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INTRODUCTION

Magnetic resonance imaging (MRI) has very important role 
on current medical and research procedures. However, 
these images are normally corrupted by random noise 
from the measurement process. Therefore, removing noise 
in MRI is one of the major issues in the study of medical 
imaging. The traditional methods of image denoising use 
smoothing (such as average filters and Gaussian filtering) 
for achieving good results, but the edge information and 
texture may be lost.[1] However, medical images consist 
of many details and subtle features such as angular and 
edge, and the lack of edge information of image brings 
difficulties for subsequent analysis. From above, in the 
image restoration field, we extremely need an image 
restoration process technology which can remove 
the noise and keep edge information also. So, partial 
differential equation (PDE)-based methods are one of the 
best selections to MRI denoising.

In addition to PDE-based methods, there are many 
methods that are based on nonlocal means (NLM) 
filter[2,3] such as multi component NLM and its variants,[4] 
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unbiased NLM,[5] adaptive NLM,[6,7] nonparametric 
principal component analysis NLM,[8] and MRI denoising 
using nonlocal PCA.[9]

The main drawback of the NLM-based algorithms is 
computational burden due to calculate weighted average 
for all pixels.[10] Although this complexity value is reduced 
in some modified version (by blocking image[6] or using 
PCA), but still the calculation volume is high. On the other 
hand, they cannot remove the noise and simultaneously 
preserve edges, as well as PDE-based methods, also. In 
these methods, oversmoothing is observed in some regions 
which results in a loss of edges and fine structures in the 
image.[11] In additional, PDE-based methods are one of the 
best selections to denoising smooth area and preserving 
edges simultaneously. These filtering are still widely used 
in the preprocessing of MRIs because of its efficiency and 
simplicity in implementation.
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Several PDE-based denoising methods were proposed 
such as Perona and Malik (P-M) method.[12] They proposed 
a nonlinear equation which replaced isotropic diffusion 
expressed through a linear heat equation with an anisotropic 
diffusion (AD). On the other hand, AD is controlled by the 
diffusion coefficient (also called conductance or diffusive 
function). The diffusive function g tends to “0” while the 
absolute of image gradient (|∇u|) is large (edges) and “1” 
while |∇u| is small (flat regions). Therefore the P-M model 
can effectively remove the noise, as well as containing edge 
information.

Many revised AD models have been proposed done as stated 
by P-M diffusion model. Alvarez et al.[13] introduced a mean 
curvature motion approach for AD. This method performs 
the diffusion process only in the direction of minimum rate 
of gradient change. Therefore, the image will be smoothed 
in a direction parallel to edges, not across it. On the other 
hand, Catte et al.[14] showed that the P-M AD model is ill-
posed, that is, very similar images could produce divergent 
solutions. To solve the problem correctly, they showed 
that the diffusion coefficient should be calculated from 
isotropically smoothed versions of the image.

For noisy images with a low signal-to-noise (SNR) ratio, 
however, noise variations may be comparable to or even 
greater than edge variations. In this case, the discrimination 
between edge and noise can be difficult and then the 
conventional AD usually fails to produce satisfactory results 
for low SNR images.[15,16] Therefore, the kernel AD (KAD) is 
proposed to improve the performance of AD for low SNR 
images. In this method, the input space is mapped to a 
higher order feature space, and then discriminates between 
edges and noise in the feature space.[17-19]

The classical P-M’s AD model only considers the local gradient 
information of each pixel in the image. However, a high 
gradient magnitude is generally a good indication of edges, 
whereas a low gradient magnitude may not always point 
to nonedge regions or noise. For example, the important 
local details along with edges in the image may have low 
gradient. In order to retain fine details while removing 
noise, the local gray-level variance along with the gradient 
is added to a modified AD model.[20] According to above 
discussion, it is obvious that the gradient magnitude alone 
cannot be a good criterion to discriminate edge, smooth 
area, and noise. Because of this, Wang et al.[21] introduced 
a pixel similarity measurement into the PDE-based on 
mean curvature flow of curve. Using this measurement, 
each pixel can be classified in five categories: Edge, strong 
noise, median noise, weak noise, and smooth area. In this 
paper we utilize similarity measurement to determine 
edge, noise, and smooth area. In this work, we improve 
P-M diffusive function by pixel similarity. Our novel diffusive 
function can stable P-M model. Experimental results show 
that the proposed function can effectively improves the SNR 

and preserves both edges and fine details of objects in the 
restored image even for low SNR.

