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INTRODUCTION

Optical coherence tomography  (OCT) is a non‑invasive 
imaging technique which uses infrared light. Since possible 
imaging depth using OCT is 2‑3 mm, this method has a high 
compatibility with retinal[1‑8] and corneal[9‑21] tissues. The 
OCT images have various information such as curvature and 
thickness of the layers. The method can also provide a high 
resolution and three‑dimensional (3D) view of the living 
tissues for us.[22‑30] The light wavelength of OCT device 
used in imaging of the anterior eye segments is 1.3 μm and 
provides the possibility of imaging of this section because 
of the relatively good penetration through the sclera.[31]

The adult cornea is approximately 0.5 mm thick at the center 
and it gradually increases in thickness toward the periphery. 

A B S T R A C T

Diagnosis of corneal diseases is possible by measuring and evaluation of corneal thickness in different layers. Thus, the need for 
precise segmentation of corneal layer boundaries is inevitable. Obviously, manual segmentation is time‑consuming and imprecise. 
In this paper, the Gaussian mixture model (GMM) is used for automatic segmentation of three clinically important corneal boundaries 
on optical coherence tomography (OCT) images. For this purpose, we apply the GMM method in two consequent steps. In the first 
step, the GMM is applied on the original image to localize the first and the last boundaries. In the next step, gradient response of a 
contrast enhanced version of the image is fed into another GMM algorithm to obtain a more clear result around the second boundary. 
Finally, the first boundary is traced toward down to localize the exact location of the second boundary. We tested the performance of 
the algorithm on images taken from a Heidelberg OCT imaging system. To evaluate our approach, the automatic boundary results are 
compared with the boundaries that have been segmented manually by two corneal specialists. The quantitative results show that the 
proposed method segments the desired boundaries with a great accuracy. Unsigned mean errors between the results of the proposed 
method and the manual segmentation are 0.332, 0.421, and 0.795 for detection of epithelium, Bowman, and endothelium boundaries, 
respectively. Unsigned mean errors of the inter‑observer between two corneal specialists have also a comparable unsigned value of 
0.330, 0.398, and 0.534, respectively.
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The shape of the cornea is prolate‑flatter in the periphery and 
steeper centrally which creates an aspheric optical system. 
The human cornea comprised of five layers: Epithelium, 
Bowman’s membrane, stroma, Descemet’s membrane 
and the endothelium. There are problems such as corneal 
swelling, acidosis and altered corneal oxygen consumption 
which change the normal thickness of the corneal layers. 
Therefore, evaluation of corneal thickness in such cases can 
improve the diagnosis and treatment. Also, the assessment 
of the thickness of corneal layers before and after refractive 
surgery plays an important role in the evaluation of the 
treatment process. So accurate segmentation of corneal 
boundaries is necessary. Otherwise, an error of several 
micrometers can lead to wrong diagnosis. The large 
volume of these data in clinical evaluation makes manual 
segmentation time‑consuming and impractical.[29,32,33]
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Graglia et  al.[23] proposed an approach for contour 
detection in the frame of OCT images of the cornea by 
finding epithelium and endothelium points and tracing the 
contour of the cornea pixel by pixel from these two points 
with a weight criterion. The algorithm strongly depends 
on proper selection of initial points on the epithelium 
and endothelium boundaries and the smallest error in this 
section, gives wrong results. Furthermore, the algorithm 
is not able to detect inner layers and only detects the 
epithelium and endothelium boundaries. Li et  al.[34‑36] 
proposed an automatic method for corneal segmentation 
using a combination of fast active contour  (FAC) and 
second‑order polynomial fitting algorithm. This approach 
depends heavily on the correct choice of the initial contour 
which should be close to the desired image feature, typically 
edges. This algorithm segments epithelium, Bowman 
and endothelium boundaries. Eichel et  al.[33,37] proposed 
a semi‑automatic method for corneal segmentation by 
utilizing enhanced intelligent scissors and user interaction. 
This method is semi‑automatic and requires the high 
accuracy of user interaction for accurate segmentation 
and it is time‑consuming because of the presence of user. 
This method segments all of the corneal layers. Despite 
the successful demonstrated accuracy in segmenting 
high‑quality corneal images, none of these techniques have 
demonstrated sufficient accuracy for fully automatically 
segmenting low‑signal‑to‑noise ratio (SNR) images. Larocca 
et  al.[29] proposed an automatic algorithm to segment 
boundaries of three corneal layers using graph theory 
and dynamic programming. This method segments three 
clinically important corneal layer boundaries  (epithelium, 
Bowman and endothelium). But their method was only 
tested on 20 corneal images.

