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INTRODUCTION

In recent years, a number of studies have been performed for 
biomarker discovery from the available datasets on the gene 
expression data of breast cancer tumors. However, applying 
different analytical procedures on different sample cohorts 
in independent studies led to an inconsistency between the 
introduced biomarkers. Moreover, previously introduced 
gene signatures could not assure the clinicians a good 
prognostic prediction on different datasets.[1,2] Researchers 
attribute the stability problem to different sources, such 
as, different technological platforms,[3] sensitivity of gene 
selection methods to the samples,[4,5] inadequate number 
of samples,[6] ignoring the gene interactions in traditional 
classification approaches,[7] and the limitations of working in 
high dimension.[8] In recent times, Haury et al. reported that 
filter feature selection (FFS) methods were more effective 
than other complex procedures, to overcome the high 
dimension problem in breast cancer datasets.[8] Wherever 
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the platforms of datasets were the same, an appropriate 
feature selection method was used, primarily for dimension 
reduction. However, the problem of investigating the 
interactions between genes yet remains unsolved.[8]

On account of the high computational cost and limitation 
of resources, considering the interactions between all the 
genes in a gene selection step was not an applicable solution. 
Moreover, based on the previous studies and literature, only 
a small group of genes were interacted to make a clinical 
outcome. Meanwhile, interacting partners of human proteins 
have tight relation to proper biological activity.[9] Therefore, 
interactions between human proteins, which were obtained 
experimentally,[9] were used as supplementary data to 
overcome the stability problem. For this purpose the gene 
expression profiles integrated with the protein–protein 
interaction (PPI) network in different ways to improve the 
performance of prognostic prediction.[7,10-12] Chuang et al.[7] 
mapped all the gene expression profiles to the corresponding 
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proteins in the PPI network, where they searched for 
subnetwork signatures. Subsequently, the mean of the 
expression levels of the genes in each resultant subnetwork 
was used for the prediction of metastasis in breast cancer 
patients. Later, another methodology with better accuracy 
was proposed by Taylor et al.,[10] who used the correlation of 
gene expression profiles among highly connected proteins 
in the PPI network. More recently, Zhang et al.[11] investigated 
disruptions between the functional blocks of proteins in the 
PPI network, called domains,[13] which they believed were 
the main cause of the cancer outcome. More recently, the 
study of Jahid and Ruan[12] introduced intermediate proteins 
between differentially expressed genes in the PPI network as 
being highly probable biomarkers.

Previous studies demonstrated that the PPI network could 
be a very useful biological database in the discrimination 
of cancer outcomes. However, considering the entire PPI 
network, with several ten thousands of nodes and relations, 
takes the problem of working in high dimension to a worse 
state. Our approach overcame this problem by using an 
appropriate feature selection technique for pruning the 
non-informative genes at the first step.

After integrating the primary gene signatures with the PPI 
network, we utilized the support vector machine-based 
recursive feature elimination (SVMRFE), which is one of the 
leading feature selection methods and has been originally 
proposed for cancer classification.[14] The SVMRFE, which 
is an embedded-class method, is robust against noisy 
data and has been shown to perform well in microarray 
data expression analysis,[15] especially when applied 
with a nonlinear Gaussian kernel.[16] On account of the 
computational cost of this method for applying on datasets 
with a large number of features, it is very promising to use 
this method after the primary pruning of features.

The remainder of this article is organized as follows: 
In Section 2, a brief introduction to feature selection 
approaches is presented, followed by details of our 
procedure. Utilized datasets and experimental results are 
reported in Section 3. In Section 4 we discuss the obtained 
results, and then conclude our study and outline some 
directions for a future study.

MATERIALS AND METHODS

Feature Selection Procedure

Choosing the appropriate machine learning method in 
different stages of a biomarker selection procedure has 
great impact on the performance of the final constructed 
gene signatures.[8] In this study, we have presented 
an approach for improving the performance of gene 
signatures that are selected from the microarray data by 
different feature selection methods. Depending on the 

interaction mechanism of the feature selection methods 
with the classifier, they can be classified into three main 
categories namely; filter method, wrapper technique, and 
embedded approach.[17] In the filter method, all features 
must be ranked using a scoring criterion, independent of a 
classifier. Low computational cost, better performance for 
biomarker discovery from the breast dataset,[8] and ease of 
theoretical design are the advantageous characteristics of 
this approach.[18] In the wrapper approach the accuracy of a 
specific classifier is used to score various possible subsets 
of features. Due to the necessity of the training process 
of the classifier for every subset candidate, this method 
has high computational complexity. In the embedded 
method, the search procedure was integrated with the 
classifier construction for selecting the optimal subset of 
features. From various points of view, such as, complexity, 
computational cost, and an overfitting problem, the filter 
method was the best among other approaches.[8,17] However, 
the main traditional weakness of this technique is that they 
do not take the interaction between features into account.

