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Introduction

Deoxyribonucleic Acid  (DNA) is of the most important 
chemical compounds in living cells, bacteria, and some 
viruses.[1] It is composed of four types of different 
nucleotides, namely adenine (A), cytosine (C), guanine (G), 
and thymine  (T).[2] However, only some specific areas of 
the DNA molecule, which called as genes, carry the coding 
information for protein synthesis. In eukaryotic cells, the 
DNA is divided into genes and inter‑genic spaces. Genes 
are further divided into exon and intron, which is shown 
in Figure  1. Genes are responsible for protein synthesis; 
therefore, they are called protein‑coding regions because 
they carry the necessary information for protein coding.[3‑5] 
Protein‑coding regions exhibit a period‑3 behavior due to 
the codon bias involved in the translation process. This 
phenomenon caused background noise, which leads to 
more difficult of exon finding in DNA sequences.[6,7]

Nowadays, there are many digital signal processing  (DSP) 
methods presented in literatures to identify the protein 
coding regions and also reduce the background noise 
in DNA sequences, which are based on Fourier spectral. In 
Tiwari et  al,[8] Fourier transform is used for this purpose. 
In this way, a fixed‑length window is selected and moved 
on the numerical sequence. Then, the exonic regions are 

A B S T R A C T

The main purpose of this paper is to introduce a fast method for gene prediction in DNA sequences based on the period‑3 property in 
exons. First, the symbolic DNA sequences were converted to digital signal using the electron ion interaction potential method. Then, 
to reduce the effect of background noise in the period‑3 spectrum, we used the discrete wavelet transform at three levels and applied 
it on the input digital signal. Finally, the Goertzel algorithm was used to extract period‑3 components in the filtered DNA sequence. 
The proposed algorithm leads to decrease the computational complexity and hence, increases the speed of the process. Detection of 
small size exons in DNA sequences, exactly, is another advantage of the algorithm. The proposed algorithm ability in exon prediction 
was compared with several existing methods at the nucleotide level using: (i) specificity ‑ sensitivity values; (ii) receiver operating 
curves (ROC); and (iii) area under ROC curve. Simulation results confirmed that the proposed method can be used as a promising 
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determined by calculating the power spectrum. In our 
previous work,[9] the notch filter with the central frequency 
of 2π/3 was used in order to remove the background 
noise. First, the DNA sequence is passed through a 
notch filter and then a sliding windowed discrete Fourier 
transform  (DFT) is applied on the filtered sequence. In 
Saberkari et  al,[10] a windowless technique based on the 
Z‑curve was implemented to identify gene islands in total 
DNA sequence which called cumulative GC‑Profile method. 
The main characteristic of this method is that the resolution 
of the algorithm output in displaying the genomic GC 
content is high since no sliding window is used, but the 
computational complexity of this method is also high. In 
Deng et al,[11] an appropriate method is proposed to predict 
the protein regions by combining the DFT and continues 
wavelet transform (CWT). CWT leads to eliminate the high 
frequency noise and, therefore, improves the accuracy of 
the prediction. In Datta et al,[12] a new algorithm is proposed 
based on Fourier transform using Bartlett window to 
suppress the non‑exonic regions. In Akhtar et al,[13] the time 
domain algorithms have been used to determine the coding 
regions in DNA sequences. Adaptive filters[14] are one of the 
best tools for prediction tasks. In Baoshan et  al,[15,16] two 
adaptive filtering approaches based on Kalman filter and 
least mean squares  (LMS) are proposed for human gene 
identification. However, the major problem with LMS is that 
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the convergence behavior of the algorithm is slow, which 
leads to high computational complexity. A  parametric 
method based on autoregressive  (AR) model proposed in 
Chakravarthy et al.,[17] for spectral estimation. The AR model 
has the advantage over the DFT that it works with smaller 
window sizes and, thus, shorter sequences.

In this paper, a fast method based on DWT and Goertzel 
algorithm is proposed to determine the location of exons 
in DNA sequences. The proposed algorithm improves 
the accuracy of the prediction, especially in detection of 
the small size exons. The rest of the paper is organized 
as follows: Section II describes the proposed algorithm 
in details. The evaluation criteria at nucleonic level are 
expressed in Section III. Section IV shows simulation results 
using Genbank database. Finally, Section V concludes the 
experiments and algorithms.