In this paper, we segment the boundaries of corneal layers 
by utilizing Gaussian mixture model  (GMM) method. Our 
method segments three important corneal boundaries 
in OCT images. These layers are as follows: Epithelium, 
Bowman and endothelium. The OCT images captured from 
high‑tech devices may have high SNR  [Figure  1a], but in 
many cases, they have a low‑SNR [Figure 1b]. Furthermore, 
some of OCT images may be affected by different types of 
artifact like central artifact. The central artifact is the vertical 
saturation artifact that occurs around the center of the 
cornea due to the back‑reflections from the corneal apex, 
which saturates the spectrometer line camera.[29] The data 
used in this work is taken from Heidelberg OCT‑spectralis 
HRA imaging system in Noor Ophthalmology Center in 
Tehran, Iran. The high‑quality of images taken from this 
system guarantees that we have no central artifact. The 
paper is organized as follows: section 2 describes the theory 
of GMM. Section 3 discusses the segmentation method of 
the mentioned corneal layers by utilizing GMM algorithm. 
Section 4 compares the results of this method against the 
corneal specialist manual segmentation and the conclusion 
is discussed in section 5.

GMM

Kim and Kang[38] explained that GMM is a method to 
estimate the probability density function  (PDF) using 
a combination of Gaussian functions. The elements of 
mixtures are defined as D‑dimensional Gaussians and the 
equation of a D‑dimensional Gaussian distribution is given 
below:
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μi, pi and Σ i  are parameters of GMM and we show this 
model with λ. We formulate GMM as a maximum likelihood 
problem and estimate its parameters by utilizing 
expectation‑maximization  (EM) algorithm. EM algorithm 
starts from an initial λ and estimates the new one λ  as:

p x p x| | ( ) ≥ ( ) � (4)

This procedure is repeated until converging to a good 
model. The number of EM iterations can be control by 
selecting a threshold. One way to select a threshold is 
that, GMM going on until the difference between p x|( )  
and p x|λ( )  be smaller than a value or we can directly 
choose the number of EM iterations as an input for GMM. 

Figure 1: Examples of corneal images of varying signal‑to‑noise ratio (SNR) 
used in this study.  (a) A high SNR corneal image.  (b) A low‑SNR corneal 
image
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We use the following equations in each iteration of EM 
algorithm to estimate the parameters  (for T training 
vectors):
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In fact, EM algorithm reaches its goal during two 
steps: Expectation step (E) and maximization step (M). Step 
E corrects the PDF and step M maximize it in each iteration. 
p i xt( | , )
���

λ  is the posterior probability for class i in step E 
and is defined as below:
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As mentioned, 


x  is a D‑dimensional vector of features of 
the input image. Various features can be considered for 
the image like pixel location for 3D plots, RGB space of 
the image, Luv space of the image and Lab space of the 
image.

GMM is an automatic method to segment an image based 
on its statistical properties. This method fits a number 
of Gaussian functions to the distribution of the image. 
Since our images often have the same distribution, it can 
show a good performance in our work. In this way that 
we can localize the object in the next image by tracking 
its distribution. GMM has also been used in OCT image 
processing by.[39,40] Furthermore, this method has also been 
utilized in segmentation of fluorescein angiograms in.[41] So 
we can say that GMM is capable for segmentation in our 
work.

THE PROPOSED METHOD

Epithelium, Bowman and endothelium are three important 
corneal layers [Figure 2].

In this section, the proposed method for segmenting 
the boundaries of epithelium, Bowman and endothelium 
layers are explained. At first, the method for segmentation 
of the boundaries of epithelium and endothelium layers 
is explained. Then we elaborate how to extrapolate 
the curves to low‑SNR regions. Then, segmenting the 
boundary of Bowman layer and contrast enhancement of 
the Bowman boundary is described in the last part of this 
section.

