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INTRODUCTION

Fatty liver disease encloses a wide range of conditions that 
are characterized by triglyceride accumulation within the 
cytoplasm of hepatocytes and is related to obesity, insulin 
resistance, and metabolic syndrome. Fatty liver disease is 
one of the most common chronic hepatic diseases in all 
countries. It has been reported that the prevalence of fatty 
liver disease is as large as 20–30% in the general population 
of Middle East.[1]

Liver biopsy is considered as a diagnostic reference 
standard for the assessment of fatty infiltration of the 
liver. In biopsy, a small sample of tissue is taken from 
the liver using a needle.[2] This method is highly invasive 
and costly. However, medical imaging techniques such as 
ultrasound (US), computed tomography (CT) and magnetic 
resonance imaging are used for examination. As the US 
imaging is nonradiological, noninvasive, inexpensive, 
easy to operate and portable, it is a preferable diagnostic 
method for fatty liver. Extracting information from the fatty 
liver US images is based on the changes of scanned image 
intensity, which can be measured in the spatial domain. 

A B S T R A C T

Ultrasound imaging is a popular and noninvasive tool frequently used in the diagnoses of liver diseases. A system to characterize normal, 
fatty and heterogeneous liver, using textural analysis of liver Ultrasound images, is proposed in this paper. The proposed approach is 
able to select the optimum regions of interest of the liver images. These optimum regions of interests are analyzed by two level wavelet 
packet transform to extract some statistical features, namely, median, standard deviation, and interquartile range. Discrimination 
between heterogeneous, fatty and normal livers is performed in a hierarchical approach in the classification stage. This stage, first, 
classifies focal and diffused livers and then distinguishes between fatty and normal ones. Support vector machine and k‑nearest 
neighbor classifiers have been used to classify the images into three groups, and their performance is compared. The Support vector 
machine classifier outperformed the compared classifier, attaining an overall accuracy of 97.9%, with a sensitivity of 100%, 100% 
and 95.1% for the heterogeneous, fatty and normal class, respectively. The Acc obtained by the proposed computer‑aided diagnostic 
system is quite promising and suggests that the proposed system can be used in a clinical environment to support radiologists and 
experts in liver diseases interpretation.
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Fatty liver causes an increase of echogenicity in the liver 
tissue. Echogenicity is the ability to create an echo that is, 
returning the signal in US examinations, and can be used to 
determine the brightness of US image.[3]

In order to help the physicians and experts diagnose 
and detect fatty liver disease, some authors recently 
proposed different schemes. Their schemes are based on 
computer‑aided diagnosis (CAD).[3‑10]

Liver segmentation, feature extraction, and classification 
are the main steps of CAD systems based on US imaging. 
There are several methods to segment a proper region of 
liver image. Most of them are manual, and a few others are 
semi‑automatic and automatic. Manual approaches require 
medical experts to determine the regions of interest (ROI), 
before leaving to the computer for processing. Whereas, 
automated segmentation methods segment with minimal 
user input or without the need of any assistance from a 
medical expert. Authors of Wu et al.,[11] selected the ROI 
manually for each image in the patient database in the 
training phase. The threshold value to generate extremely 
stable edge pattern for the template image was then 
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learned. In the test phase, the ROI was detected based 
on a representative template using generalized Hough 
transform. Minhas et al.[7] a method was proposed to 
extract ROI semi‑automatically. In training phase, some 
ROIs were extracted manually from the training US images 
to train the segmentation system. Then, the segmentation 
system extracted the final ROIs to be classified by 
classifier. The aim of the CAD systems is to minimize 
user intervention. Therefore, automatic approaches are 
preferred. However, the ROI selection Minhas et al.[7] and 
Wu et al.[11] is semi‑automatic. An automatic ROI selection 
method was proposed in Ribeiro et al.[12] This method was 
used for the liver surface detection, based on decomposing 
the US images of the liver parenchyma into two fields: the 
speckled image containing textural information and the 
de‑speckled image containing intensity and anatomical 
information of the liver. Features were extracted from 
the liver contour detected in the de‑speckled field. The 
detected contour distinguished the liver anatomy from 
its neighbors, and the selected region was used as ROI. 
However, an efficient ROI should not include hepatic 
vessels, bile stores, and other anomalies. Therefore, the 
segmentation stage of this scheme may not be efficient due 
to the lack of anomalies removal.