In this study two types of feature selection methods were 
used in two different stages of the whole procedure. In 
addition to the expressed advantages of the FFS methods, 
Haury et al.,[8] declared them as the most effective 
approaches to overcome the high dimensionality problem 
in breast cancer datasets. Therefore, at the first stage, 
an FFS method was used for pruning the vast majority of 
non-informative genes. Then the resultant signature was 
expanded by the described strategy in section 3. Finally we 
applied a successful embedded method to the expanded set 
that is expressed in subsections 2-3. Figure 1 illustrates a 
schematic overview of the overall proposed approach.

Extending Primary Gene Signatures

According to the scoring criterion of a given FFS method, 
the genes that have the highest predictive power will be 
selected.[18] Therefore, it is rational that the currently selected 
genes have a meaningful expression level for prediction of 
cancer recurrence. However, the predictive performance of 
the combination of genes is not satisfactory. Therefore, we 
proposed to perform a more comprehensive search within 
the selected genes and their interacting partners in the PPI 
network.

Proteins are the executive agents of the biological processes 
in a cell. They facilitate gene expression, cell growth, and 
other cancer-related processes. As the proper function of 
a majority of proteins depends on their interaction with 
other proteins, they should be investigated in the context 
of their mutual partners. The PPI-network that is derived 
from the human protein reference database (HPRD) is a 
well-established and widely used tool in bioinformatics that 
depicts the experimentally characterized interaction between 
proteins.[9,19] There are many biochemical, biophysical, and 
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theoretical methods for investigating the interaction between 
proteins. The HPRD utilized here contains about 40,000 real 
binary interactions between human proteins, which have 
been obtained using in vivo, in vitro, and yeast two-hybrid 
experiments. In the binary sub-class of this network, we first 
find the nodes of the network that correspond to the genes 
that are selected by the feature selection method. Then 
we expand the primary gene set by adding nodes from the 
PPI-network that has a direct interaction with them (neighbor 
proteins). Using this procedure we have obtained a new gene 
set that could be about ten times bigger in size in comparison 
to the primary selected signature. Using this strategy we 
have only investigated a small part (about 1%) of the whole 
PPI network looking for biomarkers.

Extracting Final Biomarkers

Although the embedded and wrapper methods follow a 
more comprehensive procedure for feature selection, they 
generally do not outperform simple filter methods. A simple 
justification for this surprising result is ‘the statistical issue 
of working in a high dimension with a few samples’.[8] In 
the previous sections we have described our strategy for 
constructing a smaller and more informative set of genes. 
It is promising to apply a complex feature selection method 
on this pruned set rather than on all the representatives in 
the microarray.

Therefore, we applied the SVMRFE to the expanded set, 

for choosing the best candidate as a gene signature. The 
SVMRFE followed a backward feature elimination strategy to 
consecutively eliminate the features from an initial set that 
contains all genes. The gene that obtained the smallest weight 
in a SVM classifier, which trained with the current subset 
for target prediction, was removed from the subset at each 
step. Using SVMRFE, all the features in the set that were 
expanded by the PPI-network would be ranked according to 
their corresponding weight, which was assigned by an SVM 
classifier, with a nonlinear Gaussian kernel to the features. 
Finally, a signature set was constructed by the genes with 
the highest rank, with a minimal appropriate size.[20]

RESULTS

Utilized Datasets

We utilized human breast cancer tumor microarray 
datasets of four independent studies including more than 
800 samples that were publicly available from the Gene 
Expression Omnibus (GEO) database.[21] These datasets 
will be referenced later in this article by their GEO series 
code (GSExxx), as described in Table 1. All the utilized 
datasets were prepared in the same platform (HG-U133A or 
GPL96).

Table Samples were classified into two groups, high and low 
risk, according to the time to metastasis using a threshold 
of five years.

Figure 1: A schematic view of our approach
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On the HG-U133A (GPL96) platform there are 22,283 probe 
sets that map to 12,172 genes. We used a one-to-one 
mapping method to select a single representative probe 
set for each gene.[26] Thus, 12,172 probes with the best 
score have been selected from this platform. Then all 
samples that are censored before the five-year follow ups 
and those that relapsed after five years have been removed 
from the datasets. After these pruning steps, all expression 
data were log2 transformed and then normalized, initially 
upon sample vectors and then across the feature vectors 
independently, in each dataset. The normalization 
procedure is made up of subtracting the mean overall 
expression values and dividing them by the corresponding 
standard deviation. Subsequently, the results pass through 
a mathematical function of the type f(x)	 =	 arctan(x), to 
uniformly limit the range of all values and reduce the 
importance of the outliers.[14] Finally, a metadata has been 
constructed by combining all the utilized datasets.

