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INTRODUCTION

The neural activities of human brain generate one of the 
most significant biomedical signals in which they are 
the source of encoded information about the human 
surrounding and the human internal states. Understanding 
characteristic of neural data can be used to decode the 
human thoughts and actions and also can be applied for 
diagnosing the brain’s neuropsychological diseases. For 
these applications, brain data collection, preprocessing and 
analysis methods has become one of the most challenging 
items in this field in recent decades. Among different 
non‑invasive methods of brain signals acquisition such as 
magnetoencephalogram, functional magnetic resonance 
imaging and electroencephalogram  (EEG), EEG is more 
appropriate for the brain data collection because of low 
cost of experiment design and data collection and its high 
temporal resolution than other procedures.[1,2] The inventor 
of the human EEG signals was Hans Berger, in 1929 in which 
he was able to measure, amplify and plot the human brain’s 
electrical activities by placing an electrode on the scalp.
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Human visual system recognizes objects in a fast manner and the neural activity of the human brain generates signals which 
provide information about objects categories seen by the subjects. The brain signals can be recorded using different systems like 
the electroencephalogram (EEG). The EEG signals carry significant information about the stimuli that stimulate the brain. In order 
to translate information derived from the EEG for the object recognition mechanism, in this study, twelve various categories were 
selected as visual stimuli and were presented to the subjects in a controlled task and the signals were recorded through 19‑channel 
EEG recording system. Analysis of signals was performed using two different event‑related potential (ERP) computations namely the 
“target/rest” and “target/non‑target” tasks. Comparing ERP of target with rest time indicated that the most involved electrodes in our 
task were F3, F4, C3, C4, Fz, Cz, among others. ERP of “target/non‑target” resulted that in target stimuli two positive peaks occurred 
about 400 ms and 520 ms after stimulus onset; however, in non‑target stimuli only one positive peak appeared about 400 ms after 
stimulus onset. Moreover, reaction times of subjects were computed and the results showed that the category of flower had the lowest 
reaction time; however, the stationery category had the maximum reaction time among others. The results provide useful information 
about the channels and the part of the signals that are affected by different object categories in terms of ERP brain signals. This study 
can be considered as the first step in the context of human‑computer interface applications.
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Human brain signals can be used for the diagnosis of the 
brain disorders by visual investigation or by using more 
sophisticated automatic analysis methods of the EEG 
signals. The EEG signals consist of five major frequency 
rhythms which are called delta (d), theta (q), alpha (a), beta 
(b), gamma (g) bands indicating frequencies of (0.5‑4 Hz), 
(4‑7.5 Hz), (7.5‑15Hz), (15‑30Hz), and (30‑50Hz) respectively. 
The EEG signal can easily be mixed with noises and artifacts 
from physical movements or environment. Preprocessing 
stages for the EEG signals consists of artifact detection 
and correction techniques. The discrete wavelet transform, 
independent component analysis and principal component 
analysis are the most popular and accurate strategies for this 
aim. To process and analyze the EEG signals, various methods 
have been proposed. Event‑related potential (ERP) is one of 
the well‑known way of signal analysis methods which was 
introduced in 1964 for the first time.[3,4] ERP has been useful 
tool in both psychiatry and neurology and widely applied in 
brain‑computer interface  (BCI) applications. ERP is the sum 
of electrical responses of EEGs in response to some cognitive 
events. The responses typically are generated during external 

Address for correspondence: 
Dr. Mohammad Reza Daliri, Department of Biomedical Engineering, Faculty of Electrical Engineering, Iran University of Science and 

