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ABSTRACT 

  

Efforts Using non-dimensional parameters, the governing equations of 

homogeneous and heterogeneous cylinders made of functionally graded material 

(FGM) were derived under a combination of thermo-mechanical loads. The 

equations were solved analytically and numerically in a severe temperature and 

pressure gradient environment. The radial and circumferential stresses together 

with the radial displacement of FGM cylinder were analytically evaluated and 

then compared to conventional homogeneous ones. Besides, in order to assess 

the accuracy of derived equations, a numerical solution (NS) was performed 

using finite element method. It was shown that the numerical solution was in 

accordance to the analytical solution (AS). The results of present work show that 

the use of FGM can optimize the thermo-elastic performance of the cylinders 

which are exposed to the joint mechanical and thermal loads. 

 

KEYWORDS: Thick-walled cylinder; FGM heterogeneous materials; Finite element  

method; 

 
 

1.0 INTRODUCTION 
 

Metals and many composites with high levels of strength to weight ratio, have been 

successfully employed in the fields of mechanical engineering; however, they do not 

demonstrate good performance in the environments with high temperature conditions. 

On the other hand, materials such as ceramics show excellent performance in high-

temperature environments while, they are sometimes unreliable in terms of strength and 

stiffness. In order to encompass these conversely goals in some applications, the 

functionally graded materials (FGMs) have been introduced. First time, they were 

proposed in the mid-1980s in Japan as a thermal coating for some engineering 

applications (Mahamood, Akinlabi, Shukla & Pityana, 2012). Japanese researchers used 

this developed composite as a thermal barrier across a 10 mm thickness with two 

different temperatures of 1000 and 2000K on both sides of the area (Mahamood et al., 

2012). Generally, FGMs are heterogeneous composites whose properties such as 

modulus of elasticity, thermal conductivity and mass density, change gradually from 

one side to the other side of the material domain. These materials are well-known for 
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their ability in isolating or separating two different environments with diverged 

designed goals. These materials can support high temperatures and extreme temperature 

gradients as they do for mechanical loads. As practical examples, the internal parts of 

combustion engines, turbines and power plants are under high temperature and severe 

temperature gradient jointly. It is worth noting that the low thermal conductivity and 

low coefficient of thermal expansion of FGM materials allow them to accept high 

temperatures and severe temperature gradients (Azadi, 2009; Azadi & Shariyat, 2010; 

Damircheli & Azadi, 2011). 

 

In recent years, many works have been conducted on the behavior of functionally 

graded materials (Tuntucu & Ozturk, 2001). In 2001, Tutuncu and Ozturk (2001) used 

the infinitesimal theory of elasticity to obtain closed-form solutions for both stress and 

displacement in functionally graded cylindrical and spherical vessels subjected to 

internal pressure. In 2008, Argeso and Eraslan (2008) assessed an estimation of the 

thermo-elastic response of cylinders and tubes, using temperature-dependent physical 

properties. Using exact closed-form solutions based on plane elasticity theory, Nejad, 

Abedi, Lotfian and Ghannad (2012) studied both the stress and displacement profiles in 

a thick spherical shell made of functionally graded materials with exponential-varying 

elasticity modulus under uniform pressure. They assumed plane strain condition and 

considered a fixed value for the Poisson’s ratio (Nejat et al.,2012). In 2012, Bayat, 

Ghannad and Torabi (2012) studied a functionally graded thick-walled hollow sphere on 

the assumption of one-dimensional steady temperature distribution. They supposed the 

thermal and mechanical properties of sphere to be varied exponentially in the radial 

direction (Bayat et al., 2012). 

 

Using non-dimensional parameters, this research attempts to develop thermo-elastic 

analysis of thick-walled structures like cylinder and disk made of functionally graded 

materials. Therefore, the aim of this paper is to improve the thick-walled cylinder 

behaviors by proposing dimensionless governing equations of homogeneous and 

heterogeneous FGM cylinder under thermo-mechanical loads. The results were also 

compared to other works and discussed. 