The proposed algorithm

Figure 2 shows block diagram of the proposed algorithm 
to identify protein coding regions. The main steps of the 
algorithm are as follows that will be discussed in more 
details in this section.
•	 Numerical mapping of DNA sequence using EIIP method,
•	 Using DWT to remove the noise from the numerical 

sequence,
•	 Choosing Blackman window with the length 351 and 

sliding it on the filtered sequence, and
•	 Using Goertzel algorithm to extract the period‑3 

components.

DNA Numerical Representation

Converting the DNA sequences into digital signals[18,19] 
opens the possibility to apply signal processing methods 
for analyzing genomic data and reveals features of 
chromosomes. The genomic signal approach has already 
proven its potential in revealing large scale features of DNA 
sequences maintained over distance of 106-108 base pairs, 
including both coding and non‑coding regions, at the scale 
of whole genomes or chromosomes.[20‑22]

There are many methods for converting the DNA sequences 
into numerical signals like VOSS mapping,[6] Z‑curve,[23] and 

Figure 1: Exon/Intron regions for eukaryotic DNA[2]

Figure 2: Block diagram of the proposed algorithm
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•	 Applying of DSP methods such as DFT on the signal
•	 Prediction of the protein coding regions.

Figure 4a and b show the result of applying DWT algorithm 
on the sequence F56F11.4. The power spectrum of the signal 
is smoothed by removing the high frequency components. 
Hence, the noise effect is decreased, which leads to improve 
the accuracy of identification task.

Choosing Blackman Window and Sliding it on the 
Estimated Sequence

In DNA sequence analysis, it is important to make the 
window size sufficiently large. In this paper, like many 
other researches such as Tiwari et  al.,[8] and Akhtar 
et al.,[13] we have taken the window length equal to 351. 
Since there are very few intron‑containing genes in these 
sequences, open reading frames  (ORFs) of length less 
than 300 bp are not frequently encountered. A window 
length in the range of 250‑400 gives the similar results. 
The windows of length less than 250 increase the noise 
level resulting in unacceptable statistics, while those 
greater than 400 tend to miss the ORFs due to numerous 
overlaps.[8]

In the proposed algorithm, we have employed a Blackman 
window to segment the filtered sequence. The Blackman 
window gives high weight to the codon positions residing 
in center of window and much less weight to the codons 
near the window boundaries. Hence, the noise cancelling 
level in Blackman window is higher than the other windows. 
The impulse response of the FIR windows is depicted in 
Figure 5. As can be seen, Blackman window has the highest 
amount of attenuation between the other windows. So, 
the background noise is more suppressed by Blackman 
window.

Goertzel Algorithm

The Goertzel algorithm is a digital signal processing 
technique that provides a means for efficient evaluation 
of individual terms of DFT, thus making it useful in 

EIIP.[24] In VOSS technique, the background noise is more 
dominant because the magnitude for each base is the 
same (i.e. 1 represents the presence of the nucleotide and 
0 for its absence). The Z‑curve technique is a 3‑D curve 
for representing the DNA sequence. In this method, the 
dimension is reduced by projecting each 3‑D curve into 
x‑y axes, which leads to more computational complexity. 
In this paper, we have used EIIP method to convert DNA 
sequence into numerical signal. This approach allows DNA 
representations with either one or four sequence  (s). It 
can be noticed that the EIIP representation has a different 
magnitude for each base and the distances among them 
are unequal. In this method, the electron‑ion‑interaction 
potential associated with each nucleotide is used for 
mapping of the DNA sequence. The EIIP  values for the 
nucleotides are: A  = 0.1260, G  =  0.0806, T  =  0.1335, 
C = 0.1340.[24]

Using Discrete Wavelet Transform to Reduce the 
High Frequency Noise

In this paper, DWT is applied on the input numerical 
sequence to remove the high frequency noise and hence, 
improve the accuracy of the algorithm for exonic region 
identification. In DWT, the signal is passed first through 
the high and low pass filters, then by down‑sampling the 
filtered signal, samples are divided into two signals; high 
frequency samples (detail signals) and low frequency ones 
(approximation signals). The DNA numerical signal, x[n], is 
passed first through the high pass filter, g[n], then through 
the low pass filter, h[n]. So, we have:

s k x n .g 2k n

s k x n .h 2k n

high
n

low
n

[ ] [ ] [ ]

[ ] [ ] [ ]

= −

= −

∑
∑ � (1)

Figure  3 shows our user‑friendly package designed to 
analyze DNA sequences. This tool has been designed by 
our research group on genomic signal processing at Sahand 
University of Technology, Tabriz, Iran and consists of two 
main parts: The graphic display and the DSP tools for 
analyzing the DNA sequences. The graphic display allows 
the user to view the structure record either as a graphic 
or as a text record in txt formats. Also, it can be useful 
to search option for special patterns in the sequences (for 
example, start and stop codons in DNA sequences). The 
DSP tools are applying to DNA sequences in order to 
spectral analysis.