In Section 2, the AD is introduced. In this section the P-M 
model and KAD model that is appropriate for low SNR 
is studied. Section 3 is dedicated to the pixel similarity 
measurement. In Section 4, we present an improved 
diffusive function based on pixel similarity with fractional 
and adaptive power and then the stability of our function 
is analyzed. Section 5 introduce two stabled AD. The 
experimental and comparison results are described in 
Section 6.

ANISOTROPIC DIFFUSION MODEL

Perona and Malik Model

Diffusion algorithms remove noise from an image by 
modifying the image via aPDE. The diffusion driven by heat 
equation is isotropic and image features will be blurred 
by noise removing. One of the advanced properties of 
AD is to integrate prior knowledge of the image to the 
diffusion coefficient. Perona and Malik[12] first introduced 
the idea of nonlinear diffusion that is preferred within a 
smooth region to diffusion near an edge. They proposed 
the enhancement of noisy image I (x, y) by the solution of 
the following PDE:

∂
∂

= ∇ ∇ ×
t
u x y t div g u x y t u x y t T( , ; ) ( ( ( , ; ) ) ( , ; )) ( , )in Ω 0  (1)

u x y I x y in( , ; ) ( , )0 = Ω

∂
∂

= ∂
u



0 on Ω

where u (x,y;t) is the enhanced version of the image at time 
t, Du denotes the local gradient of u, Ω⊂ R2  is typically a 
square domain, ∂Ω means the edges of Ω, 



  represents 
outward normal direction to ∂Ω and g: (0, +∞) → (0, 1) so 
called conductance or diffusive function is a nonnegative 
function of the magnitude of local gradient. This function is 
chosen to be close to zero where gradient is large, so that 
the diffusion is stopped across edges. g should be large in 
pixels with low gradient variation, so that the diffusion is 
maximal within smooth regions. Functions satisfying these 
assumptions are commonly called edge stopping functions, 
and examples of such a function were firstly proposed by 
Perona and Malik,[12] e.g.,

g s s k1
2( ) exp( ( / ) )= −  (2)

g s
s k2 2

1
1

( )
( / )

=
+  (3)

where k is the gradient magnitude threshold parameter 
that controls the rate of the diffusion and serves as a soft 
threshold between the image gradients that are attributed 
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to noise and those attributed to edges. According to Perona 
and Malik, Tsiotsios and Petrou,[12,22] the g1 favors high-
contrast edges over low-contrast ones, while the g2 function 
favors wide regions over smaller ones.

In fact, above AD equation (Eq. 1) can be obtained by 
minimizing following functional.

E u w u dxdyP M− = ∇∫∫( ) ( )
2

Ω

 (4)

where d
ds
w s g s( ) ( )[ ]= 23

Kernel Anisotropic Diffusion

In low SNR image that the noise magnitude is large, it may 
be that the diffusive function cannot distinguish between 
noise and edge. Therefore, the conventional AD usually fails 
to produce satisfactory results for low SNR images.[15,16] For 
low SNR images, the discrimination between edges and 
noise can be viewed as a nonlinearly separable classification 
problem. According to Cover’s theorem on the separability 
of patterns, nonlinearly separable patterns in an input space 
are linearly separable with high probability if the input 
space is transformed nonlinearly to a feature space with 
high dimensionality.[19,24,25] While the gradient operation in 
the original AD is ineffective for low SNR images, the input 
space can be mapped to a higher order feature space, and 
then discriminate between edges and noise in the feature 
space.

