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A B S T R A C T

Common spatial pattern (CSP) is a method commonly used to enhance the effects of event‑related desynchronization and event‑related 
synchronization present in multichannel electroencephalogram‑based brain‑computer interface (BCI) systems. In the present study, 
a novel CSP sub‑band feature selection has been proposed based on the discriminative information of the features. Besides, a 
distinction sensitive learning vector quantization based weighting of the selected features has been considered. Finally, after the 
classification of the weighted features using a support vector machine classifier, the performance of the suggested method has been 
compared with the existing methods based on frequency band selection, on the same BCI competitions datasets. The results show 
that the proposed method yields superior results on “ay” subject dataset compared against existing approaches such as sub‑band 
CSP, filter bank CSP (FBCSP), discriminative FBCSP, and sliding window discriminative CSP.
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INTRODUCTION

Brain‑computer interface (BCI) is a communication channel, 
which translates the brain activities into the control 
commands to make it possible for the people with severe 
neuromuscular disorders to communicate with a computer. 
Previous studies have shown that imagining the movement 
of different parts of the body can result in attenuation 
and enhancement of electroencephalogram  (EEG) in 
corresponding cortex locations and other cortex locations, 
respectively.[1] These attenuations and enhancements 
are called event‑related desynchronization  (ERD) and 
event‑related synchronization (ERS), respectively.

Common spatial pattern  (CSP) algorithm has proved to 
be a highly successful spatial filter for detecting ERD/ERS 
effects on the motor imagery‑based BCI systems. It seeks 
the feature space for directions that maximize variance 
for one class and minimize it for the other classes 
simultaneously.[2] In general, applying CSP to unfiltered or 
poorly filtered EEG signals will result in poor recognition 
accuracy.[3] To overcome this limitation of CSP and to select 
most discriminative frequency bands for the CSP, several 
approaches have already been proposed  –  e.g., common 
spatio‑spectral pattern  (CSSP),[4] common sparse spectral 

spatial pattern (CSSSP),[5] sub‑band CSP (SBCSP),[3] filter bank 
CSP (FBCSP),[6,7] discriminative FBCSP (DFBCSP)[8] and sliding 
window discriminative CSP (SWDCSP),[9] spectrally‑weighted 
CSP,[10] and iterative spatio‑spectral pattern learning.[11]

CSSP algorithm utilizes the method of delay embedding in 
order to extend the CSP algorithm to the state space.[4] CSSSP 
algorithm allows simultaneous optimization of a spatial 
and a spectral filter enhancing discriminability rates of 
multichannel EEG single trials.[5] However, the CSSSP needs 
extensive parameter tuning and the complexity of the 
optimization problem leads to computational inefficiency.[1] 
In SBCSP, the EEG signals are decomposed into sub‑bands 
using a filter bank, and then a score is computed for the 
features of all sub‑bands used in the classification.[3] FBCSP 
employs a feature selection algorithm to select discriminative 
CSP features based on the mutual information between the 
CSP features and the class labels.[6] The DFBCSP selects 
subject specific discriminative frequency bands using Fisher 
ratio of filtered EEG signal from channels C3 or C4 in the 
International 10–20 EEG recording system.[8] To solve the 
problem of frequency band selection, SWDCSP extracts 
the CSP features in overlapping frequency bands, and an 
unsupervised learning algorithm called affinity propagation 
is used to select a discriminative feature set.[9]
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In this paper, a novel CSP sub‑band feature selection has 
been provided based on the discriminative information of 
the features. For this purpose, two factors are considered. 
The first measure is the mean difference of variances of 
the first and the last rows of spatially filtered EEG in each 
sub‑band. The second measure is the number of times in 
all training examples that a sub‑band has the maximum 
difference of variances of the first and the last rows of 
spatially filtered EEG between all sub‑bands.

After the selection of the optimal sub‑bands, the distinction 
sensitive learning vector quantization  (DSLVQ) method 
is used for weighting the selected sub‑bands. DSLVQ is a 
modification of LVQ method, which seeks the most distinctive 
features on the go. For this purpose, a trainable weight has 
been assigned to each feature as a measure of importance[12] 
and these weights have been updated throughout the 
LVQ iterations. The performance of this method has been 
evaluated using a support vector machine  (SVM) classifier 
with radial basis function (RBF) kernel. SVM is a supervised 
machine learning algorithm, which separates the classes 
with a hyperplane, which is constructed by the observed 
examples in a higher dimension space.