Briefly, there are some advantages for this tool as mentioned 
below:
•	 Loading of any DNA sequences
•	 Genomic sequence representation
•	 Conversion of the genomic sequence into digital values 

by EIIP or binary methods
•	 Search option for special patterns in the sequence

Figure 3: A view of the designed user‑friendly package for analyzing DNA 
sequences
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certain practical application, such as dual‑tone multi 
frequency  (DTMF) signals,[25] digital multi frequency  (MF) 
receiver,[26] and in a very small aperture terminal  (VSAT) 
satellite communication system.[27]

The Goertzel filter is composed of a recursive part and a 
non‑recursive part  [Figure  6]. The DFT coefficients are 
obtained as the output of the system after N iterations 
which N is the input signal length. The recursive part 
is a second‑order IIR filter (resonator) with a direct form 
structure. The resonant frequency of the first stage filter is 

set at equally spaced frequency points; that is, ω
π

k

k
N

=
2

(This value is chosen 2
3
π in this work to extract the period‑3 

components, exactly). The second stage filter can be 
observed to be an FIR filter, since its calculations do not 
use of the previous values of the output. In fact, we only 
compute the recursive part of the filter at every sample 

update and the non‑recursive part is computed only after 
the Nth time instant when the Fourier coefficients are to be 
determined.[28]

The major advantage of Goertzel algorithm is its ability 
to reduce the computational complexity relative to other 
existence methods such as DFT. This algorithm requires N 
real multiplications and a single complex multiplication to 
compute a sample. However, DFT and decimation in time FFT 
require N2 and N log2N complex multiplications, respectively.[28]

Evaluation criteria at nucleotide 
level

In order to compare accuracy of the different methods for 
protein coding regions detection, the evaluation is done 
at nucleotide level. For this purpose, we introduce some 
parameters that are listed as follows:

Figure 5: Comparison of the different FIR windows and their frequency impulse responses

Figure 4: Applying DWT to the numerical sequence.  (a) High frequency components of level 3 DWT decomposition  (detail signal).  (b) Low frequency 
components of level 3 DWT decomposition (approximation signal)

ba
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Sensitivity, Specificity, and Precision

These parameters are defined as follow according to[13] 
and:[29]

S
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=
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+ + +
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where true positive (TP) is the number of coding nucleotides 
correctly predicted as coding, false negative (FN) is the number 
of coding nucleotides predicted as non‑coding. Similarly, 
true negative (TN) is the number of non‑coding nucleotides 
correctly predicted as non‑coding, and false positive  (FP) is 
the number of non‑coding nucleotides predicted as coding.

Receiver Operating Characteristic Curves

The receiver operating characteristic  (ROC) curves were 
developed in the 1950s as a tool for evaluating prediction 
techniques based on their performance.[30] An ROC curve 
explores the effects on TP and FP as the position of an 
arbitrary decision threshold is varied. The ROC curve can 
be approximated using an exponential model as follow:[31]

y 1 e 1 2x x= −( )− + α β β
� (3)

in which, parameters a, b1 and b2 can be determined by 
minimizing the error function:

E p 1 e y1 i 2 ix x
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where p = [a b1 b2]
T and {xi, yi} are points in the ROC 

plane.

Area Under the ROC Curve

This parameter is also a good indicator of the overall 
performance of an exon‑location technique. The greater 

the AUC leads to the better performance of the tested 
algorithm.[29]

Simulation results

In order to demonstrate the performance of the methods, 
we apply them on four gene sequences; F56F11.4, 
AF009962, AF019074.1, and AJ223321 from GenBank 
database.[32] The gene sequence F56F11.4 (GenBank No. 
AF099922) is on chromosome III of Caenorhabditiselegans. 
C  elegans is a free living nematode, about 1  mm in 
length, which lives in temperate soil environment. It 
has five distinct exons, relative to nucleotide position 
7021 according to the NCBI database. These regions 
are 3156‑3267, 4756‑5085, 6342‑6605, 7693‑7872, and 
9483‑9833.[32] AF009962 is the accession number for 
single exon, which has one coding region at position 
3934‑4581. The gene sequence AF019074.1 has 
the length of 6350, which has three distinct exons, 
3101‑3187, 3761‑4574, and 5832‑6007. AJ223321.1 is 
in the HMR195 dataset. This database consists of 195 
mammalian sequences with exactly one complete either 
single‑exon or multi‑exon gene. All sequences contain 
exactly one gene, which starts with the ‘ATG’ initial 
codon and ends with a stop codon (TAA, TAG, or TGA). 
There is one coding region existed in AJ223321.1 gene 
sequence, which its location is 1196‑2764. All mentioned 
sequences are converted to numerical sequences using 
EIIP method.