If the input data is represented by U ( ),U R⊆  and feature 
space is denoted by F ( ),F Rn⊆  the nonlinear mapping 
function Φ is defined as:

Φ Φ: , ( )U F u u→ →  (5)

where u is an input in U, which is mapped into a feature 
space with dimensionality of n. By substituting the gradient 
magnitude ∇u  in the P-M’s AD with ∇Φ( ) ,u  the KAD can 
be obtained as following:[19]

∂
∂

= ∇ ∇
u
t

div g u u( ( ( ) ) )Φ  (6)

where ∇Φ( )u  is the gradient magnitude in feature space 
that is defined by the mapping function Φ. It is called as a 
kernelized gradient operator or a kernelized edge detector, 
and plays a major role in KAD.

Suppose ||∇u||p denotes the norm of gradient for pixel p, 
we can write:

∇ =
∂

−
∈∂∑u

p
u u

p p qp p

1 2
 (7)

where ∂p represents the spatial neighborhood of pixel p 
(eight neighboring pixels around p), |∂p| refers to 
cardinality of ∂p (|∂p| = 8) and up denotes the intensity of 
p. Similarly, ∇Φ( )u

p
 can be represented as Yu et al.:[19]

∇ =
∂

−

=
∂

+ −

∈∂∑Φ Φ Φ( ) ( ) ( )

( ( , ) ( , ) ( ,

u
p

u u

p
K u u K u u K u u

p p qp p

p p q q p

2 21

1
2 qqp p

))
∈∂∑  (8)

where K is the kernel function and thus the mapping 
function Φ is defined by kernel function K. Commonly 
used kernel functions are polynomial kernels, radial-basis 
function kernels, and two-layer perceptron kernels:[25]

K(x, y) = (xTy + 1)d (9)

K x y
x y

( , ) exp= −
−











2

22s
 (10)

K x y x yT( , ) tanh( )= + 0 1  (11)

where d, σ, β0 and β1 are specified a priori by the user.

PIXEL SIMILARITY AND NEIGHBORING 
INCONSISTENCY

The pixel similarity measures the similarity between two 
pixels. By calculating the pixel similarity of center pixel with 
its neighbors, we can obtain the neighboring consistency 
of the center pixel. Informally, if a pixel is not consistent 
enough with its surrounding pixels, it can be considered as 
a noise, but an extremely strong inconsistency suggests an 
edge. The pixel similarity is a probability measure; its value 
is between 0 and 1. Accordingly, the pixel similarity can be 
used to determine neighboring inconsistency. It indicates the 
inconsistency of a pixel with its neighbors. Thus, not only 
we distinguishing noise and nonnoise pixels, but also we 
divide pixels into five categories namely smooth area, weak 
noise, medium noise, strong noise, and edge.[26]

If pi (i = 1, …, 8) denotes the neighboring pixels of pixel p, 
the pixel similarity between p and pi is defined as:

f p p u ui p p

a

i
( , ) exp( )= − −  (12)

where up, upi are the intensity of pixels p, pi and λ, a are 
constants (typically λ = 1 and a = 2). The pixel similarity 
measures the similarity between two pixels. Then the degree 
of consistency of the center pixel with its surrounding 
pixels can also be calculated. The idea is, if a pixel is not 
consistent enough with its surrounding pixels; it can be 
considered as a noise. Therefore, by using a threshold we 
can obtain the consistency or inconsistency of center pixel 
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with its neighbors. This threshold that is named confidence 
level is a predetermined constant (0 ≤ β ≤ 1 and typically β 
= 0.5). Using this threshold we can define the consistency 
discrimination function d:

d p p
f p p

otherwisei
i( , )

( , )
=

≤



1

0


 (13)

where d (p, pi) = 1 means p and pi are inconsistent. By 

defining M d p pii
=

=∑ ( , ),
1

8
 the degree of inconsistency of 

center pixel with its neighbors is determined such that if M 
> L (L is a predetermined constant and typically L = 5), then 
p is low consistent (high inconsistent) with its neighboring 
pixels and is considered as a noise. In this case the center 
pixel p is called a low consistency pixel under the confidence 
level β.[26]