The remainder of the paper is organized as follows: In 
Section 2, a short description of CSP, DSLVQ, and SVM 
algorithms is provided. The dataset and the performed 
experiments are explained in Section 3. Section 4 discusses 
the results from the BCI competition III, IVa datasets, 
and then the performance of the proposed approach is 
evaluated. Section 5 concludes the paper.

MATERIALS AND METHODS

Common Spatial Pattern

CSP algorithm is highly successful in calculating spatial 
filters for detection of ERD effects.[13] It is based on the 
simultaneous diagonalization of two covariance matrices.[9]

Let Ra(i) and Rb(i) denote the corresponding normalized 
spatial covariance matrices of the trial i from classes a and 
b, respectively.
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where n1 and n2 are the number of trials in each class and X(i) 
is the EEG data of trial i. X(i) is an N×T matrix, where N is the 
number of channels and T is the number of samples in time. 
The averaged normalized covariance matrices over trials are:
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where n1 and n2 are the number of trials in each class.

The composite covariance matrix R is defined as follows:

a bR R R= + � (3)

Since R is a symmetric matrix, it can be factored as:

0 c 0R=U UTL � (4)

where U0consists of the eigenvectors of R and Lc is a 
diagonal matrix with eigenvalues of R on its main diagonal 
and 0UT  is the transpose of U0.

The whitening transformation of the composite covariance 
matrix R is obtained as follows:
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Transforming the individual covariance matrices Ra and Rb 
by P gives:

T
a a

T
b b

S PR P

S PR P

=

=
� (6)

It can easily be shown that Sa and Sb share the same 
eigenvectors. Thus,
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From Sa+Sb=I it follows thatΨa+Ψb=I. This means that 
the eigenvectors with the largest eigenvalue for Sa has the 
smallest eigenvalue for Sb and vice versa. Throughout this 
paper, it has been assumed that eigenvalues are sorted in 
descending order. Note that the projection given by the Pth 
row of matrix U has a relative variance equal to the Pth element 
of Ψa for trials of class “a” and relative variance equal to the 
Pth element of Ψb for trials of class “b.” Since Sa and Sb share 
the same eigenvectors, by the projection matrix WCSP=UTP, 
we get the mapping of each EEG trial X(i) as follows:

( ) ( )CSPZ i W X i= � (8)

The columns of  1
CSPW −  are the CSPs and can be seen as time 

invariant EEG source distribution vectors. The components 
most suitable for discrimination are the first and the last 
few rows of Z.

Finally, the variances of the CSP‑based spatially filtered EEG 
are calculated as the features for the classification task. For 
the first r and the last r rows of Z, the formula is:

( ) var( ( ))
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where Zp(i) signifies the Pth row of the Z(i) and n is the 
number of rows of Z. In this article, we choose the first and 
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the last rows of Z as suggested.[3,6,8] It means that we have 
two features for each trial.

Sub‑Band Selection

For the selection of the optimal sub‑bands, the frequency 
band is first divided into equal sub‑bands using a filter bank, 
and then the CSP features for each sub‑band is calculated. 
In order to select the optimal sub‑bands from the calculated 
CSP features in all sub‑bands, two measures are considered. 
The first measure is the average difference between the 
variances  (features) on all trials of each class. Obviously, 
if point clouds in the scatter plot of features are tinier 
and longer, the difference of the largest and the smallest 
variances is more and, in this case, two classes have the 
most discrepancy. Therefore, the sub‑band with a maximum 
difference in both classes is the best one.

For calculation of the first measure, for each class trial, the 
mean of differences between the variances of the first and 
the last rows of spatially filtered EEG is calculated for each 
sub‑band. We define:
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where Zak and Zbk are the CSP‑based spatially filtered EEG 
in the kth sub‑band of the first and second class examples, 
respectively, and N is the last row of Zak and Zbk. The mean 
of the variance differences is defined as:
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Finally, the difference between these two values for each 
sub‑band is considered as the first measure. In other words, 
the sub‑band, which includes the greatest mean of variance 
difference, is the best band.

Concerning the second measure, the difference between 
the variances of the first and the last rows for each training 
set is calculated for all sub‑bands and sorted in descending 
order. The sub‑band with the maximum difference in most 
of training examples is considered to be the best one.

Finally, the optimal sub‑bands are selected based on these 
two measures, that is, the sub‑band, which maximizes both 
measures is selected as the best one.

Distinction Sensitive Learning Vector 
Quantization

DSLVQ method finds the most distinctive features playing 
a critical role in the success of classification. For this 

purpose, a weight is assigned to each feature as a scalar 
indication of the measure of importance and the optimal 
weight is estimated for each dimension through an iterative 
learning process. In this context, the amplitude of the 
weights indicates how informative the features are.[12] 
Application of the most informative features individually 
or as a combination produces a significant effect on the 
classification accuracy.