In this paper, to compare the performance of the proposed 
algorithm and other tested methods, we used the 
parameters Sn, Spand P, which were described in section III. 
Amounts of these parameters achieved from equation (2). 
The amounts of TP, FP, TN, and FN are calculated by 
changing threshold level in range of 0 and 1 with small 
steps according Figure  7. In this Figure, the value of 
threshold is 0.161. It can be observed in Figure 7 that if the 
decision threshold is very high, then there will be almost 
no false positives, but it won’t be really identified many 
true positives either.

In this paper, to evaluate the performance of the proposed 
algorithm, DFT[8] and Multi‑Stage filter  (MS)[33] methods 
are implemented. Figures  8‑11a and b show results of 
implementation of these methods and the proposed 
algorithm in identifying protein coding regions in four gene 
sequences explained above. As can be seen, the accuracy of 
the DFT method for protein coding regions estimation is 
not high due to the noise associated with the original signal. 
However, the MS filter resulted a good spectral component 
compared to DFT and reduced the computational complexity. 
Also, the non‑coding regions are relatively suppressed in 
it, but this method cannot recognize the small size exonic 
regions. As shown in Figures  8‑11c, the large amount of 
noise is removed in the proposed method due to applying 

Figure 6: Filter realization of the Goertzel algorithm[28]
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Figure 7: Parameters for exon‑intron separation problem

Figure 8: Results of the algorithms for identification of the exonic regions on the gene sequence F56F11.4: (a) DFT, (b) MS‑filter, and (c) Proposed algorithm

a b

c
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the DWT, and small size of exons (For example, first exon in 
F56F11.4 gene sequence) can be identified because of using 
the Goertzel algorithm.

Table 1 shows the estimated exons by methods DFT, MS 
filter, and the proposed algorithm compared with the 
locations of exons in a sample gene sequence F56F11.4 
from NCBI database. As can be seen, the proposed 

algorithm result is better than the other methods because 
of using the Goertzel algorithm. In Table 2, the number 
of false positive nucleotides, specificity, and precision 
for specified sensitivities are presented for the proposed 
and the other tested methods. According to this table, 
the proposed algorithm has the minimum nucleotides 
incorrectly identified as exons in all four gene sequences. 
For example, in F56F11.4, at the sensitivity of 0.5, the 

Figure 9: Results of the algorithms for identification of the exonic regions on the gene sequence AF009962: (a) DFT, (b) MS‑filter, and (c) Proposed algorithm

c

ba

Figure 10: Results of the algorithms for identification of the exonic regions on the gene sequence AF019074.1:  (a) DFT,  (b) MS‑filter, and  (c) Proposed 
algorithm

c

ba



Saberkari, et al.: Exonic regions prediction in DNA sequences

Journal of Medical Signals & Sensors

146 Vol 3  | Issue 3  |  Jul-Sep 2013

number of false positives in the proposed method is 18 bp, 
while this quantity for MS filter and DFT are 1052 and 
1183, respectively. Also, the proposed algorithm shows 
relative improvement of 11.1% and 12.5% over the MS filter 

and DFT methods, respectively, in terms of the precision 
measure in the same gene sequence. Similar results of the 
proposed algorithm are apparent for the other three gene 
sequences, which are shown in Table 2.

Figure 11: Results of the algorithms for identification of the exonic regions on the gene sequence AJ223321.1: (a) DFT, (b) MS‑filter, and (c) Proposed algorithm

c

ba

Table 2: Quantitative evaluation of the algorithms using Genbank datasets
Sequence Methods Sn

10 (%) 30 (%) 50 (%)

FP (#) Sp (%) P (%) FP (#) Sp (%) P (%) FP (#) Sp (%) P (%)

F56F11.4 Proposed 0 100 90 0 100 91 18 94 94
MS‑filter 222 28 87 620 28 84 1052 29 81
DFT 180 33 88 711 27 83 1183 27 80