Finally, in MRIs, if a pixel is not consistent enough with its 
surrounding pixels, it can be considered as a noise, but 
an extremely strong inconsistency suggests an edge. By 
detecting all kinds of low consistency pixels under different 
levels of confidence, the following thresholding rule that is 
shown in Table 1 is found:

DIFFUSIVE FUNCTION BASED ON PIXEL 
SIMILARITY

In Figure 1 diffusive functions g1 and g2 are plotted in terms 
of |∇u|. As can be deduced from this figure, the value of 
g1 and g2, even for not very large values of |∇u|, sharply 
(strictly) decrease. Thus, the diffusive process will stop 
and noise will remain. This result is due to the exponential 
operator in g1 and second ordering of ∇u K  in g2. 
According to[12,22] function g1 is appropriate for high contrast 
images, while noisy MRIs especially in high detail regions 
have not high contrast.

The power of ∇u K  in g2 is a constant value, whereas this 
value can be more flexible and can be changed. According 
to this fact, we propose a new diffusive function with 
fractional power. In our function the real number υ is used 
for this power. Thus, function g2 will change as follows:

g s
s K

( )
( / )

,=
+

≥
1

1
0   (14)

If υ is negative, the diffusion process will stop in smooth 
regions and will fully perform in edges. The value of υ 
is obtained by stability condition for P-M model that is 
discussed following.

When we use PDEs to carry through image processing, by 
supposing that∇ ≠u 0 , 



 = ∇ ∇u u  and 




ξ η⊥ ,  where 


  
and 



  is unit tangent and normal vector respectively, we 
can get the following expressions:



 =
∇
∇

=
+

u
u

u u

u u

x y

x y

( , )
2 2

 (15)



 =
∇
∇

=
−

+

⊥u
u

u u

u u

y x

x y

( , )
2 2

 (16)

Then we can get:[27]

∂
∂

= ′ ∇ ∇ + ∇  + ∇

= ∇ + ∇

u
t

g u u g u u g u u

g u u g u u

( ) ( ) ( )

( ) ( )

ηη ξξ

η ηη ξ ξξ  (17)

where uηη, uξξ and gη, gξ are the second order derivatives 
and diffusive functions in 



  and 


  direction, respectively. 
The Eq. 17 is called as the global scheme for PDE-based 
restoration approaches.[28]

Obviously, g u g u ( ) ( )∇ = ∇  in Eq. 17 is always positive 
which means diffusion forward and making image smooth. 
However, g u g u u g u ( ) ( ) ( )∇ = ′ ∇ ∇ + ∇  can be either 
positive or negative leading to unstable results, this causes 
instability of the diffusion process.[27,29,30] Considering 
P-M functions of Eq. 2 and Eq. 3, it appears that their 

Table 1: Category division for low consistency pixels under 
different confidence levels
Confidence 
levels

0< β 
≤0.3

0.3< β 
≤0.4

0.4< β 
≤0.5

0.5< β 
≤0.6

0.6< β 
≤1

Categories Edge Strong 
noise

Median 
noise

Weak 
noise

Smooth 
area

Figure 1: Diffusive functions g1 (a) and g2 (b) in terms of |∇u|

a b
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corresponding g  functions, in the global scheme of 
Eq. 17, can sometimes takes negative values [Figure 2]. This 
leads to local instabilities of the P-M’s PDE which degrades 
the processed image instead of denoising it. As shown 
in Figure 2, g2 is more stable than g1 and for this reason; 
diffusive function g2 is utilized in this paper.

As mentioned in above, for the stability of P-M model, gη 
and gξ must be nonnegative. gξ is always positive and by 
doing some mathematical calculations, it can be found that 
gη will be nonnegative if:

(1 - v) (s/K)v ≤ 1 (18)

This condition is valid for ∇ <u K  and practical value of υ, 
but for ∇ ≥u K  that higher than the previous case occurs, 
the following relationship must be established:

1 ≤ n ≤ 2 (19)

As describe in Section 2, the main weakness of P-M model 
is laid in discriminating between edges and noise such that 
the noise may be assigned to the edge for low SNR images 
and then the noise remains. In order to solve this problem, 
υ can be a function of neighboring inconsistency. So that, 
if pixel p assigned to edge, υ should be tend to 2. Thus the 
value of diffusion function more rapidly tends to zero. On 
the other hand, if p assigned to noise υ should be tending 
to 1 that prevents from reducing diffusive function value. 
In this case, since the value of υ decreases, the diffusion 
process cannot be stopped completely when ∇u  is large 
but the pixel is assigned to noise (in low SNR images).