Several approaches have been proposed for feature 
extraction in liver tissue based on US images. The most 
common features used for diagnosis of fatty liver are the 
first order and the second order statistical features based 
on texture analysis of the US images.[13,14] Texture analysis 
approaches can be divided into two groups: one based on 
the relation of neighbor pixels in spatial domain such as 
the gray level concurrence matrix (GLCM), the gray level 
difference statistical (GLDS), the gray level run length 
matrix (GLRLM) and fractal parameters (k); and one based 
on the analysis of transform coefficients such as Fourier 
power spectrum (FPS), discrete wavelet transform (DWT) 
and wavelet packet transform (WPT). The transform domain 
texture analyzers[7,15,16] have better performance than spatial 
domain ones[6,17‑19] as texture characteristics are extracted 
more efficiently in transform domain. Among the explained 
texture analyzers in transform domain, WPT results in 
more independent and robust features since it performs a 
multi‑resolution analysis in all frequency bands.

Finally, in the classification phase, different classifiers 
are proposed by researchers to discriminate normal and 
fatty livers, such as, artificial neural network (ANN),[6] 
probabilistic neural network (PNN),[18] self‑organizing maps 
(SOM)[17] that is a kind of ANN with the ability of representing 
high‑dimensional data, k‑nearest neighbor (k‑NN)[6,12] and 
support vector machine (SVM).[6,7,12,20,21]

The ANNs and the SVMs perform properly when a nonlinear 
relationship exists between the input and output features. 
These two classifiers have high speed of classification. 

However, for neural network models and SVMs, a large 
sample size is required in order to achieve its maximum 
classification accuracy (Acc). The k‑NN algorithms use 
space for training phase storage and in general k‑NN and 
neural network are very sensitive to irrelevant features. As 
expected, neural networks and SVMs have more parameters 
than k‑NN. The basic k‑NN usually has only a single parameter 
which is relatively easy to tune.[22]

Mukherjee et al.[17] used GLCM to extract some statistical 
features from fatty liver US images, and then estimated the 
degree of distinction between normal and fatty clusters 
through texture analysis and SOM.

Andrade et al.[6] presented a semi‑automatic classification 
approach to recognize fatty and normal liver. Several 
textural analysis models such as GLRLM, GLCM, and fractal 
dimension were used to extract features in three different 
classifiers, namely ANN, SVM, and k‑NN. The Acc of 76.92% 
for ANN, 79.77% for SVM and 74.05% for k‑NN classifiers 
were obtained.

Huang et al.[18] used three texture analysis methods, namely 
GLCM, gray level histogram and GLDS for textural analysis 
of liver in their work. Initially, image was de‑noised, and 
different statistical features were extracted. Finally, PNN 
was applied to classify the normal and fatty liver with 
correct classification rate of 82.5% and 87.5% for normal and 
fatty classes, respectively.

Singh et al.[19] used some texture models including GLCM, 
FPS, and fractals and proposed a new metric based on the 
features to classify fatty and normal liver.

Yeh et al.[23] classified three grades of fatty liver with 
25 MHz US images from liver samples obtained from 
surgical specimens. Their method was based on extracting 
feature from the GLCM and nonseparable DWT. The 
features extracted by both methods were used by SVM for 
classification with highest Acc of 90.5%.