Experimental Results

For evaluating the performance of the proposed method, 
we selected five FFS methods, with successful usage in the 
literature,[27] and assessed the accuracy of the signatures 
obtained by them, before and after applying our approach. 
The accuracy refers to the prediction performance of 
signatures that can be reached by a classifier trained on 
the genes. We chose the support vector machine (SVM) 
as a predictor model, which was a leading classifier 
method.[28] In this regard we utilized the LIBSVM 
package,[29] for implementing both the classifier model 
and SVMRFE. We followed the authors’ practical guide 
for tuning the parameters of SVM. Penalty parameter C 
and Gamma of Gaussian kernel are two parameters that 
were tuned with regard to reaching the best five-fold 
cross-validation (CV) accuracy in 500 random subsamples 
of metadata. Figure 2 showed the mean accuracies 
obtained for different values of parameters C and Gamma 
over 500 subsamples at size 200. According to Figure 2 
a range of values for these parameters (1 to 130 for C 
and 0.01 to 0.6 for Gamma) reached the same acceptable  
accuracy.

We utilized five successful filter methods for the 
evaluation, namely; joint mutual information (JMI),[30] 
mutual information maximization (MIM),[31] minimum 
redundancy-maximum relevancy (mRMR),[32] t-test, and 
Wilcoxon.[33] Following the five-fold CV test procedure, we 
randomly divided the dataset into five subsets of equal 
size. Consecutively one subset was tested using the SVM 
classifier, which trained on the remaining four subsets. 
The CV process was then repeated five times in such a way 
that all the samples were used for both the training and 
test, and each sample was used for testing exactly once. 
Thus, the CV accuracy was the percentage of all data that 
were correctly classified when they were chosen as the 

test subset. In this experiment a five-fold CV process was 
performed to evaluate the accuracy of gene signatures 
with different sizes over the Wang dataset [Supplemental 
Figure 1]. Based on the obtained results, the signature with 
size 50 reached the maximum accuracy. Thereafter, the CV 
accuracy of 50-gene signatures obtained by each feature 
selection method, were evaluated over different datasets. 
Figure 3 shows the CV accuracy of the primary extracted 
signatures and finally obtained signatures by our approach 
over the Wang dataset. We demonstrated the evaluation 
results over the Wang dataset for comparison with other 
similar PPI-based studies that also used this dataset. The 

Figure 2: Tuning of SVM parameters to obtain the best accuracy

Table 1: Summary of breast cancer microarray datasets
Dataset #Samples #High-risk #Low-risk Source

GSE2034 286 95 169 Wang et al., 2005[22]

GSE7390 198 54 100 Desmedt et al., 2007[23]

GSE6532 244 65 123 Loi et al., 2007[24]

GSE3494 236 37 158 Miller et al., 2005[25]

Metadata 800 251 549
#Number of; GSE – GEO series

Supplemental Figure 1: CV accuracy versus gene signature size. For size 
50 we reached the max accuracy over the Wang dataset
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obtained results over the other three datasets which are not 
shown here are in agreement with Figure 3.

We also used the area under the receiver operator 
curve (AUC) as the classification performance measure 
[Supplemental Figure 2]. The comparative results of 
evaluation using the AUC are in concordance with the CV 
results, which are shown in Figure 3.

As mentioned before, the main challenge of gene selection 
was instability of the introduced biomarkers, which are 
extracted from different datasets. We showed that our 
approach obtained more robust signatures when utilizing 
a previously introduced gene signature as the primary 
signature. Evaluations of the CV accuracy of the obtained 
signatures from each dataset for the prediction on the 
other datasets proved the robustness issue. In this regard 
the Wilcoxon method was used for selecting primary 
signatures, based on the better prediction accuracy of this 
method among other approaches. Table 2 illustrates the 
five-fold CV accuracies for 50-gene signatures, which are 
extracted primarily from source datasets (row labels) and 
tested over the destination datasets (column labels).

For more obvious demonstration of the achieved 
improvment in robustness we illustrated this in Figure 4. In 
this figure, the horizontal axis indicates the source datasets 
that were used for extracting the primary signatures by the 
Wilcoxon method. The height of each bar, which two of 
them presented for every dataset, indicates the mean CV 
accuracy obtained over the other three datasets using the 
primary signature and the final modified one.

