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INTRODUCTION

Vessel extraction is a critical task in clinical practice. Correct 
assessment, especially accurate visualization and quantification 
of blood vessels traced in angiograms plays a significant role 
in a number of clinical diagnostic procedures, e.g. diagnosis 
relied on vessel width, reflectivity, tortuosity and abnormal 
branching. For example, appearance of vessels of a certain 
width in the heart may reveal the signs of stenoses. Grading 
of stenoses is of importance to diagnose the extent of vascular 
disease which determines the treatment therapy.[1,2] Although 
it is possible for medical experts to delineate vessels, but 
manual delineation of the vasculature becomes tedious or 
even impossible when the number of vessels in an image is 
large, or when a large number of images have to be inspected. 
Therefore, the development of automatic and accurate 
vessel‑tree reconstruction from angiograms is highly desirable. 
In recent years, this has been a challenging task. The key fact 
is that vessels cannot be characterized uniformly. Since the 
blood, either by itself or by the contrast agent injected into it, 
is responsible for the vessel contrast to the background, vessels 
with larger widths usually have high contrast while smaller 
ones resemble the background. Many segmentation methods 
have been used to visualize the blood vessel structures in the 
human body. A review of vessel extraction techniques and 
algorithms can be found in.[3] A combination of Hessian matrix 
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multi‑scale filtering and region‑growing is used to segment 
the coronary artery in angiograms.[4] An automatic technique, 
which provides correspondence between extracted vessels 
and pre‑procedural vessels, improves the quality of disease 
diagnosis using multiple images and follow‑up and provides 
important information for non‑rigid image registration.[5] 
A segmentation method based on fusion algorithm is proposed 
in.[6] In this method, firstly, the coronary arteries are extracted by 
using the maximizing entropy segmentation method based 
on top‑hat. Then the coronary arteries are extracted again by 
using the maximizing entropy segmentation method based on 
Gaussian filter. Finally, the last segmentation result is the image 
obtained by fusing two extracted coronary arteries images. 
A region‑growing method is proposed for vessel segmentation 
in angiography images. The method consists of two parts: The 
feature map extraction based on a novel vesselness function; 
and the segmentation process which includes automatic 
seed‑point selection, main branch segmentation and vessel 
detail repair. Both the greyscale and spatial information 
are extracted for segmentation based on region growing 
algorithm.[7] Furthermore, a classification approach is proposed 
to distinguish between the coronary arteries and background 
images using the shape context descriptor and the learning 
framework of spatial pyramid kernels.[8] In this paper, we focus 
on the new development of angiograms segmentation based 
on an active contour model.
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Active contour models are among the most successful 
image segmentation techniques in clinical applications. 
Active contours may be categorized as edge based[9‑11] or 
region based.[12‑15]

In region‑based models, the statistical information inside and 
outside the contour are used to control the evolution. They 
are less sensitive to noise and are more effective for images 
with weak edges or images without edges. However, popular 
region‑based active contour models[12,13] and[14] tend to rely on 
intensity homogeneity of each region to be segmented. For 
example, the popular piecewise constant models are based 
on the assumption that image intensities are statistically 
homogeneous (roughly constant) in each region.

In fact, intensity inhomogeneity often occurs in real images 
from different modalities. Generally for medical images, 
inhomogeneity is usually due to technical limitations or 
artifacts introduced by the object being imaged. In a study 
done by Li et al.,[16] Zhang et al.[17] and Wang et al.[18] proposed 
local binary fitting (LBF), local image fitting (LIF) and local 
Gaussian distribution (LGD) fitting models, respectively, 
capable to segment images with intensity inhomogeneity 
by embedding the local image information. When intensity 
inhomogeneity occurs in angiograms, each of these models 
can be used to segment the vessels. LIF model is more 
computationally efficient than LBF, but it cannot accurately 
extract vessels. Therefore, LBF model is more suitable for 
vessel segmentation in angiograms but it may fail to extract 
weak vessels.