Technology (IUST) 16846‑13114 Tehran, Iran. E‑mail: daliri@iust.ac.ir

Original Article www.jmss.mui.ac.ir



Daliri, et al.: EEG signature of object categorization

Journal of Medical Signals & Sensors

Vol 3  | Issue 1  |  Jan-Mar 201338

stimulations such as visual or auditory that cause voltage 
fluctuations in EEG brain signals. The waveforms of ERPs 
are characterized across three key parameters: Amplitude, 
latency, and distribution over the scalp.[5] ERP has been 
used for many clinical applications as well. For example, 
Coben et  al.,[6] in their work analyzed and compared the 
ERP components like N100, N400 or P300 in diversity of 
psychiatric diseases such as Alzheimer’s diseases or other 
cases with healthy people. Visser et al.[7] and Cosi et al.[8] did a 
similar study in non‑organic behavioural disorders in elderly 
people. Additionally ERP is a method to discuss about brain 
activities in a specific task in order to recognize how EEG 
signal potentials change when a stimulus is observed and how 
long it takes for the human to give a correct response to the 
stimuli. Evaluating the ERP of EEGs can produce an alphabet 
of brain language which can enable researchers to read the 
signals and understand the different states of the human 
brain. Various experimental design have been considered by 
researchers such as category‑based brain activity for alive 
objects against man‑made objects, and for different particular 
object classes such as furniture, faces, animals, fruits, 
vegetables, buildings, tools and parts.[9‑12] Moreover, ERP of 
visual, verbal and auditory stimulus modalities, living versus 
non‑living have been analyzed.[13,14] Simanova et al.,[15] in their 
study investigated the possibility to identify conceptual 
representations from event‑related EEG based on three 
different forms of object presentation: Object spoken name, 
object visual representation and written name of object. They 
achieved high classification performance with accuracy of 89% 
for drawing objects. Jeffrey and Bruno (2003)[16] in their study 
worked about the time of human visual system to recognize 
objects. They designed ERP experiment series in order to 
measure the time course of electrophysiological correlates 
of object recognition. They found two distinct components 
in the ERP recorded during categorization of natural images. 
One was an early presentation‑locked signal arising around 
135 ms after stimulus onset that was present when there 
were low‑level feature differences between images. The 
other was a later, recognition‑related component arising 
between 150 ms and 300 ms after stimulus onset. Jeffrey and 
Bruno (2005)[17] also designed three sets of ERP experiments 
to specify processes of the target minus non‑target difference 
signals seen in visual cued‑target paradigms. They proved 
that the same difference signals were obtained when the 
target match was made to word stimuli as well as to object 
stimuli. Additionally signal amplitude had reverse relation 
with task difficulty.

It has also been shown that objects and their sensory or 
functional attributes  (such as tool‑associated actions) 
activate the same neural regions, suggesting that these 
regions are implicitly involved in concept representation.[18‑21] 
Martin, 2007[22] in his object recognition study proved that 
object’s features coded very rapidly and played different 
functional roles while color and extra contours and edges 
delay it.

Martinovic et al.,[23] in their work studied about detection 
and identification of objects a visual perception. They 
compared the role of luminance and chromatic information 
between full‑color and reduced‑color object. In a subsequent 
electroencephalographic ERP experiment, advantages in 
accuracy and high‑level discrimination were found for 
full‑color stimuli over the reduced‑color stimuli.

Rossion and Boremanse  (2011),[24] showed that how the 
human brain discriminates complex visual patterns, such 
as individual faces testing sensitivity to individual faces 
using steady‑state visual‑evoked potentials  (SSVEPs). They 
showed a large response at the fundamental stimulation 
frequency  (3.5 Hz) over posterior electrode sites using fast 
fourier transform (FFT) of EEG. Nazari et al.[25] in their study 
proved that several differences in the P300 component are 
observed when responses must be executed in the “go/no‑go 
task”. They examined the peak amplitude and latency of 
Go‑P300 and Nogo‑P300 component in healthy children. 
The P300 component was measured at frontal  (F3, Fz, F4) 
and parietal (P3, Pz, P4) regions. The results displayed higher 
P300 amplitude in the Go relative to No‑Go at parietal region. 
In addition, decrease in P300 latency was observed at the 
frontal in comparison to parietal region. Dering et al.,[26] in 
three experiments, measured the amplitude and latency of the 
mean P1 and N170 in response to faces, cars, and butterflies, 
cropped or morphed. The N170 was sensitive to cropping 
but did not differentiate frontal views of faces and cars. The 
P1 amplitude was larger for faces than objects. The authors 
concluded that P1, not N170, is a reliable face‑sensitive event.