Furthermore, for deriving a hypothesis about breast cancer 
at a genomic level, we reported a summary of the best 
100 selected biomarkers from the Wang dataset, with a brief 
biological description about them [Supplemental Table 1].

DISCUSSION

In this study, we presented an integrated approach that used 
the binary subclass of the PPI network for identification 
of more predictive genes from a microarray data. At the 

Table 2: Robustness of gene signature performances. 
Each cell indicates the five-fold CV accuracy of a signature 
that was extracted by Wilcoxon, primarily from the source 
dataset and then expanded and tested over the destination 
dataset
Destination 
source

GSE2034 GSE7390 GSE6532 GSE3494 Metadata

GSE2034 93.18 87.66 88.82 92.3 78.5
GSE7390 81.43 94.15 80.85 93.84 77.5
GSE6532 87.87 92.2 90.95 93.84 78.4
GSE3494 85.6 88.31 81.38 95.38 79.15
CV – Cross-validation; GSE – GEO series

Figure 3: Classification performance (five-fold CV) in the Wang dataset 
before and after applying our approach to five FFS methods

Figure 4: Comparison of robustness among different datasets for primary 
signatures and the final result of our approach. The horizontal axis indicates 
the source datasets that are used for extracting primary signatures by the 
Wilcoxon method. Bar height indicates the mean CV accuracy obtained over 
the other three datasets using the primary signatures
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Supplemental Figure 2: Improvement in accuracy (using AUC as 
classification measure) after applying our approach to different FFS methods.

first step an arbitrary FFS method was used for selecting a 
small gene signature from the breast cancer datasets. Then 
a new set was constructed by adding the genes from the 
PPI network, which had direct connection with the primary 
genes. Afterward, an embedded method with a backward 
elimination strategy, called SVMRFE, was used to select a 
new signature set for prediction of breast cancer recurrence. 
On account of the computational cost and high dimensional 
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problem it is very promising to use such a complex and 
powerful method after the primary pruning of features.

We compared our approach with other similar recent studies 
that used the PPI network for improving the accuracy of 
metastasis prediction in breast cancer patients. Chuang 
et al., presented the first method, which joined the gene 
expression profiles with the PPI network for classification 
of breast cancer metastasis. This method showed 10% 
improvement in the prediction accuracy when tested on the 
dataset of Wang et al., (GSE2034) that reached an accuracy 
of 62% using a pattern-based approach. Later Zhang et al., 
proposed a different strategy and obtained a better accuracy 
of 81.7% on the same dataset. More recently Jahid and Ruan[12] 
proposed another new procedure for using the PPI network 
and obtained a precision of 77% over the Wang dataset. The 
analytical methods that were used in all of these studies 
were computationally expensive, due to simultaneously 
investigating tens of thousands of nodes and connections in 
the PPI network. Therefore, the first major advantage of our 
approach in comparison with theirs is using the PPI network 
with lower computations, because we only investigated a 
small part of this network when looking for biomarkers. In 
this study we applied the FFS methods to the microarray 
dataset to prune the non-informative genes and limit the 
domain of investigations in the PPI network. A quick look at 
Figure 3 proves that we obtained more than 85% accuracy 
for prediction in the Wang dataset, using different FFS 
methods. As shown in Figure 3, our approach improved the 
accuracy of prediction at least by 13% for all methods and 
reached 93% accuracy using the Wilcoxon method.

We also investigated the prediction performance of each 
dataset signature over the other independent datasets. 
Table 2 and Figure 4 showed that our approach reached 
a high accuracy among various datasets and we can 
conclude that the final signatures were robust. According 
to Table 2, the lower accuracy (still acceptable) obtained for 
the metadata can be attributed to the divergence of data 
samples, which disabled the SVMRFE, for obtaining a more 
predictive gene signature.

Meanwhile significant improvement was achieved 
independent of the chosen FFS method. Choosing an 
appropriate feature selection technique has a great impact 
on the stability and prediction power of the final signature 
set and should be investigated in an independent study. 
This statement also includes the SVMRFE that was chosen 
based on literature.

It should be noted that discussion about the biological 
aspects of the final extracted gene signatures and the 
overlap between them are very important issues that 
should be considered consecutively. We also believe that 
utilizing other biological databases such as gene ontology 
and known biological pathways can improve the accuracy 

of the obtained gene indicators even further. These open 
discussions are the most important related issues to this 
study that should be considered in future studies.
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