According to above discussion, we propose the following 
decreasing function for υ:

 p

ii
d p p

= + =∑
1

8
1

8
( , )

 (20)

and then our diffusive function is obtained as:

g u

u k

p

p

d p pii

( )

( / )
( , )

∇ =

+ ∇
+
∑ =

1

1
1

8
1

8
 (21)

We name this function as the pixel similarity-based diffusive 
function. As can be deduced from Eq. 21, the proposed 
function is not only a function of the gradient magnitude 
and its value is related to neighboring inconsistency. 
Therefore, the slope of diffusive function is controlled with 
neighboring inconsistency. It will prevent from remaining 
noise in relatively low SNR images.

OTHER STABLED ANISOTROPIC 
DIFFUSION

As can be deduced from subsection 2.2, the main weakness 
of P-M model is occurred in high noise level images where 
the diffusive function cannot distinguish between noise 
and edge. Therefore, we use the consistency discrimination 
function to classify pixels into five groups: Smooth area, 
weak noise, medium noise, strong noise, and edge. This 
causes noisy pixels and edges to be easily distinguished 
from each other, even in noisy images with high noise 
level. On the other hand, we use consistency discrimination 
function in diffusive function to stable diffusion process. 
In other words, our proposed method will causes the 
conventional AD is stable. For this reason, it is essential that 
the proposed method is compared with the some stabled 
method, in addition to the classical P-M and KAD models.

Nonlocal Orientation Diffusion Partial 
Differential Equation

In Qiao and Zou[28] In order to achieve more stability and 
yet preserve edge information of the image, the diffusion 
process is only performed in the direction that is parallel to 
the image edges and can be limited in gradient direction. 
In this method, g is supposed zero and therefore does not 
take the negative values. Then the Eq. 1 may be changed to:

∂
∂

= ⋅ ∇ ⋅
u
t

r g u uα ζζ( ) ( )  (22)

Where  ( )r  that is called nonnegative monotony digression 
function is related with NLM of gradient gη. This function 
can control diffusion velocity. When the nonlocal area of 
image is flat, there may be less nonlocal gradient operator, 

Figure 2: Investigation of the instability of Perona and Malik functions for different value of K: (a) gη for Eq. 2, (b) gη for Eq. 3

a b
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and consequently the value of  ( )r  is increased. This will 
make to a faster diffusion. When the image contains more 
edge features in the nonlocal areas, there may be larger 
nonlocal gradient operator, and it may decrease diffusion 
velocity to preserve the edge information. By selecting an 
appropriate value for  ( )r to control diffusion velocity in 
Eq. 22, we can wipe off the image noise better and preserve 
the edge information effectively.

Diffusive Function Based on Double Well 
Potential Function

In Histace and Menard,[31] authors propose a new diffusive 
function to stable the P-M model:

g u uDW N
( ) ( )∇ = − ∇1   (23)

where ∇u
N

 denotes the normalized gradient magnitude 
and  (.)  is double well potential. In Figure 3, some 
graphical representations of  (.)  for different values of   
are shown.

Now, if the mathematical expression of g DW  is calculated, 
one can obtain that:

g u g u u g u
DW DW N DW ( ) ( ) ( )∇ = ′ ∇ ∇ + ∇  (24)

Since ∇ ∈u
N

[ , ]0 1  and ′ ∇g uDW ( )  is a one-order-less 
polynomial function than g uDW ( ),∇  it can be concluded 
that:[31]

g u g u g u
DW DWDWη ζ( ) ( ) ( )∇ ≈ ∇ = ∇  (25)

By taking Eq. 23, it is clear that corresponding functions 
in the tangential and orthogonal directions never takes 
negative values. Thus, diffusive process stays stable for 
all gradient values of processed image which is of primary 
importance.