The learning algorithm for weights is:

( 1) ( ( ) ( ) ( ( ( ) ( )))newW t norm W t t norm W t W t+ = + − � (12)

where W(t) is the present weight vector and Wnew(t) is the 
new weight vector during iteration t. Through the learning 
rate b(t), the present weight vector is shifted toward the 
new vector to some extent. Being smaller than 1, b(t) 
provides a rational decision between the current and the 
new weight vector during iteration t.

It is important to note that in all LVQ methods, the subset 
of the feature space points assigned to each class and 
supposed to represent the distribution of the whole data 
set in that class is called the codebook vectors, and so the 
new entry points can be classified according to the class of 
the closest codebook vectors via the nearest neighbor rule 
and the Euclidean distance metric.

In the calculation of the new weight vector, we use:
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where n is the number of features for each example and 
dc denotes the distance between the features of training 
example X(t) and the closest codebook from the correct 
class. Moreover, do denotes the distance between X(t) and 
the closest vector of the other class. If the closest codebook 
vector to the corresponding feature of training example 
is from the correct class, then the feature is appropriate 
for the classification and W(t+1) increases, otherwise it 
decreases. We have used the DSLVQ method for weighting 
the CSP features in the selected sub‑bands.

Support Vector Machine

A SVM is a learning method developed based on the 
Vapnik–Chervonenkis dimension theory and structural risk 
minimization principle in the statistical learning theory. 
It has good advantages such as strong adaptability, global 
optimization, high training efficiency, good generalization 
performance, and small sample learning problem.[13]

Training a SVM is equivalent to solve a quadratic 
programming problem. Its goal is to find an optimal 
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separating hyperplane for a given feature set. A  classifier 
implementing the optimal separating hyperplane in the 
feature space is given by:
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where xi’s are support vectors, yi’s are the labels of xi’s (1 or −1 
for a two‑class problem), ai’s are Lagrange multipliers, e is 
classification threshold, K(.,.) is a kernel function, and c is a 
marginal factor. In this paper, the classification is carried out 
using SVM with the RBF kernel function:

2
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where r is the width of the RBF.

CALCULATION

Data Description

Our proposed method has been evaluated using the 
BCI competition III, IVa dataset. This dataset comprises 
280 trials of EEG recordings from 118 electrodes for five 
subjects  –  namely “aa,” “al,” “av,” “aw,” and “ay”  –  which 
performs right hand and right foot imagination. Each class has 
140 trials. The classification error rate was calculated using 
10 × 10‑fold cross‑validation on the dataset and compared 
with the SBCSP, FBCSP, DFBCSP, and SWDCSP results.[3,9]

Data Processing

Data were filtered from 0.5 s to 2.5 s after the visual 
cue.[3,6,8,9] The EEG data were band‑pass filtered using six 
fifth order Butterworth filters each with a bandwidth of 
4 Hz, dividing the frequency range of 8–32 Hz into six equal 
sub‑bands. The filtered EEG data were spatially filtered 
using the projection matrix of the CSP (WCSP). As mentioned 
in Section 2, the variances of the spatially filtered signals 
in the first and last rows are utilized as the features for 
selection of the optimal sub‑bands.

The best two sub‑bands were then selected using the 
proposed frequency band selection method. For further 
illustration, a comparison of the sub‑band selection 
measures for subject “aa” is provided in Table 1. As it can 
be observed, the second and the fifth sub‑bands are the 
sub‑bands maximizing both measures for band selection.

After the selection of these two optimal sub‑bands, they are 
weighted using DSLVQ method. The number of codebook 
vectors for most of the subjects were set to six and their initial 
value in each sub‑band was chosen equal to the best sub‑band 
in all the training examples based on the maximum difference of 
variances between the first and the last rows of the CSP filtered 

EEG. Learning rate of the codebook vectors was selected by 
trial and error in the range of 0.001–0.2 for each subject using 
grid search and the learning rate of the weights was chosen as 
0.1 times the learning rate of the reference vectors.

Finally, the weighted CSP filtered EEG data in the selected 
sub‑bands were classified using an SVM classifier with 
RBF kernel. The parameters of the classifier were selected 
in the range of 2‑15–215 by logarithmic grid search using 
cross‑validation on the training data set.[14]

RESULTS AND DISCUSSION

For each subject, 10  ×  10‑fold cross‑validation has been 
performed on the selected and weighted variances of 
the spatially filtered EEG signal, and a comparison of the 
resulting error rate for all subjects is summarized in Table 2. 
The results show that the proposed method has been shown 
to yield superior results on “ay” subject dataset compared 
against existing approaches such as SBCSP, FBCSP, DFBCSP, 
and SWDCSP.