Ribeiro et al.[15] proposed a classifier to discriminate normal 
and fatty livers. They used two important US features: liver 
parenchyma echogenicity and its texture. The acoustic 
attenuation coefficient was estimated by means of the 
slope of the linear regression of the mean image intensity 
along the depth direction (lines)[24] to apply echogenicity. 
In order to use texture features, energy and mean 
features were extracted from the first and second wavelet 
decomposition and some other features were extracted 
using autoregressive (AR) model coefficients corresponding 
to the coefficients of the first order two‑dimensional 
AR model describing the image texture. Furthermore, 
WPT were employed to extract statistical features. Four 
types of classifiers, k‑NN, Bayes and SVM (polynomial and 
radial‑basis kernel) were applied to discriminate normal and 
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steatosis livers. The best‑achieved result was observed for 
texture features, with the Bayes classifier, performing an 
Acc of 93.54% with a detection rate of 95.83% and 85.71% 
for normal and steatosis classes, respectively.

Minhas et al.[7] proposed a method to detect fatty and 
heterogeneous livers. The detected ROI was analyzed using 
WPT as textural analyzer, and a number of statistical features 
was obtained. Finally, a multi‑class linear SVM was used for 
classification. Their approach led to an Acc of 95.4%.

Virmani et al.[16] proposed a CAD system for characterizing 
normal, cirrhotic and hepatocellular carcinoma (HCC) by 
the use of WPT texture descriptors and to extract mean, 
standard deviation, and energy features. Finally, SVM 
classifier was used to discriminate the three desired classes. 
The overall Acc of their approach is 88.8%.

Generally, fatty liver studies on CAD have concentrated 
on discriminating between healthy subjects and patients 
with fatty liver or other liver diseases based on manually 
selected ROIs. Furthermore, these studies have utilized 
one‑against‑all or one‑against‑one nonhierarchical 
classification schemes. Fully automatic selection of ROIs and 
hierarchical classification of liver diseases using US images 
have been paid less attention in computer‑aided studies.

The aim of this study is to develop a noninvasive method 
based on the analysis of US images that not only accurately 
diagnose fatty and heterogeneous livers, but also 
automatically select the best ROIs from liver images.

As mentioned above, a fully automatic and efficient CAD system 
includes automatic selection of ROI, efficient feature extraction 
method and effective classification approach. In our proposed 
method, radiologist only determines the targets of the training 
stage and the ROIs are selected completely automatic without 
the need of radiologist’s assistance. In this method, some ROIs 
have been selected by partitioning the US image, inspired by 
the clinical practice, and classification is performed by the use 
of these ROIs. This procedure presents a considerable low 
computational cost. Then the WPT is employed to extract 
some statistical features. Finally, in the classification part, we 
proposed a novel classification strategy based on a hierarchical 
method. The first stage of this method classifies heterogeneous 
liver from others and in the second stage discrimination of 
fatty and normal is performed.

The rest of this paper is organized as follows. The next 
section explains the main methodology. After, introducing 
the dataset used in this work, the procedure of selecting 
the ROIs is described. Then, texture analyzer and feature 
extraction are studied. Next section provides detailed 
information of classifiers. Finally, the results are presented, 
and the conclusion is reached.

MATERIALS AND METHODS

In this method, after acquiring US images of the liver, few 
optimum ROIs are selected in the segmentation section. 
Then, WPT is applied to extract statistical features. Finally, 
a hierarchical classification approach is employed. Block 
diagram of the proposed method is illustrated in Figure 1.

Image Acquisition

The US images of 88 subjects contain 30 fatty, 39 normal 
and 19 heterogeneous liver images. The images are of size 
560 × 450 pixels and saved in bitmap format. All images 
were obtained using a Toshiba SSA 550 digital B‑mode US 
imaging system with a convex probe and at a 5 MHz tissue 
harmonic imaging frequency. The same dataset has been 
used in Minhas et al.[7] to enable us to have comparative 
results.

SEGMENTATION

In order to have a CAD system, we would be looking for 
methods that avoid user intervention. Therefore, the 
purpose of this section is to select the proper ROI with 
an automatic method in the training and testing phases. 
It does not mean that an unsupervised method has been 
used in the training stage as in supervised method an 
expert determines the target of training samples. In fact, 
in our proposed approach, the proper ROIs are selected 
automatically without the use of any expert’s assistance. 
However, the targets of training images are chosen by an 
expert.