The aim of the current study is to clarify differences between 
ERP of target/rest and target/non‑target signature of signals 
such as time courses and ERP signal forms. To this aim, 
much more categories are used in comparison with previous 
studies; consequently it is more complicated to study ERP 
signals. This makes the scenario similar to what the human 
faces in everyday life, so the results are more reliable.

Experimental setup of our study consists of visual stimuli 
presentation of twelve different categories  (clothing, 
animals, foods, flowers, fruits, human body organs, 
transportation devices, dolls, electronic devices, jewelry, 
stationary, buildings, and scenes). We used the EEG 
recording system in order to measure ERP of the human 
brain. All of the participants in our study were in healthy 
condition and the patients are not addressed here.

MATERIALS AND METHODS

Participants

Ten human volunteers, 2 females and 8 males, mean age 25, 
participated in the study. All were right‑handed except one, 
and reported that they did not have any psychological or 
neurological abnormalities. All participants were gifted for 
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their participation and they were informed about the task 
paradigm before going to the experiment booth.

Stimuli

Twelve different categories of clothing, animals, foods, 
flowers, fruits, human body organs, transportation devices, 
dolls, electronic devices, jewelry, stationary, buildings, 
scenes were selected in which each category included five 
different images. All images were picked up from Internet; 
color images with same resolution of 600  × 800 pixel and 
same difficulty. Picture difficulty means that how easy it is to 
recognize the picture at the first glance and put it in a correct 
category. Monitor parameters such as luminance and contrast 
were normalized. Whole stimuli were presented in the exact 
center of the  screen with black background. The monitor 
was 17‑inch LCD with 1280*800 resolutions. Figure 1 shows 
some sample images are used for the experiment. Process 
was divided in two parts of visual tasks, six categories were 
presented in task Part 1 and the next six categories in Part 2 
with a gap of three minutes in between. This was done in 
order to let subjects’ eyes to rest and reduce EEG eye‑blinking 
artifacts. Figure 2 indicates the task paradigm.

Task of Study

The experiment which was designed for this study was 
“cued‑target” with “Go/No‑go” ERP categorization task. 

Cued‑target means the category name  (target cue) was 
displayed on the screen before starting the trial to notify the 
participants about the target images. Target cue remained 
on the screen for 1 s, and after an additional 900 ms delay, 
the images were presented. Each image was presented for 
700 ms, the rest time or blank screen interval between two 
images was 800 ms and 5 s rest between the two different 
categories. The subjects were asked to press left button 
of mouse with the right hand index finger to deliver their 
responses as quickly as possible and to delay their blinks to 
800 ms in the resting time. All images were centrally shown 
on a CRT LCD monitor. Image presentation was controlled 
via a computer Pentium 4 with 512 MB RAM and 40 GB HDD 
PC running on the PsyTask software. PsyTask is a software for 
visual/auditory stimuli presentation and psychophysiology 
investigations. It works in conjunction with WinEEG 
software. Viewing distance was 75  cm from computer 
screen. In “go/no‑go” task subjects had to left‑click if they 
saw target images and did nothing on non‑target images. 
They were given a maximum of 700 ms time to respond, 
and after this period any responses were considered as an 
incorrect response. Subjects observed 360  pictures in a 
two‑section experiment [Figure 2].

EEG Recording System

The subjects wore a 19‑channel electrode cap consist 
of  Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, T3, T4, T5, T6, 
Fz, Cz, Pz, O1, O2, additionally A1 and A2 connected to 
the left and right earlobes, respectively, as the reference 
electrodes  [Figure 3]. Recording electrodes were selected 
from the 10‑20 set of channel positions. Subjects 
performed the experiment in an electrically shielded 
and sound‑damped booth. The EEG signals were sent to 
A/D converter after they amplified by  MITSAR  hardware. 
The electroencephalographic PC‑controlled system 
“Mitsar‑EEG” is purposed for acquisition, storage at 
personal computer’s HDD, processing, displaying at PC’s 
display and printing out of electroencephallographic 
signals. Recording was done at 500 Hz sampling frequency. 
Figure  4 shows the EEG recording system which it is 
comprised of two separate and synchronized PCs, one PC 
was for the psycho‑task presenting stimuli and the other 
was for recording signals operating on WinEEG software, 
adding labels to the raw signals. Labeling is one of the 