Segmenting the Boundaries of Epithelium and 
Endothelium Layers

To obtain these two boundaries, we first apply a low‑pass 
filter through a  (1 × 30) Gaussian kernel  (sigma of 10) to 
minimize the effect of noise [Figure 3a]. The selected kernel 
size leads to uniformity of the image noise and prevents 
from segmentation of whatever has been affected by 
noise  (as a distinct element). Then we give the denoised 
image to the GMM algorithm and determine the number 
of classes to be two. The final result of GMM  [Figure 3b] 
shows the approximate location of these two boundaries. 
As it can be seen in Figure  3c, the detected boundary is 
not exactly on the border of epithelium. To overcome this 
problem, we can use the horizontal gradient of the original 
image and with the help of the current boundary, we look 
for the lowest gradient in a small neighborhood [Figure 4].

Extrapolation to Low SNR Regions

Some images have low‑SNR areas in two peripheral 
regions and the obtained boundaries in these regions are 
not accurate enough. Therefore, we localize the low‑SNR 
regions and extrapolate the central curve in such areas. For 
this purpose, we use the second derivative of endothelium 
boundary [Figure 5a] and search around the middle of this 
vector to find values below zero. It indicates that there is a 
positive inflection in the second derivative, which should 
not occur for normal cornea. The location of this positive 
inflection reveals the low‑SNR areas of the image. In this 
step, a parabolic curve can be fitted to the estimated 
boundary with finding the coefficients of polynomial of 
degree 4 for the correct estimated border, in a least squares 
sense. Suppose that we have m pairs of data:

x y i mi i, , , ,( ) = …� 1

Consider the fit function with three basic functions:

Figure  2: An example of segmented corneal image. The epithelium 
boundary (cyan), the Bowman boundary  (red), and the endothelium 
boundary (green)
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The least square solution gives the c j  that minimize  r 2. 
The over determined system is as below:
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As mentioned above, we can recognize the starting points 
of the low‑SNR regions using second derivative and 

extrapolation will be done using a degree 4 polynomial 
[Figure  5b]. To create smooth junctions in the final 
boundary, smoothing operators can then be used. For 
this purpose, a local regression using weighted linear 
least squares that assigns lower weight to outliers can be 
used. To find low‑SNR regions for epithelium, we use the 
unsigned second derivative of epithelium boundary and 
search for values greater than a threshold. This threshold 
is 0.0045 and the value is determined based on trial and 
error.

Segmenting the Boundary of Bowman Layer

For this purpose, we first enhance this boundary because in 
most cases it is very weak.

Contrast Enhancement to have Detectable 
Bowman Boundary
For this purpose, we modified a method proposed by 
Esmaeili et  al.[42] This algorithm corrects non‑uniform 
background and increases the contrast of Bowman boundary 
in Figure  6a. During this process each pixel f  (i, j) of the 
image is adjusted as follows:
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where f
mean

, f i j
min

,( )  and f i j
max

,( )  are, respectively, the 
mean, minimum and maximum intensity values of the image 
within a window W of size 10 × 10 [Figure 6b].

After enhancement, we obtain the horizontal edge response 
to Sobel gradient of the enhanced image. We use this 
image as an input of GMM because in this case, the layer 
distinguishes itself from other parts of the image [Figure 7a]. 
Figure 7b is the output of GMM and using this image we 
can localize the Bowman boundary. Since we have obtained 
the epithelium boundary  (as described in Epithelium and 
Endothelium segmentation part), the Bowman boundary is 
achievable by tracing epithelium toward down to get a white 
to black change in brightness. The middle of the Bowman 
boundary will be detected exactly, but the periphery may 
be affected by the noise and would create outliers. To 
overcome this problem, we find the outliers like previously 

Figure 4: Epithelium boundary after correction

Figure  3: Segmentation of epithelium and endothelium boundaries. 
(a) Reducing the speckle noise with a Gaussian low‑pass filter. This image 
is used as an input for Gaussian mixture model (GMM). (b) GMM output. 
This is the image which is used for segmentation of desirable boundaries. 
(c) Segmentation result (before correction)
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mentioned method for low‑SNR areas in epithelium, and 
then extrapolate the curve to the outside of these points. 
The result is shown in Figure 7c.