In the proposed method, as illustrated in Figure 1, the US 
image of the liver is first cropped to extract a wide region 
near the central lobe and the black region around the main 
part is removed. This is performed in order to reduce the 
computational cost of the process.

Figure 2 shows a sample of the cropped image. The wide 
region is partitioned to 9 equal‑size neighboring blocks 
as illustrated in Figure 3a. The partitioning continues to 
the next level, which 12 blocks are formed by overlapping 
the every two first level blocks, adjacent to each other 
both horizontally and vertically. This level is shown in 
Figure 3b and c. In the third level, 4 blocks are formed at 
the intersection of each four adjacent blocks of the first 

Figure 1: The block diagram of the proposed method
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level as shown in Figure 3d. Finally, 25 equal overlapped 
blocks are specified. In order to find the proper ROIs, we 
select 64 × 64‑pixel regions in the center of each block; 
therefore, 25 ROIs of size 64 × 64‑pixels is obtained for 
each US image.

However, using all the ROIs in classification is not efficient 
and increases the computational cost. Therefore, a ‑linear 
support vector classifier (v − LSVC)[25] is employed as a 
preprocessing stage, and after classification process, 
8 ROIs, which have better results, are selected. The 
v  −  LSVC classifier is very fast and simple with low 
computational cost. Therefore, selection of the proper 
ROIs does not affect noticeably the computational 
cost and the speed of the training phase. Finally, these 
selected ROIs are used in the classification phase. The 
features that are used in this classification are explained 
in feature section.

Wavelet Packet Transform

As mentioned in the introduction, feature extraction can 
be performed in the spatial and transform domains. Using 
texture descriptors in transform domain is much more 
reasonable in the sense that the human visual system 
processes images in a multi‑scale way. Therefore, scale is a 
dominant aspect for analysis of texture.[16,26]

In WPT, the image I (x, y) is decomposed into four subbands of 
approximation (a), horizontal (h), vertical (v) and diagonal (d) 
details at the first level and each of approximation and 
detail coefficients are decomposed further. This process is 
repeated to the desired level of decomposition. The WPT 
tree up to the second level of decomposition results in 
16 subbands as shown in Figure 4. Figure 4b illustrates the 
WPT of an US image ROI at level 2 using the Daubechies3 
wavelet. While DWT provides flexible time–frequency 
resolution, it suffers from a relatively low‑resolution in 
the high‑frequency parts. Differentiating high‑frequency 
transient components becomes difficult and may not be 
efficient for texture characterization as most significant 
texture information usually appears in the middle and 
high‑frequency bands, especially in texture with speckle 
noise. The WPT, in comparison, decomposes the detailed 
information of the image in the high‑frequency parts.[27,28] 
The reason for using WPT for analysis of US images is that 
textural properties of the US image can be analyzed easily in 
the decomposed image at different frequency levels.

As Figure 4 shows, 4 and 16 subbands are obtained at the 
first and the second level of decomposition, respectively, 
which result totally in 20 subbands. The desired features 
are extracted from these 20 subbands. Moreover, we extract 
the features from the original ROIs. Therefore, features are 
extracted from both original ROIs in spatial domain and 
WPT subbands in transform domain.

FEATURE EXTRACTION

The extracted features from WPT coefficients are median, 
standard deviation, and interquartile range. The median of 
the image shows the numerical value of intensity separating 
the higher half of pixel intensities in a window of the image 
from the lower half. The median value of intensity in US fatty 
liver images is higher than the intensity of normal ones due 
to their increased echogenicity caused by fat accumulation.[7] 
This characteristic also exists in WPT subbands of US fatty 
liver images. Standard deviation shows the variation from 
the mean. The interquartile range measures the dispersion Figure 2: An example of the cropped liver ultrasound image