Figure 1: Different three normalized sample images  (not full‑size images 
are shown here)

Figure 2: Task paradigm including the first and the second part of the experiment with timing of presentation
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significant methods of ERP computing where the WinEEG/
Psycho‑task has this capability. In this study label of ending 
one means non‑target images and ending two indicates the 
target images that should be responded by the subjects. 
For example the integer 12 means an image of category 1 
was presented that should be responded, and eleven means 
an image of category 1 was presented that should not be 
responded, so the integer number before the last integer 
indicated the category of the image.

Experimental Results and 
Discussion

In current study, ERP of twelve categories through a 
19‑channel EEG system were computed and total results 
were averaged among participants using WinEEG software. 
Two different analogies was done: “Target/rest” and 
“target/non‑target”. In order to localize active electrodes 
during task paradigm, ERP of all correctly responded 
stimuli of 12 category from 8 subjects was measured and 

averaged (because of large amount of artifacts appeared in 
the data from subject 4 and 6, they were not considered 
for the analysis) and compared with the rest time. This is 
called “target/rest” results. Moreover, the other ERP applied 
to the correctly responded target images in comparison to 
non‑target images. This was done to recognize difference 
in brain signals images when they play roles as target 
images with the same images when they are in non‑target 
order. Figure  5 shows the ERP of 19‑channel “target/rest” 
with topographical maps and Figure 6 indicates ERP of only 
Cz (because of its highest voltage among other electrodes) 
electrode with peak latencies mapping. Figure 5 is related to 
ERP of “target/non‑target” with full mapping from 100 ms to 
800 ms. In target‑rest case the “rest” ERP is after the “target” 
ERP, but in target/non‑target both ERPs are in comparing 
mode. It can be clearly seen from Figure  5 that the most 
involved electrodes during visual task compared with the 
rest time are F3, F4, C3, C4, Fz, Cz. The Frontal electrodes 
F3, F4 and Fz are mostly related to judgment and problem 
solving wherein our subjects are in judgment state during 
categorization of objects. C3, C4, Cz are sensory‑motor 
electrodes measuring muscles output, and because the 
exemplars use the left click in the task, these electrodes have 
high amplitude. The three components in the “target/rest” 
can be obviously seen from Figure 6: N248, P390 and P526. 
N248 have the most distribution on O1 and O2 channels 
which are related to the occipital visual state and have are 
negative. P390 is due to attention of subjects in which at 
390 ms, stimuli were mentally recognized as target images 
by subjects and they responded to target images in about 
P526, therefore this component is related to the reaction or 
intention to respond. Figure 7 indicates “target/non‑target” 
ERP unmatched features in target ERP. As it mentioned, it has 
two positive peaks compared with non‑target ERP which has 
only one positive peak due to no reactions of subjects.

Reaction Time

The reaction times of the 8 subjects were computed 
and listed in Table  1, from lowest to highest, in order 
to distinguish between all 12 categories. The results 
indicate that the category of flower has fastest reaction 
time with 392.2 ms and lowest standard deviation 
of  ±81.2 ms  (P  <  0.001). In contrast, the stationery 
category has the highest time of reaction with 458.1 and 
maximum standard deviation of  ±156.4 ms  (P  <  0.001). 
All statistical analysis was done by one way analysis of 
variance (ANOVA‑1 test).