According to Eq. 23, g DW  and g DW  are almost the same. 
Therefore, g DW  tends to zero when g DW  is close to zero. 
As a result, by using a right choice for a, it becomes possible 
to completely stop the diffusion process in the tangential 
and orthogonal directions of the contours, simultaneously.

RESULTS AND ANALYSIS OF 
EXPERIMENT

In this section, we compare our proposed diffusive model 
with P-M, KAD, nonlocal orientation diffusion (NLOD) 
and double well potential (DWP) models. We perform 
experiments on T1-weighted MRIs with 8-bit quantization 
(1000 images) to show the performance of our proposed 
model. Our samples are real MRIs from McConnell Brain 
Imaging Centre of the Montreal Neurological Institute. 
These images are destroyed by additive Gaussian noise with 
zero mean and various standard deviations.

Noise in MRI can be Gaussian or Rician distributed depending 
on the image type (real or magnitude data).[4,32] Since all 
images in our experiments are real data, they are corrupted 
with Gaussian-distributed random noise. Although MRIs 
are usually magnitude data and their noise obeys a Rician 
distribution[20,33,34] but at high SNR (let us define SNR as 
I/s), the Rician noise will be described by the Gaussian 
distribution. In other word, If the SNR is sufficiently high 
(I s ≥ 2,[29] 3[20,33] or 4[35] or 5[30] which are usually sufficient 
for any practical purposes), the Rician distribution can be 
approximated by the Gaussian distribution.

To measure the quality of the recovered image, the criterions 
of SNR and improved SNR (ISNR) are employed here. For any 
given image u, SNR and ISNR are characterized by:

SNR
A x y

u x y A x y
x y

x y

=
−

∑
∑

10
2

2log
( ( , ))

( ( , ) ( , ))
,

,

 (26)

ISNR
I x y A x y

u x y A x y
x y

x y

=
−

−
∑
∑

10
2

2log
( ( , ) ( , ))

( ( , ) ( , ))
,

,

 (27)

where A, I and u are the original, noisy and restored image, 
respectively. Generally, the larger the SNR value, the better 
the image quality. Another criterion that we use in this 
paper is mean square error (MSE) that is defined as:

MSE
N

u x y A x y= −[ ]



∑10

1 2log ( , ) ( , )  (28)

where N is the number of pixels in the image. In order 
to evaluate the edge-preserving ability, we propose new 
measurement which calculates the MSE of edge pixels (edge 
MSE):

EMSE
N

u x y A x y
B x y B

= −[ ]









∈
∑10

1 2log ( , ) ( , )
( , )

 (29)Figure 3: Double well potential function in terms of normalized |∇u| for 
different value of a
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In which, B denotes the edges of original image A and NB 
is the number of pixels in B. We also adopt the structure 
similarity index measure (SSIM) to measure the similarity 
between two images,[30] which is defined as:

SSIM
C C

C C
A u A u

A u A u

=
+ +

+ + + +
( ) ( )

( ) ( )
,2 21 2

2 2
1

2 2
2

µ µ σ
µ µ σ σ

 (30)

where μA and μu are the average of A and u, σA and σu are 
the variance of A and u, σA,u is the covariance of A and u, 
finally c1, c2 are two constants to avoid instability.

In Figure 4, we compare the proposed model with P-M, 
KAD, NLOD, and DWP methods. In this comparison, the 
gradient threshold and iteration number are selected as K 
= 6 and T = 10, respectively. Figure 4a is the original T1-
weighted MRIs and Figure 4b presents the noisy Image by 
random Gaussian white noise with SNR = 10 db. Figure 4c 
shows the restoration result from the P-M model, in which 
the noise cannot be effectively eliminated. The result of 
KAD model with kernel function from Eq. 10 is shown in 
Figure 4d. The result of NLOD model with  ( ) ( )r r= +1 1 2  
is shown in Figure 4e. Figure 4f shows the denoising results 
with DWP function with  = 0 7. .  Figure 4g shows the 
denoising results with proposed model by setting a = 2, 

λ = 0.1 and β = 0.2. It can be observed that our model 
performs better than the other methods to eliminate noise 
and preserve edges. As can be seen in the Figure 4c-g, the 
ability of the proposed method in edge preserving and 
noise reduction is much more than the others.