EXPERIMENTAL RESULTS

In this study, we used corneal OCT images taken from 
10 normal subjects. Each subject includes 40 slices of the 
whole cornea. The algorithm is tested on images taken 
from Heidelberg OCT‑spectralis HRA imaging system in 
Noor Ophthalmology Center in Tehran, Iran. This system 
has a pre‑processing stage. To evaluate the robustness 
and accuracy of the proposed algorithm, we use manual 
segmentation by two corneal specialists. For this purpose, 
20 images selected randomly from all subjects. We 
calculated the unsigned and signed error of this algorithm 
against manual results.

The boundaries were segmented automatically using 
a MATLAB  (R2011a) implementation of our algorithm. 
A computer with Microsoft Windows 7 x32 edition, Intel 
Core i5 central processing unit at 2.5 GHz, 6 GB random 
access memory was used for the processing. The average 
computation time was 7.99 s/image. The mean and 
standard deviation of unsigned and signed error were 
calculated and are shown in Tables 1 and 2, respectively. 
The mean and standard deviation of unsigned error is 
defined as follows:

Table 1: Mean and SD of unsigned error in corneal layer 
boundary segmentation between automatic and manual 
results and among two corneal specialists
Corneal layer 
boundary

Comparison of 
automatic and manual 
expert segmentation

Column I (pixels)

Comparison of two 
manual 
graders

Column II (pixels)

Mean difference SD Mean difference SD

Epithelium boundary 
(before correction)

1.531 0.703

Epithelium boundary 
(after correction)

0.332 0.230 0.330 0.303

Bowman boundary 0.421 0.321 0.398 0.301
Endothelium boundary 0.795 0.748 0.534 0.542
Each pixel is approximately 13.3 µm in the cornea. SD – Standard deviation

Table 2: Mean and SD of signed error in corneal layer 
boundary segmentation between automatic and manual 
segmentation and among two corneal specialists
Corneal layer 
boundary

Comparison of 
automatic and manual 
expert segmentation

Column I (pixels)

Comparison graders 
of two 
manual

Column II (pixels)

Mean difference SD Mean difference SD

Epithelium boundary 
(before correction)

1.530 0.703

Epithelium boundary 
(after correction)

0.011 0.373 −0.104 0.412

Bowman boundary 0.177 0.423 0.015 0.432
Endothelium boundary 0.044 0.893 0.103 0.704
Each pixel is approximately 13.3 µm in the cornea. SD – Standard deviation

Figure 7: Segmentation of Bowman layer boundary. (a) Horizontal gradient 
of the enhanced image.  (b) Gaussian mixture model output to the input 
of (a). (c) Segmentation result

c

b

a

Figure  6: Contrast enhancement of original image for segmentation of 
Bowman boundary. (a) Original image. (b) The enhanced image

b

a

Figure 5: Extrapolation to low‑signal‑to‑noise ratio (SNR) regions. (a) The 
second derivative plot of endothelium layer boundary to detect low‑SNR 
regions of this boundary. (b) Extrapolation result

b

a
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where m
error

 and σ
error

 are the mean and standard deviation 
of unsigned error between manual and automatic method, 
n is the number of points to calculate the layer error (width 
of the image), b

manual
 and b

auto
 are the boundary layers which 

are obtained manually and automatically, respectively. The 
mean value of manual segmentation by two independent 
corneal specialists is considered as b

manual
 in above 

equations and the inter‑observer errors are also provided 
in Tables  1  and 2. The direct comparison of these values 
with the reported errors shows that the performance of 
the algorithm is acceptable in comparison with manual 
segmentation. Furthermore, the visual results of automatic 
segmentation of the corneal layers using proposed algorithm 
in this study for sample images are shown in Figure 8.

According to the possibility of comparing our results with 
other methods, it should be mentioned that the only available 
dataset for corneal OCT is provided by.[29] Unfortunately, the 
images in[29] have single Gaussian distribution  [Figure  9] 
and the proposed method is based on classification by GMM 
method  (which needs multiple Gaussians). Therefore, the 
proposed method is not able to classify these images correctly.

