by counting the total 
number of none zero pixels within the image region

•	 Perimeter: It is obtained by calculating distance 
between successive boundary pixels

•	 Solidity: The ratio of actual area and convex hull area is 
known as solidity. This measure is defined in Eq. 4

	 Solidity =
Area

Convex Area
� (4)

•	 Eccentricity: This parameter is used to measure how 
much a shape of a nucleus deviates from being circular. 
It is an important feature since mature myelocytes 
are more circular than myeloblasts. To measure this, a 
relation is defined in Eq. 5

	 Eccentricity =
−a b

a

2 2

� (5)

	 where a is the major axis and b is the minor axis of the 
nucleus region

•	 Elongation: Abnormal bulging of the nucleus is also 
a feature which signifies toward leukemia. Hence, 
the nucleus bulging is measured in terms of a ratio 
called elongation. This is defined as the ratio between 
maximum distance (Rmax) and minimum distance (Rmin) 
from the centroid to the nucleus boundary pixels and is 
given by Eq. 6

	 Elongation max

min

=
R
R

� (6)

•	 Form factor: It is a dimensionless parameter which 
measures the circularity of the nucleus and is defined 
as Eq. 7

	 Form�factor
area

Perimeter
=

× ×
( )
4

2

π
� (7)

•	 Compactness: Compactness or circularity is representing 
the degree to which a shape is compact. The circle is 
the most compact shape since among the shapes with 
the same perimeter, it has the least area. This measure 
is defined in Eq. 8

	 Compactness =
Perimeter

Area
( )2

� (8)

	 This way to measure shape compactness is taken from 
the isoperimetric inequality

•	 N:C ratio: It is a ratio of the area of the nucleus to 
the area of the cytoplasm. The N:C ratio indicates the 
maturity of a cell because as a cell matures, the size 
of its nucleus generally decreases. Hence, “blast” 
forms of erythrocytes, leukocytes, and megakaryocytes 
start with an N:C ratio of 4:1, which decreases as they 
mature to 2:1 or even 1:1. Therefore, N:C ratio is really 
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discriminative feature in our proposed system. This 
measure is defined in Eq. 9.

	 Nucleus-cytoplasm�ratio =
Areaof the�nucleus
Area�of�the�cytopllasm

� (9)

Color features
Mean (µ), standard deviation (σ), and coefficient of variance 
(CV) of the nucleus images were considered as the color 
characteristics.

Texture features
Nucleus texture measurements were performed on the 
grayscale version of the nucleus images. Texture was defined 
as a function of the spatial variation in pixel intensities. 
Gray-level pixel distribution can be described by the second 
order statistics such as the probability of two pixels having 
particular gray levels at particular spatial relationships. This 
information can be depicted in two-dimensional gray-level 
co-occurrence matrices (GLCM), which can be computed for 
various distances and orientations. Haralick[40] defined some 
statistical measures to extract textural characteristics from 
the GLCM. Some of these features are as follows:
•	 Energy: It is used to measure uniformity (or angular 

second moment)

	 Energy = ∑
i j

p i j
,

( , ) �2 � (10)

•	 Entropy: This parameter is used for measuring the 
disorder of an image. When the image is not texturally 
uniform, entropy is very large

	 Entropy = − ( ) × ( )∑
i j

p i j p i j
,

� , log ,2 � (11)

•	 Contrast: The contrast feature is used for measuring the 
amount of local variations present in the image

	 Contrast = −∑
i j

i j p i j
,

( , )
2

� (12)

•	 Correlation: The correlation feature is used for 
calculating regional-pattern linear dependence in the 
image

	 Correlation i j

i j

=
− −

∑
i j

i j p i j

,

( ) ( ) ( , )µ µ
σ σ

� (13)

•	 Homogeneity: It is a measure of the degree of variation.

	 Homogeneity =
+ +

∑
i j

p i j
i j,

( , )
��

1
� (14)

It should be noted that before classification step, all these 
selected features should be normalized. The normalization 
process gives a significant contribution to the classifier 
performance because it balances different features 
regarding their ranges. In fact, it makes all features lie within 
a predetermined range of (0, 1), and this step will positively 
affect the classifier performance. Since some of the features 
have large values and without normalization, these large 
values may cause features with lower values to be neglected 

and have no effect on the classifier.[41] Therefore, all feature 
vectors were normalized to have zero mean and standard 
deviation equal to 1 using the Eq. 15:

i i,min
i

i,max i,min

ˆ 1,  2,  ,   
x x

x i N
x x

−
= = …

−
� (15)

where xi,min and xi,max are the minimum and maximum values 
of the feature xi and x̂i is the normalized value.