In this paper, we propose a new approach for vessel extraction 
using LBF model by defining a novel vesselness‑based term 
which segments low contrast vessels and omits non‑vessel 
structures. The results are compared with the 4 active 
contour models.[12,16‑18]

The remainder of this paper is organized as follows: In 
section 2, the LBF model is described. The proposed method 
is stated in section 3. Experimental results on synthetic 
images and real angiograms are presented in section 4 and 
section 5 is devoted to conclusion.

LBF MODEL

Let   R2 be the image domain and I:  → R be a given 
gray level image. To segment the images with intensity 
inhomogeneity, in[16] a region‑based model using intensity 
information in local regions at a controllable scale is proposed. 
For an image, I (x, y) on the image domain Ω, the algorithm 
proposes to minimize the following region‑scalable fitting 
energy of a contour C:
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where, P = (x, y), l1 and l2 are positive constants, C is the 
contour, f1(P) and f2(P) are two values that approximate 
image intensities in Ω1 and Ω2 (regions inside and outside 
the contour C, respectively), Ks is a Gaussian kernel with 
a standard deviation s. I (Q) is the intensity of pixels in a 
window around P.

The energy in (1) is incorporated into a level set formulation. 
In the level set method, the curve C   is represented by 
the zero level set of Lipschitz function:   R. Minimizing 
the energy functional F1 with respect to  using the gradient 
descent method leads to:
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In practice, the Heaviside function in the above energy 
functional is approximated by a smooth function defined by
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As proposed in,[11] in order to maintain the regularity of 
the level set function a regularization term is incorporated 
into (2). Moreover, to regularize the zero level contour, the 
arc length term is also added to the energy function (2). 
After all, the level set evolution equation becomes:
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LBF model of (7) can well handle image with intensity 
inhomogeneity and is proper for angiograms segmentation.

Since the standard deviation, s of the kernel controls 
the region‑scalability,[16] for better results in angiograms, 
s should be chosen according to size of vessels. In these 
images, a vessel tree is composed of two main parts: 
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The wide vessels and the thin ones. However in LBF 
model, only one scale parameter was used and hence that 
s should be proportional to wide or thin vessels. If s is 
appropriate for small vessels, it may cause undesirable 
results regarding low contrast vessels. Therefore, s should 
be chosen proportional to wide vessels, making thin ones 
non‑extractable. On the other hand, the statistical properties 
of these vessels also are different and the application of the 
model in (7) alone fails to extract all vessels. To address 
these problems, we add an energy term to LBF model as 
described in the following.

PROPOSED METHOD

Vesselness

In general, in the literature vessel enhancement in 
angiograms are Hessian‑based filters, which are found to be 
sensitive to noise and sometimes give discontinued vessels 
due to junction suppression. To overcome these drawbacks, 
Truc et al.[19] proposed the use of line‑like directional features 
of the image to obtain more precise Hessian analysis in 
noisy environments and to avoid junction suppression. The 
features are extracted by decimation‑free directional filter 
bank (DDFB) which decomposed the input image to a set of 
directional images. Thus, it can correctly reveal small and 
thin vessels and yield the continuous vessel tree. Accordingly, 
in this paper we use this method to obtain enhanced image 
D (Q) needed in (10) except that we proposed a simple and 
fast method of the filter bank construction named fast 
directional filter bank (FDFB) presented in the following.

FDFB
In order to construct the directional filter bank (DFB) 
or DDFB,[19] it takes three stages. Through these stages, 
we have to modulate, down sample, resample and 
post‑sample a pair of diamond‑shaped like passband filters 
in DFB (or hourglass‑shaped like passbands filters in DDFB). 
However in the FDFB directly and easily we partition the 
frequency domain using one stage division algorithm.

To achieve FDFB, we consider the frequency domain in polar 
co‑ordinates as shown in Figure 1. It is supposed that the 
spectrum is divided into n parts, the i’th part is between i,min 

and i,max and the center of the i’th part is

θ
θ θ

i
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A mathematical description of FDFB for 2k DFBs is given 
by (9):
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In which, u and v are frequency, n ∈ {1, 2,…, 2k}, 

r u v= +2 2  and  = arctan (/). The ultimate partitioning 
of frequency domain in FDFB is equivalent to the output 
partitioning of DDFB, but it competes with less 
computational complexity.