DISCUSSION

In this study the EEG signals of eight subjects during 
visual stimuli, including various categories, was analyzed 
using the ERP analysis method. Our task is composed 
of two tasks discussed in previous study of Jeffrey and 
Johnson  (2003),  (cued‑target and single category), 

Figure  3: Standard layout for electrode placement in a 19‑channel 
electroencephalogram recording system with A1 and A2 references link to the 
earlobes. Red‑marked electrodes are most involved electrodes in our task

Figure 4: Electroencephalogram recording system including two different 
PCs, an amplifier (MITSAR), mouse, 19 electrodes
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Figure 5: (a) Event‑related potential of 19 scalp electrodes from 100 ms to 1400 ms including target and rest time averaged from 8 participants bar below 
the graphs indicates time points where waveforms differ significantly (P < 0.001), (b) topographical mapping of the brain activities from 100 ms to 1400 ms 
that indicates active electrodes during visual stimulation (F3, F4, Fz, C3, C4, Cz) versus inactive one (the remaining electrodes) with low amplitude amount 
in rest time
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Figure 6: Occurring three peaks in target stimuli event‑related potential: 
N248, P390, P526 with their related mapping

Table 1: Reaction times for 12 categories averaged over all 
subjects
Category Average of responses Standard deviation

C2=Flower 392.2 ±81.2
C9=Building 411.1 ±115.0
C12=Jewelry 417.2 ±90.1
C7=Food 423.7 ±113.2
C11=Doll 436.7 ±128.2
C3=Fruit 441.8 ±109.0
C4=Transportation 445.3 ±114.3
C10=Electronic 446.0 ±123.2
C6=Clothing 449.5 ±99.1
C5=Body organs 451.4 ±117.4
C1=Animal 454.7 ±103.3
C8=Stationery 458.1 ±156.4
First column shows the categories name in order of fastest to slowest one based on 
the reaction times. The other two columns indicate the average of responses and the 
standard deviation of the reaction times among the subjects, respectively (P < 0.001)

however, our task comprises 12 categories; in contrast 
they had two kinds of pictures  (animal images and 
nature images). In this study we indicated three major 
times of ERPs  (N248, P390 and P526) which shows the 
observation, cognition and response, respectively. In 
comparison with Jeffrey and Johnson (2003) they proved 
signal arising around 135 ms and the other is a later, 
recognition‑related component arising between 150 ms 
and 300 ms. Unlike the early component, the latency of the 
later component co‑varies with the subsequent reaction 
time. Additionally Jeffrey and Johnson  (2005) reported 
that signal amplitude decreases with increasing the 
pictures difficulty, while here we selected colored pictures 
with same difficulty level., Gruber, Muller  (2008)[27] in 
their object recognition task have shown objects features 
coding and with extra features like color and edges to 
simulate delay of recognition, however, Simanova, Van 
Gerven, Oostenveld and Hagoort  (2010)[15] investigated 
with the highest accuracy of 89% for labeled pictures and 
spoken stimuli. Based on these references, we have chosen 
colored images which are a more realistic scenario quite 
similar to real life images. Van Hoogmoed, et  al.,[28] in 
their electrophysiological study compared five ERP scalp 
distribution mapping in different states  (side change, 
depth change, disappearance, identity change and switch) 
for three N2, N3, and P3 latency windows. This study 
shows different activation area of brain scalp, in contrast 
we obtained same activation for all categories in different 
colors. The significant neural activity of brain was seen 
mostly in F3, F4, C3, C4, Fz, Cz electrodes. Comparing 
ERP of “target” with ERP of “non‑target” images resulted 
in one positive peak versus two positive peaks for ERP 
that resulted from the “non‑target” vs. “target” task. 
Additionally reaction time of 12 categories was measured 
and averaged through all subjects indicating that the 
flower category had the lowest reaction time while the 
stationery had the maximum reaction time. In terms of 
the nature of ERP, it is an averaged signal which does not 
give further information of exactly what happened when a 
picture was presented, so it is difficult to classify different 
categories using ERP information, however, it provides the 
changes that occurred due to different presentations, so 
it can provide useful information on selecting the proper 
channels and proper part of the signals for categorization.

Further work ERP of 12 different categories can be computed 
and compared with each other to understand differences 
in various images of grouping with much more details of 
processing to produce a brain language and application for 
BCI technologies.
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