Classification

In the classification step, based on the feature vectors 
achieved in the previous step, at first cancerous and 
noncancerous images should be distinguished and then 
common subtypes of AML, i.e., M2–M5 should be classified. 
In this paper, since the patterns were very close in the 
feature space, SVM was employed for classification. SVM 
is a promising nonlinear, nonparametric classification 
technique, which already showed good results in various 
fields such as medical diagnostics.[42] Moreover, the SVM is 
a powerful algorithm with strong theoretical foundations 
based on the Vapnik–Chervonenkis theory and it has 
strong generalization regarding to the new data. In the 
case of SVMs, a data point is viewed as an m-dimensional 
vector, and the question is that whether such points can be 
separated with a hyperplane.[27] There are many hyperplanes 
that might classify the data. The general idea of SVM is 
to find the best hyperplane which represents the largest 
separation or margin between the two classes.[43] In fact, 
SVM constructs a decision surface in the feature space 
by different kernel functions; linear or nonlinear such as 
quadratic, polynomials, and radial basis functions (RBF).

It should be noted since, in the first step, there were two 
classes, two-class SVM classifier was used, and in the second 
step because of the existence of five classes, multiclass 
SVM classifier was employed. To find the efficient kernel 
which gives the maximum accuracy in the classification, an 
experiment was done. Various SVM kernels were tested, and 
their accuracies were compared (polynomial with range [1, 
10] and RBF with sigma range: [1, 10]). Finally, it was found 
out that RBF kernel with sigma 3 has the best performance.

RESULTS

The superiority of the scheme is demonstrated with the 
help of an experiment. A microscopic blood image of size 
184 × 138 is considered for this purpose. The input image 
is processed sequentially as per the steps mentioned in 
methods section. Figure 6 presents the result of RGB to 
CIELAB color conversion. The segmented output of the 
image obtained after applying K-means clustering algorithm 
is shown in Figure 7.

Feature extraction can be done using presented methods 
over whole images. First of all, for calculating the perimeter 
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roughness of each nucleus using the procedure explained 
in the methods section, we should extract the nucleus 
boundaries whose roughness is measured by HD using box 
counting method. The results of box counting algorithm 
are shown by a graphical plot. The straight line in the plot 
represents the line of best fit and HD is achieved from the 
polynomial coefficients of this line equation. The difference 
between the values of the HD for a pair of cancerous and 
noncancerous nucleus is shown in Table 1.

In the next step, for calculating the irregularity, the centroid of 
the nucleus contour is determined using the relation 2 and 3. 
Euclidean distance between the centroid and boundary pixels 
is measured. The variance of all the distances is found to be 
462.812 for cancerous nucleus and 38.873 for noncancerous 
nucleus. Similarly, the shape features are also measured using 
the relations given in the methods section. Table 2 displays 
the differences in the values of the shape features for a pair 
of cancerous and noncancerous nuclei.

Color and texture features are also extracted from the image 
nucleus sample and recorded. The differences in the values 
of the color and texture features for a pair of cancerous and 
noncancerous nuclei are tabulated in Tables 3 and 4, respectively. 
Similarly, all the mentioned features were extracted from all 
330 blood smear images and used for classification.

The results obtained for the values of the different features 
are also verified by hematologists. It is observed that 
there are noticeable differences between the values of the 
features for cancerous and noncancerous nuclei. Therefore, 
although the features used in the study are simple, they are 
really discriminative and effective features.

Confusion matrices which are achieved from binary SVM 
classification for cancerous and noncancerous images and 

Figure 6: The result of RGB to CIELAB conversion

Figure 7: Segmentation result

Table 1: Result of Hausdorff dimension
Cancerous image 
(myeloid blast)

Noncancerous image 
(mature myelocyte)

HD=1.5316 HD=1.3868
HD – Hausdorff dimension

Table 2: Results of various shape features
Shape feature Myeloid blast Mature myelocyte

Major axis 96.8380 64.3061
Minor axis 63.7812 54.8102
Area 4607 2751
Perimeter 285.39 236.705
Solidity 0.9264 0.9457
Eccentricity 0.9966 0.9934
Elongation 13.6037 2.0814
Form factor 0.7108 0.6170
Compactness 17.6791 20.3669
N:C ratio 3.476 1.456
N:C ratio – Nucleus‑cytoplasm ratio

multi‑SVM classification for AML prevalent subtypes can be 
seen in Tables 5 and 6, respectively.

Following the classification using the SVM, a statistical 
method called cross-validation is used for evaluating 
and comparing learning algorithms. Cross-validation 
is a technique for judging how the results of statistical 
analysis will generalize to an independent data set. In this 
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paper, the k‑fold cross validation technique with k = 10 
has been used as validation technique. In this technique, 
the dataset is randomly partitioned into k  equal-sized 
subsets. Of the k subsets, a single subset is retained 
as the validation data for testing the model, and the 
remaining k − 1 subsets are used as training data. The 
cross-validation process is then repeated k times, with 
each of the k subsets used exactly once as the validation 
data. The k results from the folds can then be averaged to 
produce a single estimation.