For further clarification of the properties associated with our 
proposed method, Figures 1 and 2 show the variances of the 
training EEG for subject “aa” after projection onto the most 

Table 1: Comparison of sub-band selection measures for the 
sub-bands of subject “aa”
Sub-band 8-12 

Hz
12-16 

Hz
16-20 

Hz
20-24 

Hz
24-28 

Hz
28-32 

Hz

First measure 1.27 1.37 1.02 1.06 1.2 1.03
Second measure 34 54 49 31 73 39

Table 2: Performance comparison of two methods applied 
on dataset IVa, BCI competition III
Sub-band 
selection method

Subject 
“aa”

Subject 
“al”

Subject 
“av”

Subject 
“aw”

Subject 
“ay”

SBCSP 10.7 1.4 29.6 4.3 4.3
FBCSP 6.9 0.9 31 4.9 6.2
DFBCSP 9.8 1.3 22.2 2.1 5.8
SWDCSP 7 0.1 7.6 2 3.2
Proposed method 7.2 1.4 39 6.1 1.1
SBCSP – Sub-band Common Spatial Pattern; FBCSP – Filter Bank Common Spatial 
Pattern; DFBCSP – Discriminative Filter Bank Common Spatial Pattern;  
SWDCSP – Sliding Window Discriminative Common Spatial Pattern;  
BCI – Brain-computer interface

Table 3: Classification accuracy comparison using DSLVQ 
for weighting and without using DSLVQ
Subject Selected 

sub-bands
With DSLVQ 

accuracy
Without DSLVQ 

accuracy

aa 2.5 85.7 85.7
al 1.2 96.4 96.4
av 2.3 56.4 52.1
aw 1.2 81.4 64.3
ay 1.3 83.6 82.1
DSLVQ – Distinction sensitive learning vector quantization
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important discriminative pairs of directions obtained from 
the basic CSP and from our method, respectively. It means 
that for each point in these figures, the horizontal coordinate 
is the variance of the first row of the spatially filtered trial, 
and the vertical one is the variance of the last row.

The points scattered in Figure 2 is tinier and longer than 
that in Figure 1, meaning that the difference of the largest 

and the smallest variances in the selected sub‑bands is 
greater than that of the other sub‑bands and so the features 
in this sub‑band is more discriminative.

Figure  3 shows the variance of the training EEG after 
projection onto the most important discriminative pairs 
of directions for all sub‑bands for subject “aa.” As we can 
see, variances in the second and fifth sub‑bands are tinier 
and longer, which indicates that these two sub‑bands are 
the best choices. Furthermore, our algorithm for sub‑bands 
selection has successfully selected these two sub‑bands.

Table 3 compares the classification accuracy of all subjects 
using DSLVQ for weighting the selected features and without 
using DSLVQ for weighting the features. The results show 
that weighting the selected features with DSLVQ method is 
effective in the improvement of the classification accuracy 
for the selected features.

CONCLUSION

In this paper, a new selection algorithm has been 
developed to find the optimal sub‑bands. Moreover, for the 
performance enhancement, DSLVQ has been adopted to 
weigh the selected sub‑bands based on their discriminative 
information.

It has been shown that the suggested method gives good 
results and outperforms the basic CSP method. As a starting 
point for future studies, our presented method has also 
demonstrated great potential for production of even 
better results through the application of other possible 
combinations of frequency sub‑bands for the selection 
of optimal bands  (e.g., overlapping sub‑bands, unequal 
frequency band division, etc.).

Figure 1: Variances of the training electroencephalogram signals for subject 
“aa” after projection onto the most discriminative pairs of directions 
obtained by basic common spatial pattern. In this figure, blue and red points 
are training examples and black circles are support vectors of the classifier 
and green and magnet points are test examples for each class

Figure 2: Variances of the training electroencephalogram signals for subject 
“aa” after projection onto the most discriminative pairs of directions for the 
second sub‑band (12–16 Hz) obtained by sub‑band common spatial pattern. 
In this figure, blue and red points are training examples and black circles 
are support vectors of the classifier and green and magnet points are test 
examples for each class

Figure  3: Variances of the training electroencephalogram signals after 
projection onto the most discriminative pairs of directions for all sub‑band 
obtained by sub‑band common spatial pattern for subject “aa”
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