ba

Figure 3: (a) The first level of partitioning (9 equal-size blocks), (b) and (c) The second level of partitioning (the process of forming 12 overlapped blocks at 
the intersection of two previous blocks in each row and in each column), (d) The third level of partitioning (the process of forming 4 overlapped blocks at the 
intersection of each four blocks of the first level)
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and is the difference between the upper and lower quartiles. 
The standard deviation and the interquartile range of the 
image represent the regularity or smoothness, of the US 
texture. These two features may be good indicators to 
distinguish US images of focal and diffused diseases of the 
liver. As a spatial domain feature, the ratio of the maximum 
to the minimum intensity value of pixels in the original ROI 
image in the spatial domain is computed as in.[7] Therefore, 
by calculating the three explained features from each of 
20 subbands and one feature from the original ROI image in 
the spatial domain, feature vector of length 61 is obtained.

CLASSIFICATION

This section aims to discriminate normal, fatty and 
heterogeneous livers. To reach this aim, a hierarchical 
classification scheme is proposed. A block diagram of this 
scheme is illustrated in Figure 5. The proposed hierarchical 
classification scheme is organized in two steps.

As already mentioned, in the normal case, both lobes of 
the liver are homogeneously clear and in the fatty case as 
it is a diffused disease, at least one lobe is accumulated 
homogeneously by fat. However, in a heterogeneous case a 
small region of the liver is only affected. Therefore, the fatty 
and normal cases can be placed in the diffused category 
and the heterogeneous case in the focal category. In order 
to have a hierarchical scheme, in the first classification step, 
focal case is discriminated from diffused case, if a liver is 
classified as diffused in the first step, discrimination of fatty 
and normal is examined in the second step.

Two types of classifiers, k‑NN and SVM, are tested for the 
classification in each step. The purpose of SVM is to find a 
decision plane that has a maximum distance (margin) from 
the nearest training pattern.[29,30] In order to perform this 
aim, in some special cases, SVM maps the feature vector 
to a higher‑dimensional space. In this space, the SVM finds 

a hyperplane to separate the two classes with a decision 
boundary set by support vectors.[29,30] An appropriate kernel 
function can increase the Acc of the classification process. 
In this paper, a binary SVM classifier is adopted using the 
polynomial kernel.

The k‑NN classifier classifies a test sample according to 
the majority of its neighbors in the feature space using the 
minimum Euclidean distance criterion.[5,30]

To determine the optimal parameters for the classifiers, 
the different parameters are tested. The k‑NN algorithm 
is implemented for values of k = 1,…,9 neighborhood 
configurations. The SVM is trained with a degree range of 
d = 1,…,10. Only the best results are shown in this paper, 
which was obtained for k = 1 and d = 2.

RESULTS

In this section, the performance of the proposed method 
has been illustrated and evaluated. First, the evaluation 
criteria are explained and then the results are presented in 
three experiments. The first experiment uses leave one out 
cross validation (LOOCV) and one‑against‑all nonhierarchical 
method and evaluates the automatic selection of ROIs. The 
comparison between the proposed hierarchical scheme 
and one‑against‑all nonhierarchical method is performed in 
experiment 2. Finally, experiment 3 shows the performance 
of the proposed approach using 30% of dataset as test 
images and 70% as train images.

Evaluation Criteria

The performance of the algorithm is investigated by 
sensitivity (Se), positive predictive value (PPV) and Acc.

Automatic Selection of Regions of Interests

The first part of the implementation is selecting ROIs, 
which is performed as a fully automatic segmentation. 

Figure 5: The proposed hierarchical classification scheme 

Figure 4: (a) Subband notation for 2 level wavelet packet transform (WPT) 
decomposition of image I (x, y), (b) Decomposed liver ultrasound image 
after the first and the second level of WPT decomposition

b

a
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The simplicity and reduction of computational cost of this 
method in comparison with the semi‑automatic method 
of selecting ROI Minhas et al.,[7] without degrading the 
classification performance, is noticeable.