The performance of the binary classifier is evaluated by 
three parameters, i.e., sensitivity, specificity, and accuracy. 
These parameters are defined in relation to the four possible 
outcomes of the classifier, which are: true positives (TP), when 
cancerous images are correctly identified; false positives 
(FP), when noncancerous images are identified as cancerous; 
true negatives (TN), when noncancerous images are correctly 
identified; and false negatives (FN), when cancerous images 
are identified as noncancerous.

Sensitivity: This parameter is the probability of being 
cancerous among the people diagnosed as cancerous. It is 
defined as:

Sensitivity P

P N

=
+
T

T F

Specificity: This criterion is the probability of being 
noncancerous among the people diagnosed as noncancerous. 
It is defined as:

Specificity N

N P

=
+
T

T F

Accuracy: This parameter shows the closeness of the output 
of the classifier and real value. It is defined as:

Accuracy P N

P N P N

=
+

+ + +
T T

T T F F

The results of the proposed system for binary SVM classifier 
show that sensitivity, specificity, and accuracy are 95%, 98%, 
and 96%, respectively. For multi‑SVM classifier, an accuracy 
of 87% has been achieved. Therefore, an effective and a 
reliable source of classification of AML and its common sub-
types provided.

DISCUSSION

Many of the previously proposed methods were able to 
recognize ALL up to a certain extent, but they have not 
yet been tested for identification and detection of AML. 
Moreover, some of these methods which were applied to 
AML and had good results, have used a proprietary dataset, 
so the reproducibility of the experiment and comparisons 
with other methods was not possible. In fact, many authors 
tested their system with their own data sets, which were 
not publicly available. Thus, we could not directly compare 
our findings with the results obtained by various proposed 
systems. As a result, to have a comparison, we had to 
implement their methods on our dataset. A set of four 
existing systems that employ the same color correlation, 
segmentation, and classification techniques as the proposed 
system, were taken into consideration. Figure 8 presents 
comparisons between the proposed system and the existing 
systems while performing on our data set.[9,29,44,45]

The advantage of the proposed system over the existing 
systems is that it not only enables the classification of whole 

Table 4: Results of various texture features
Texture feature Myeloid blast Mature myelocyte

Energy 0.6882 0.7946
Entropy 0.5398 0.3985
Contrast 0.0123 0.0104
Correlation 0.9588 0.9465
Homogeneity 0.9938 0.9948

Table 5: Confusion matrix achieved from binary support 
vector machine classifier
Output of 
binary SVM

Diagnosed 
as cancerous

Diagnosed as 
noncancerous

Cancerous 157 8
Noncancerous 4 161
SVM – Support vector machine

Table 6: Confusion matrix achieved from multi‑support 
vector machine classifier
Output of multi‑SVM M2 M3 M4 M5 Other types

M2 29 1 2 1 0
M3 0 30 3 0 0
M4 2 2 28 0 1
M5 1 0 0 29 3
Other types 0 1 2 2 28
SVM – Support vector machine

Table 3: Results of various color features
Color feature Myeloid blast Mature myelocyte

Mean 0.1814 0.1083
SD 0.3854 0.3108
Variance 1.0211 0.8363
SD – Standard deviation
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images containing multiple nuclei but also presents a better 
performance when compared with the existing systems.

The main contribution of this study is the use of the 
mentioned methods for detection of common subtypes of 
AML, i.e., M2–M5, which has not been done before. Pervious 
works usually focused on the detection of cancerous and 
noncancerous images and did not work on AML subtypes. 
This fact can be considered as the significance and novelty 
of the work. 

CONCLUSION

This paper has proposed an automatic identification 
system for AML and its prevalent subtypes, which performs 
processing, including color correlation, segmentation of the 
nucleated cells, and effective validation, and classification. 
To obtain all the information required for performing 
efficient classification, a feature set exploiting the shape, 
color, and texture parameters of a cell are constructed. 
By referring to the classification results as mentioned in 
“Results” section, it is obvious that although our proposed 
methods are relatively simple, this algorithm demonstrates 
satisfactory performance for the diagnosis between AML 
patients and normal persons and also for the detection 
of prevalent subtypes of AML, i.e., M2, M3, M4, and M5. 
Hence, the proposed algorithm can be used as an assistant 
diagnostic tool for pathologists.

Further research will focus on the segmentation of cytoplasm 
and extraction features from it, to improve the performance 
of the presented system. Moreover, the proposed method 
can be used for the classification of all subtypes of AML. 
Therefore, it will also be necessary to expand the size of the 
data set to provide the classification model with a greater 
number of samples in the training phase.
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