To demonstrate the robustness of our algorithm against 
noise, we chose a raw image and add a Gaussian white 
noise with zero mean and variance as below:

v
(I)

=
variance

10
( )
SNR

10

� (16)

Figure 9: (a) An example of corneal optical coherence tomography (OCT) 
image used in our work.  (b) The histogram of  (a) which includes 
multiple Gaussians.  (c) An example of corneal OCT image used by 
Larocca  et  al  (d) The histogram of  (c) which includes a single Gaussian 
distribution

d

c

b

a

Figure 8: Examples of segmented corneal images, in which the cyan curve is 
the epithelium boundary, the red curve is Bowman boundary, and the green 
curve is the endothelium boundary

b
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where v is the Gaussian white noise variance and I is the 
normalized image. We use MATLAB toolbox and imnoise 
command to add noise with three different SNRs to the 
image. It should be considered that we don’t have any ideal 
or noise less image and we can only compare our results 
in the presence of more added noise. Figure  10a and b 
shows the original image and its noisy image with SNR 4, 
respectively. Figure 10c shows the layers which obtained for 
the noisy image with SNR 4. The mean and standard deviation 
of unsigned and signed error for three different SNRs were 
calculated and are shown in Tables  3 and 4. As can be 
observed there are minimum differences from the obtained 
error between the noisy images and the original image that 
demonstrate the robustness of our algorithm against noise.

CONCLUSION AND FUTURE WORK

In this paper, we proposed an automatic method for 
segmentation of three important corneal layers of 
normal eyes using OCT devices. Our approach has a good 
performance in noisy images and is accurate in low‑SNR 
regions. The obtained results are very close to the results 
of the specialists.

Table 3: Mean and SD of unsigned error for the original and its noisy images with different SNRs
Corneal image 
type

Epithelium 
Mean�error

Stand d�deviation�errorar






Bowman 
Mean�error

Standard�deviation�error






Endothelium 
Mean�error

Standard�deviation�error






Original (free noise) Mean=0.3471
Std=0.2396

Mean=0.5231
Std=0.2582

Mean=0.4359
Std=0.2561

Noisy (SNR 6) Mean=0.3414
Std=0.2398

Mean=0.5264
Std=0.3749

Mean=0.5860
Std=0.3238

Noisy (SNR 5) Mean=0.3456
Std=0.2488

Mean=0.5995
Std=0.3047

Mean=0.6143
Std=0.2959

Noisy (SNR 4) Mean=0.3409
Std=0.2190

Mean=0.6448
Std=0.3250

Mean=0.8438
Std=0.5824

SD – Standard deviation; SNR – Signal‑to‑noise ratio

Table 4: Mean and standard deviation of signed error for the original and its noisy images with different SNRs
Corneal image 
type

Epithelium 
Mean�error

Standard�deviation�error






Bowman 
Mean�error

Standard�deviation�error






Endothelium

 

Mean�error
Standard�deviation�error







Original (free noise) Mean=0.1827
Std=0.3804

Mean=0.5007
Std=0.2994

Mean=0.4001
Std=0.3091

Noisy (SNR 6) Mean=0.1840
Std=0.3746

Mean=0.5137
Std=0.3785

Mean=0.5833
Std=0.3286

Noisy (SNR 5) Mean=0.2055
Std=0.3732

Mean=0.5900
Std=0.3229

Mean=0.6454
Std=0.3740

Noisy (SNR 4) Mean=0.2615
Std=0.3718

Mean=0.6229
Std=0.3652

Mean=0.8422
Std=0.5847

SD – Standard deviation; SNR – Signal‑to‑noise ratio

The large volume of corneal images in the clinics makes 
manual segmentation time‑consuming impractical and 
subjective. However, the proposed method does not require 

Figure  10: Evaluation of the noise effect on the segmentation of the 
boundaries of corneal layers. (a) The original image of cornea which is high 
signal‑to‑noise ratio (SNR) (raw image). (b) The noisy image of (a) with SNR 
4. (c) The boundaries of cornea which is shown in (b)

b

a

c
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any user interaction, saves time and produces accurate 
boundary tracing.

In this paper the standard form of GMM was used for 
segmentation. More accurate GMMs which are able to 
better capture the statistical properties of data  (such 
as proposed mixture model in[43] which employs a local 
bivariate circular symmetric Laplacian mixture model) can 
improve the results, also may result in removing the noise 
reduction step in our algorithm by proposing the noise in 
the initial mixture model of OCT data.

The 3D analysis can be a valuable step to evaluate changes 
in corneal volume, as future work.
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