One major problem with DDFB and FDFB is the inevitable 
ringing artifact. One way to remove ringing artifact is to 
smooth the filters transition band with a proper low pass 
Gaussian filter. Smoothed filter bank for k = 3 is shown in 
Figure 2. This filter bank partitions the frequency domain 
into eight sub‑bands. In order to prevent aliasing, the input 
image is zero‑padded to two times of its size. Since the 
angiographic images are square, we suppose the input 
image is M × M. Hence, the frequency representation will 
be of the size 2M × 2M. The result of vessel enhancement 
in angiograms by Hessian‑based filters is shown in Figure 3. 
As it demonstrates, some non‑vessel parts of the image are 
enhanced.

Two‑stage Level Set Formulation

Our method combines the two energy function based on (1) 
as:
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Figure 1: Consideration of frequency domain in polar coordinates
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In the first term of (10), I (Q) is the intensity of pixels in 
the original image and s0 is proportional to width of 
wide vessels. In the second term D (Q) is the intensity of 
pixels in enhanced image obtained by FDFB‑based method 
(as presented in section 3.1) and includes the vessel 
structure. d1 (P) and d2 (P) are two values that approximate 
enhanced image intensities in Ω1 and Ω2 (regions inside and 
outside the contour C, respectively) and s1 is proportional 
to the width of thin vessels.

Finally, it is proposed to minimize the energy functional,

W F f f F d dI I D D( ) ( ( , , ) ( )) ( , , ) ( )φ α φ υϑ φ α φ µρ φ= + + +1 2 1 2  (13)

Where α I, α D,  , m are regulating parameters and ρ (\varphi) 
is a level set regularization term as presented in[11]

ρ φ φ( ) ( ( ) )= ∇∫ P dP-1 2  (14)

Also, the arc length term is:
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Let H be smoothed Heaviside function as defined in (5), 
then the proposed energy function W () can be rewritten 
as (16)

W
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where M H1
ε
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According to[11] the functions f1 (P) and f2 (P) satisfy the 
following Euler–Lagrange equations:
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And d1 (P) and d2 (P) satisfy the following Euler–Lagrange 
equations:
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By keeping f1 (P), f2 (P) and d1 (P), d1 (P) fixed and minimizing 
the energy function W (), the level set evolution equation 
becomes:

Figure 3: The result of vessel enhancement in angiograms by Hessian-based 
filters

Figure 2: Partitioning of frequency domain, after smoothing filter is applied
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IMPLEMENTATION AND 
EXPERIMENTAL RESULTS

Implementation

In a Core2 Duo CPU, 2.2 GHz and 4 GB RAM, it takes about 
18 s for DDFB to create filter bank and for FDFB it takes 
about 3 s.

In our approach, the level set function (21) was evaluated 
in two stages. In the first stage, in order to propagate the 
contour to the main vessels, αI, αD are set to one and zero, 
respectively and l1= l2 = 1, m =1,  =65, ∆t = 0.1, the 
same as.[16] In the second stage to segment thin vessels, αI, 
αD are set to zero and 1, respectively and ld1=

 ld2 = 1. It 
should be mentioned that the second stage is only effective 
in the narrowband case.

In the first term of (21), s0 is selected according to the 
width of main vessels and in the second term, s1 is selected 
proportional to width of thinner vessels. For angiograms 
s0 = 3, s1 = 1 is desirable.

RESULTS

To evaluate the result of the proposed algorithm for vessel 
segmentation in angiograms, it has been tested with 
synthetic and real images.

Figure 4 shows two synthetic images corrupted by intensity 
inhomogeneity. The image in Figure 4a is a synthetic image 
convolved with a Gaussian function to model the real angiogram. 
The results of the original image segmentation by LBF model 
and our method are shown in Figure 4b and c, respectively.

The image in Figure 4d is generated by adding Gaussian 
noise with s = 0.005 to Figure 4a. The segmentation result 
for noisy image by LBF model and our method are shown at 
Figure 4e and f, respectively.