Table 2 summarizes the SNR, ISNR, MSE, EMSE, and SSIM 
performance of the P-M, KAD, NLOD, DWP, and proposed 
methods for 1000 MRIs from McConnell Brain Imaging 
Centre of the Montreal Neurological Institute (MNI, McGill 
University). These images are composed of 20 different 
clean (without noise) images with 50 slices that are 
captured from the same machine. The experimental results 
show that the proposed model can significantly improve the 
measurements. From these data, the absolute superiority 
of the proposed method is obvious. In our method, 
measurements ISNR, MSE, EMSE, and SSIM are improved 
more than 1.6 db, 1.6 db, 1 db, and 2%, respectively. However, 
these improvements are given to about 5.2 db, 5.2 db, 3.8 
db and 21% for ISNR, MSE, EMSE, and SSIM, respectively, in 
comparison with P-M model. In addition, these data indicate 
that the proposed method can simultaneously reduce noise 
and preserve edge, much more than the other methods. 
These advantages are due to the selection of a proper 
method for stabilizing the diffusion process. In Table 3, we 

Figure 4: Comparison of proposed diffusive function with Perona and Malik function and kernel anisotropic diffusion, nonlocal orientation diffusion, double 
well potential methods for T = 10 and K = 6: Original image (a), noisy image by Gaussian white noise with signal-to-noise = 10 db (b), output of Perona and 
Malik model (c), restored image by kernel anisotropic diffusion (d), output of nonlocal orientation diffusion method (e), restored image by double well potential 
function with a = 0.7 (f), result of proposed diffusive function (g)

a b c d

e f g
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employ P-M, KAD, NLOD, DWP, and proposed models for 
1000 MRIs, and then average the values of ISNR, EMSE, and 
SSIM value for all images. As expected, this table confirms 
the previous results. We have also performed additional 
experiments in Table 4 for different σ values and 1000 MRIs 
to show the efficiency of the proposed models in higher 
noise levels. In this table, the additive noise is supposed 
white Gaussian noise. Experimental results show that the 

proposed method can effectively remove noise while well 
preserving the sharp edges and fine details of a noisy image 
even if the noise level is high.

CONCLUSIONS

In this paper, the instability of classical P–M model is analyzed 
and an improved diffusive function is proposed. This new 
function is based on pixel similarity and it is an improved 
version of P-M function with fractional and adaptive power. 
In the proposed function, the decreasing rate of diffusive 
function is controlled with the power of |∇u|/K. Such that 
this power (υ) increases in edge and decreases for smooth 
and noisy areas.

Since the P-M functions are only the function of gradient 
magnitude and ∇u  is large for low SNR images, the 
value of g tends to zero and then the noise remains. On 
the one hand, the noisy image is mapped to feature space 
and therefore, the edges of the image are not available. As 
can be seen from Figure 4d, the restored image in KAD is 
blurred.

The proposed method uses two criteria for the classification 
of pixels: Gradient magnitude and pixel similarity. Unlike 
the P-M functions that a pixel is classified in two categories, 
a pixel is classified into five categories in our diffusive 
function. Therefore, if the gradient magnitude of pixel is 
large but it is not noise, the diffusive function does not 
decrease and then the diffusion process is not stopped. 
Since proposed function is directly performed in input space 
(nor the feature space), it has much better edge-preserving 
than KAD. Our function allows the classical P-M model to be 
stable, also. Experimental results show that the proposed 
function can effectively improve the ISNR, MSE, and SSIM 
and preserve both edges and fine details of objects in the 
restored image. Advantages of the proposed function are 
apparent even for higher noise levels.
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