AF009962 Proposed 0 100 90 183 53 90 477 40 86
MS‑filter 239 21 88 1421 12 73 2467 11 60
DFT 2791 11 55 1791 10 68 2791 10 55

AF019074.1 Proposed 0 100 82 14 95 86 79 90 88
MS‑filter 24 81 83 478 40 79 1036 34 73
DFT 83 57 82 479 40 79 1177 31 71

AJ223321.1 Proposed 0 100 71 0 100 75 84 90 81
MS‑filter 2128 27 41 1660 22 44 2128 26 41
DFT 757 17 56 1468 24 48 2173 26 40

DFT – Discrete fourier transform; MS – Multistage Filter; FP – False positive; Sp – Specificity

Table 1: Comparison of the proposed algorithm and the other methods in determining protein coding regions using F56F11.4 
gene sequence
Proposed algorithm MS‑filter DFT Exon locations in NCBI # Exons

3167-3262‑ (95) 3177-3386 (209) 3167-3410 (243) 3157-3267 (110) 1
4759-5139 (380) 4749-5208 (459) 4771-5226 (455) 4756-5085 (329) 2
6326-6620 (294) 6310-6685 (375) 6278-6667 (389) 6342-6605 (263) 3
7672-7878 (206) 7708-8010 (302) 7700-7897 (197) 7693-7872 (179) 4
9502-9827 (325) 9630-9958 (328) 9608-10028 (420) 9483-9833 (350) 5
DFT – Discrete fourier transform; MS – Multistage Filter; NCBI – National Center for Biotechnology Information
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the average CPU time by the factors of 65.9, 28.7, 23.5, and 
16.2 relative to the next‑best performing method, DFT in 
F56F11.4, AF009962, AF019074.1, and AJ223321.1 gene 
sequences, respectively.

Finally, Figures 12-15 illustrate the ROC’s of the algorithms. It 
is obvious that the proposed algorithm has the highest value 
of its parameter over the other methods. By way of illustration, 
the area under the ROC curve is improved by the factors of 
1.36, 1.84, 1.38, and 1.83 over the DFT and 2, 1.82, 1.56, 
and 1.25 over the MS filter methods in F56F11.4, AF009962, 
AF019074.1, and AJ223321.1 gene sequences, respectively. 
This implies that the proposed algorithm is superior to the 
other methods for identifying exonic gene regions.

Conclusion

Gene identification is a complicated problem, and the 
detection of the period‑3 patterns is a first step towards 

Figure 13: ROC curves of the methods for gene sequence AF009962.

Figure 15: ROC curves of the methods for gene sequence AJ223321.1

Figure 12: ROC curves of the methods for gene sequence F56F11.4

Figure 14: ROC curves of the methods for gene sequence AF019074.1.

To compare the computational efficiencies of the proposed 
algorithm and other tested methods, the average CPU 
time is computed over  1000 runs of the techniques 
for the four gene sequences. Note that all of the 
implemented algorithms were run on a PC with a 1.6 GHz 
processor  (Intel  (R) Pentium  (R) M processor) and 2 GB of 
RAM. Table 3 summarizes results of the average CPU times. 
It is observed that the proposed algorithm has improved 

Table 3: Average computational time of the algorithms
Gene 
identifier

Sequence 
length (bp)

Average computational time 
(second)

Proposed 
algorithm

Multi‑stage 
filter

DFT

F56F11.4 9833 10.9 714.9 718.4
AF009962 7422 13.6 712.2 391.0
AF019074.1 6350 12.0 710.1 282.0
AJ223321.1 5321 11.9 710.5 193.3
DFT – Discrete fourier transform
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gene and exon prediction. Due to the complex nature of 
the gene identification problem, we usually need a powerful 
model that can effectively represent the characteristics of 
protein‑coding regions. Many different DSP techniques have 
been successfully applied for the identification task, but 
still improvement in this direction is needed. In this paper, 
a fast model‑independent algorithm is presented for exon 
detection in DNA sequences. First, EIIP method is used to 
convert the symbolic sequence into digital signal. Then, we 
applied discrete wavelet transform to reduce the correlation 
between the numerical data and, therefore, reduce the high 
frequency noise. Finally, the Goertzel algorithm was applied 
to the filtered sequence for the period‑3 detection. The 
proposed algorithm minimizes the number of nucleotides 
incorrectly predicted as coding regions, which leads to 
increase the specificity. Also, area under the ROC curve is 
improved in the proposed algorithm over the other methods. 
The main advantage of the proposed algorithm is its high 
speed characteristic, which leads to less run process.
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