It is apparent that our algorithm segments the vessels 
more precisely than LBF in noisy images. Also, the results 
of our algorithm for the original image and the image 
with a high level of noise are very close as shown in 
Figure 4e.

Figure 5 compares the performance of our proposed 
algorithm on two real coronary X‑ray angiograms. In 
the left most column, the original images are of size 
300 × 300. The second and third columns show the 
results of converged contour of LBF and our method 
for real coronary X‑ray angiograms. The fourth and 
fifth columns show the results of segmentation of LBF 
and proposed method respectively. It is clear that our 
algorithm has been able to extract vessels with weak 
boundaries more precisely. In addition, our algorithm 
demonstrates the width of the main vessels more 
accurate than that of LBF.

As shown in Figure 6, the results of LBF and our method 
on another angiogram are shown. Our method extracts 
the vessels in angiograms with a complex background and 
noise, accurately.

In order to compare our results with the results of 
the four above mentioned active contour models, we 
randomly selected 15 X‑ray coronary angiograms obtained 
in Sina Heart Hospital, Isfahan, Iran. These images were 
segmented manually by an expert at this center as a gold 
standard.

For performance comparison, we have selected the 
segmentation accuracy (ACC) measure, determined by true 
positive fraction (TPF) and the false positive fraction (FPF). 
The parameter TPF, also called “sensitivity,” is the ratio of 
the number of pixels correctly classified as vessel pixels true 
positive (TP), to the total number of vessel pixels in the gold 
standard segmentation,

TPF=
TP
P

=
TP

TP+FN
=sensitivity

where FN is the number of pixels incorrectly classified as 
non‑vessel pixels. The ideal amount of TPF is equal to 1.The 
parameter FPF is the number of pixels incorrectly classified 
as vessel pixels false positive, divided by the total number 
of non‑vessel pixels in the gold standard:

FPF=
FP
N

=
FP

FP+TN
=1-specificity

Here, TN is the number of pixels correctly classified as 
non‑vessel pixels. The ideal amount of TPF is equal to 0. 
The ACC for one image is the ratio of the total number of 
correctly classified points (sum of TPs and true negatives) by 
the total number of points in the image.
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Figure 5: The results of local binary fitting (LBF) model and our method for coronary X-ray angiograms. Original images and initial contours (first column), final 
contour by LBF method (second column), our method (third column), segmentation result by LBF method (forth column) and by our method (fifth column)

Figure 4: The results of local binary fitting (LBF) and our method on synthetic image with and without noise: (a and d) Initial contour and the original image 
(b and c) Final contour of clean image by LBF model and our method, respectively (e and f) Final contour of noisy image by LBF model and our method, 
respectively (g) Cross-section of the original image (blue line), noisy image (green line) and our method (red line)

d

c

g

b

f

a

e



Journal of Medical Signals & Sensors

156

Dehkordi, et al.: Vesselness‑guided active contour

Vol 4  | Issue 2  |  Apr‑Jun 2014

ACC=
TP+TN
P+N

=
TP+TN

TP+FN+FP+TN

The ideal amount of ACC is also equal to 1.

Table 1 shows the average of the ACC measurements for all 
15 angiograms for our method, LBF, LIF, LGD and Chan‑Vese 
models. It is apparent that the performance of our method 
is better than the other methods.

CONCLUSIONS

In this paper, we have presented a new active contour 
model for vessel segmentation presented in (21). In the 
level set formulation, the new approach combines both 
intensity information in regions with a controllable scale 
and information of the image enhanced by FDFB‑based 
method. The first term in (21) extracts the main vessels 
using LBF model, by incorporating the vessel structure 
while the second term extracts thin vessels. Applying LBF 
model alone fails to extract all vessels. Also, if the first 
term is omitted, the vesselness‑based term might segment 
non‑vessel structures. Therefore, a combination of the two 
terms leads to a better result than using each term alone. 
The model is efficient for the segmentation of vessels as well 
as other line‑like structures. In conclusion, the proposed 
method is a more accurate candidate for segmentation 
coronary vessels used in clinical tasks.
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