 

 

2.0 FUNDAMENTAL EQUATIONS 

 

In the plane elasticity theory, it is assumed that the cross-section plane which is 

perpendicular to the central axis of the cylinder will remain planar and perpendicular to 

the central axis after applying pressure and deformation. Furthermore, it is supposed 

that the radial deformations along the perimeter remain fixed but vary in radial 

direction. Theoritically, radial deformations dependent only on the radius ur(r). In order 

to solve the problem, a hollow cylinder of non-homogeneous FGM material with inner 

and outer radii of ri and ro under uniform internal and external pressures of Pi and Po 
and the internal and external temperature surfaces of Ti and To, is considered. Figure 1 

shows a section of the assumed cylinder under combined mechanical and thermal 

loading.  
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(a) 

 

 
 

(b) 

 

Figure 1. (a) Cross-section of a thick-walled cylinder with internal radius “ri” and 

external radius “ro”, (b) Finite element mesh region. 
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Due to axisymmetric condition, material properties, loads and boundary conditions and 

according to plane elastic theory, the shear stresses and strains become all zero. Thus, 

the normal strains are: 

(1) 
 

 
1

r r z T
E

       
 

(2) 
 

 
1

r z T
E

        
 

(3) 
 

 
1

z z r T
E

       
 

 

where E is the elasticity modulus, ν is Poisson’s ratio, α is coefficient of thermal 

expansion and T is the temperature gradient. Moreover, σr, σθ and σz indicate normal 

stresses and εr, εθ and εz denote normal strains in r, θ and z directions, respectively. For 

plane strain condition in cylinders, normal strain in z direction turns into zero i.e. εz=0; 

so Eq. (3) develops into: 

(4) 
              

 z r E T      
 

By substituting Eq. (4) into Eqs. (1) and (2), we have: 

 

(5)       
1

1 1 1 1r r T
E

                
 

(6)       
1

1 1 1 1r T
E

                 
 

Rewriting Eqs. (5) and (6) for stresses results in: 

(7) 
  

   1 1
1 2 1

r r

E
T     

 
       

 

(8) 
  

   1 1
1 2 1

r

E
T      

 
       

 

Now, Eqs. (7) and (8) can be rearranged to the following general form: 

(9) 
1 2 1 2

2 1 1 2

2

2

r

r A A A A
E

A A A A
T













 
    

           

in which A1 and  A2 relate to the Poisson’s ratio as: 

(10) 
  

  

1

2

1

1 2 1
 

1 2 1

A

A



 



 


  


 
    
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In axisymmetric condition, all displacements become zero except for radial 

displacement (ur). The radial displacement, of course, is a function of polar radius r 

only; therefore, strain-displacement relations in axisymmetric condition in cylindrical 

coordinate will be: 

(11) 

ir
r

i

ir

i

Pdu dU

dr E dR

Pu U

r E R







 



  
  

where Ei is the elasticity modulus of internal surface. Now, the dimensionless radius R 

and the dimensionless radial displacement U can be defined as: 

(12) 
i

r
R

r


 

(13) 
i r

i i

E u
U

r P


 

Substituting Eq. (11) into Eq. (9) yields: 

(14) 
1 2 1 2

2 1 1 2

2

2

r

dU

dR

A A A A U
E

A A A A R

T








 
 
 

          
 
 
 
   

where: 

(15) 
 1 2

1

2
,    ,    ,    ,    

i i i

i i i i i

A A E TE T
E T

P E T A P

 
 




     

 

In Eq. (15), αi is the thermal expansion coefficient of cylinder internal surface. 

Neglecting the body forces, the equilibrium equation in axisymmetric conditions and in 

cylindrical coordinates will be: 

 

(16) 0rrd

dr r

  
 

 

It can also be expressed as: 

(17) 0 ;   

r
r

irr

i

Pd

dR R

P









 







 
  

 
  

Replacing Eq. (14) in Eq. (17) gives up: 
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(18)  
2

2

2 2

1

1 1
1 1

Ad U RdE dU RdE
U F R

dR R EdR dR R A EdR

  
      

     

where 

(19)  
 d E T

F R
E dR




 

Eq. (18) is a Bessel-like second order differential equation with general solution as in 

(Kreyszig, 2010): 

(20)        1 2U R C G R C H R I R  
 

where C1 and C2 are coefficients that can be calculated easily from the boundary 

conditions. H(R) and G(R) are general solutions; while I(R) is the particular solution of 

the differential equation. The particular solution of the differential equation can be 

calculated as (Kreyszig, 2010): 

 

(21)    
   

 
 

   

 

F R H R F R G R
I R G R dR H R dR

W R W R
   

 

where: 

(22)    
 

 
 dH R dG R

W R G R H R
dR dR

 
 

To solve Eq. (18), a particular relation must be firstly attributed to the mechanical 

properties. Power function is the most common function for cylindrical hollow tubes. 