The first experiment contains a test over automatically 
selected ROIs and a comparison with the results of manually 
selected ROI. This test is performed on the 25 overlapped 
blocks. These blocks have the size of 76 × 84 pixels. Totally, 
25 ROIs are formed by selecting 64 × 64‑pixel regions at the 
center of each block, and 8 optimum ROIs are selected as 
mentioned in the segmentation section. Each of these 8 ROIs is 
examined by SVM and k‑NN classifiers. Therefore, eight‑class 
labels are obtained for each liver image by each classifier. In 
this experiment, the one‑against‑all nonhierarchical scheme 
is employed to discriminate heterogeneous liver as Class 1, 
fatty liver as Class 2 and the normal one as Class 3. Finally, 
according to the eight‑class labels, the majority vote rule 
determines the final class label.

Hierarchical Classification

The second experiment is performed to show the 
effectiveness of the hierarchical classification scheme. This 
experiment contains a test over automatically selected ROIs, 
as in the first experiment, and a comparison with the results 
of Minhas et al.[7] At the first step of the classification, the 
diffused and focal classes are denoted as classes 1 and 2, 
respectively. At the second step, repeatedly, the fatty class 
is marked as Class 1 and the normal one as Class 2. The 
selected ROIs are examined by SVM and k‑NN classifiers by 
the use of LOOCV method. Table 1 illustrates the Se and PPV 
of each class in each step and the Acc of each step.

Select 30% of Dataset as Test Images 

In the third experiment, the number of test samples 
is increased to evaluate this method more accurately. 
Therefore, the dataset is randomly partitioned to 
approximately 30% as test images and 70% as the training 
set. To reach this aim, the classification is performed using 
over 25 testing and 63 training images. This experiment 
is repeated with a hundred different random partitions in 
order to make any data bias associated with partitioning, 
insignificant. In this experiment, 25 overlapped blocks are 
used. The average of the Se and PPV of each class and Acc of 
each step of the system are shown in Table 2.

DISCUSSION

The performance of classifiers in the first and the second 
experiments is evaluated by means of LOOCV method, 
same as the method used in Minhas et al.[7] to have a fair 
comparison with its results. This paper[7] is one of the 
most efficient and newest studies in classification of liver 
diseases and is the only study to discriminate fatty, normal 

and heterogeneous livers. Minhas et al.[7] proposed an 
effective semi‑automatic method to select a proper ROI in 
each US image.

Furthermore, this method is useful in cases with a small 
amount of available data as normally observed in medical 
problems. In LOOCV method, one case is left out as the 
testing set, and the rest of the data is used as the training 
set. This process is repeated so that each case is given a 
chance as the testing case.[31]

Tables 3 and 4 illustrate the Se and PPV of each class and the 
overall Acc using LOOCV method.

According to Table 3, the Se of 100% and 90.3% to 
detect the heterogeneous and fatty cases, respectively, 
shows the efficiency of the segmentation method. 
Furthermore, the PPVs of more than 90% represent efficient 
precision of the proposed scheme. Moreover, the results 
of this Table 3 illustrate the efficiency of SVM classifier 
compare to k‑NN.

With the comparison between Tables 3 and 4, this 
experiment also illustrates that, using the automatically 
selected ROIs leads to better performance compared to the 
manually selected ROI. Moreover, in manually selected case, 
the results depend on the expert’s assessment.

According to the results in Table 1, by considering 25 ROIs, 
this method is reliable and can be used in CAD systems in 
practical diagnosis of fatty and heterogeneous livers based 
on US images. As this Table 1 shows, the proposed method 
gives the Se of 100% for detecting both heterogeneous 

Table 1: Results of the one-against-all nonhierarchical 
scheme over 25 overlapped ROIs (automatic selection) 
by the use of leave one out cross validation
Classifier 
labels

Sensitivity (%) PPV (%) Accuracy (%)

SVM k-NN SVM k-NN SVM k-NN

Heterogeneous 100 80 80 63.2 91 82
Fatty 93.3 86.7 93.4 86.7
Normal 86.4 79.1 97.4 87.2
PPV – Positive predictive value; SVM – Support vector machine; k-NN – K-nearest 
neighbor; ROI – Regions of interest

Table 2: Results of the one-against-all nonhierarchical 
scheme over manually selected ROI by the use of leave 
one out cross validation
Classifier 
labels

Sensitivity (%) PPV (%) Accuracy (%)

SVM k-NN SVM k-NN SVM k-NN

Heterogeneous 64.3 57.1 55 50.1 83.33 79.63
Fatty 78.8 76.9 86.7 66.7
Normal 90.2 85.3 93.2 95.3
PPV – Positive predictive value; SVM – Support vector machine; k-NN – k-nearest 
neighbor; ROI – Regions of interest
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and fatty livers at the first and the second steps using SVM 
classifier. This shows the complete detection and quite 
correct diagnosis of these diseases, of course, for the 
available dataset.

Furthermore, we have achieved the overall Acc of 97.9% 
that is higher compared to the approach of Minhas et al.[7] 
with overall Acc of 95.4% in the same condition. In addition, 
the method of selecting ROIs in the proposed scheme is 
completely automatic with lower computational cost than 
the method of Minhas et al.[7] In the scheme of Minhas 
et al.,[7] a medical expert had manually extracted ROIs from 
training US images. A given US image was first cropped to 

extract a wide region near the central lobe. The continuous 
wavelet transform (CWT) of the cropped image was then 
taken with nine different scale parameter values. Thus, a 
single pixel of the original image could be represented as 
a nine‑dimensional feature vector. As each of the manually 
selected ROI was 64 × 64‑pixels, therefore, the total 
number of pixels available for training became 4,096 for a 
single ROI. Thus, the total number of examples for training 
the one class SVM for all the 88 images was 360,448. For 
efficient training of the one class SVM, the number of 
examples was reduced from 360,448 to 4,096 using k‑means 
clustering. The cluster centers were then used to train the 
one‑class SVM. For segmentation, the CWT of a given US 
image was taken, and the nine‑dimensional representation 
of each pixel was subjected to the one‑class SVM and some 
parameters were computed. After normalizing, applying 
morphological operations, filtering and finding the 
maximum value of pixels in each resulting image, the center 
of the proper ROI was found. Therefore, the method of 
ROI selection in Minhas et al.[7] is semi‑automatic with high 
computational complexity. Moreover, their classification 
method is not a hierarchical one.

The results of Table 2 show that with increasing the number 
of test images up to 30%, the Acc changes by only a small 
amount. Furthermore, Se of 100% for heterogeneous and 
normal livers in steps 1 and 2 respectively, depicts the quite 
detection of these cases. Diagnosis of the fatty case is also 
performed with high Se of 95.5%. Moreover, the high PPVs, 
specially, 100% in the fatty case; illustrate perfect precision in 
diagnosing fatty liver disease. The overall Acc of 94.8% in this 
experiment shows the performance and robustness of the 
proposed algorithm in comparison with[7] in its 10 fold cross 
validation experiment with the Acc of 93.7%. Table 2 illustrates 
a comparison between our proposed algorithm in the third 
experiment and 10 fold cross validation test of Minhas et al.[7]

In addition to Minhas et al.,[7] some other papers have 
proposed different approaches to classify normal and fatty 
liver or other liver diseases. However, a fair comparison 
between different methods and the proposed algorithm 
is complicated due to the differences in the type of liver 
diseases, datasets, the number of classes, the number of 
each class members in dataset, cross‑validation technique 
and the evaluation criteria reported in the papers. The 
latest algorithms in the literature classify normal and fatty 
livers or stage the different grades of fatty liver, and the 
heterogeneous cases have been paid less attention. The 
results given in Huang et al.[18] show that their method gives 
a Se of 87.5% for detecting fatty liver. Their method uses 
50 fatty, and 50 normal US liver images and selects ROIs 
manually. The approach in Zhou et al.[32] shows the Se of 81% 
in diagnosing fatty liver by the use of 52 normal and 69 fatty 
liver images and segmenting manually. The method given 
in Ribeiro et al.[15] represents the Se of 95.83% and 85.71% 
in detecting normal and fatty livers, respectively and an 

Table 3: Results of leave one out cross validation 
and hierarchical classification scheme for the third 
test (considering 25 overlapped blocks) in comparison with 
method of Minhas et al.[7]

Classifier 
labels

Sensitivity 
(%)

PPV 
(%)

Accuracy 
(%)

Overall 
accuracy 

(%)

SVM k-NN SVM k-NN SVM k-NN SVM k-NN

The proposed 
algorithm

Step 1
Focal 
(heterogeneous)

100 88.3 92.7 98.5 98.7 89.6 97.9 90.4

Diffused 96.1 90.91 100 72.6
Step 2

Fatty 100 95.7 93.3 90 97.1 91.3
Normal 95.1 92.3 100 92.3

Algorithm of[7]  
(using SVM classifier)

Heterogeneous 94.7 100 N/A 95.4
Fatty 93.3 93.3
Normal 96.4 95

PPV – Positive predictive value; SVM – Support vector machine; k-NN – k-nearest 
neighbor; ROI – Regions of interest

Table 4: Average results of the third experiment by setting 
30% of images as testing images and 70% as training images 
with hierarchical classification scheme and a comparison 
with results of 10 fold cross validation test of Minhas et al.[7]

Classifier labels Sensitivity 
%

PPV 
%

Accuracy 
%

Overall 
accuracy %

The proposed algorithm 
with 30% test and 70% train

Step 1
Focal (heterogeneous) 100 83.4 94.4 94.8
Diffused 95 100

Step 2
Fatty 95.5 100 95.2
Normal 100 91.7

Algorithm of [7] 
(10 fold cross validation)

Heterogeneous 91 100 N/A 93.7
Fatty 92.4 92.4
Normal 96.3 92.3

PPV – Positive predictive value
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overall Acc of 93.54%. Their algorithm uses 40 normal and 
35 fatty liver images by manual ROI selecting. The method 
in Wang et al.[33] uses 24 normal and 59 fatty liver images 
and extracts two ROIs manually. This paper shows the Se 
of 92% in diagnosing fatty liver and the overall Acc of 88%. 
Table 5 shows a comparison between these algorithms.

CONCLUSION

In this paper, an automatic segmentation and classification 
method to discriminate normal, fatty and heterogeneous 
liver images are proposed. The proposed algorithm is 
performed in two stages. The first stage, automatically 
selects some ROIs in a liver US image without the need of 
any assistance from a medical expert. The WPT is applied to 
the selected ROIs as a multi‑scale texture analyzer to extract 
some statistical features. In the second stage, a hierarchical 
binary classification method using SVM classifier is 
employed. The proposed hierarchical classification 
algorithm discriminates the heterogeneous case from the 
diffused case at the first step and classifies fatty and normal 
cases at the second step. The overall Acc of 97.7% indicates 
the efficiency of the hierarchical classification scheme. 
The implementation results illustrate the suitability of the 
proposed system to be used in a clinical environment to 
help radiologists in liver disease classification and improve 
diagnostic Acc, which can avoid biopsies.

As mentioned already, fatty liver studies on CAD have 
focused on classification of healthy subjects and patients 
with fatty liver or different grades of it, as a consequence, 
one of the advantages of the proposed scheme in comparison 
with existing methods is that our approach considers 
discrimination between three different classes and detects 
heterogeneous cases, as in practice. Therefore, our proposed 
scheme is more usable in practical diagnosis than other 
existing approaches. The completely automatic scheme to 

select the ROIs with the noticeable low computational cost 
is the other advantage of this system. This algorithm can 
be extended by enlarging the available database of liver 
images. Moreover, the proposed hierarchical method can 
be used in classifying different grades of fatty liver. Another 
interesting extension of the work can be to use other robust 
features based on Gabor filters or local binary pattern.
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