For constant Poisson’s ratio (ν), the elasticity modulus (E), the thermal expansion 

coefficient (α) and thermal conductivity (k) can be considered as: 

(23)   1n

iE R E R
 

(24)   2n

iR R 
 

(25)   3n

ik R k R
 

where ki is the thermal conductivity on the inner surface of the cylinder and n1, n2 and n3 

are material parameters. The homogeneous part of the Eq. (18) can be also obtained just 

by applying Eqs. (23) to (25): 

(26)  
2

2 2
1 12

1

1 1 0
Ad U dU

R n R n U
dR dR A

 
     

   

Eq. (26) demonstrates an Euler-Cauchy equation. Assuming U=Rm, the characteristic 

equation can be achieved as:  

(27) 
2 2

1 1

1

1 0
A

m n m n
A

 
    

   

The roots of Eq. (27) are: 
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(28) 
21 2

1,2 1 1

1

4
   ; 4

2

n A
m n n

A

  
    

 

Given the limitations of Poisson's ratio (0<υ<0.5), the value of Δ is always positive. As 

a result, m1 and m2 always have distinct real values. Thus, the general solutions of G(R) 

and H(R) are: 

(29) 
 

 

1

2

m

m

G R R

H R R

 


  

Substituting Eq. (29) into Eq. (22) results in: 

(30)     1 2 1

2 1

m m
W R m m R

 
 

 

Additionally, by substituting Eqs. (29) and (30) in Eq. (21), one can reach such the 

following relation: 

(31)      1 1 2 21 1

2 1

1 m m m m
I R R R F R dR R R F R dR

m m

      
   

 

In order to calculate the particular solution stated in the above equation, the term F(R) 

should be expressed explicitly; However, in order to calculate F(R), the relation of 

temperature gradient T should be obtained in explicit form and in terms of polar radius 

r. 

 

2.1  Axisymmetric Heat Transfer Equation 

The steady state heat transfer in cylindrical coordinate under axisymmetric condition 

can be obtained using the following famous ODE (Rohsenow & Warren,1998): 

(32) 0
d dT

kr
dr dr

 
 

   

With reference to Eq. (25), the above equation can be expressed as: 

(33) 3 1
0

nd dT
R

dR dR

 
 

   

Relative to the value of ni, two cases of ni=0 and ni≠0 must be studied and analyzed. 

 

2.1.1  Case 1 ni≠0 

 

In this case, the solution of the differential equation becomes: 

(34) 3

1 2

n
T D R D


 

 

where D1 and D2 are constants that can be calculated from the following boundary 

conditions: 
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(35) 
 

 

 

  *

1 1
      

i i

o o

T RT r r T

T r r T T R K T

    
 

       

Note also that: 

(36) 
*

o

i

o

i

r
K

r

T
T

T






 
  

By applying the boundary conditions, one can attain such the following relations: 

(37) 
3

3

3

*

1

*

2

1

1

1

n

n

n

T
D

K

T K
D

K







 
 


 

   

Thus, in this case, F(R) in Eq. (18) can be obtained by substituting Eqs. (23), (24) and 

(37) into Eq. (19):       

(38)      2 3 21 1

1 2 3 1 1 2 2

n n n
F R n n n D R n n D R

  
      

 

Consequently, the particular solution I(R), will be accomplished by substituting Eq. (37) 

into Eq. (31) as: 

(39)   2 3 21 1

3 4

n n n
I R C R C R

  
 

 

where: 

(40) 

 

   

 

   

1 2 3 1

3

1 2 3 2 2 3

1 2 2

4

1 2 2 2

1 1

1 1

n n n D
C

m n n m n n

n n D
C

m n m n

  


       


  
        

Now, the complete solution for U(R) is the sum of homogenous and particular solutions, 

i.e.  

(41)   2 31 2 21 1

1 2 3 4

n nm m n
U R C R C R C R C R

  
   

 

Finally, by substituting Eqs. (23), (24), (34) and (40) into Eq. (14), the resulting radial 

and circumferential stress expressions are: 

(42) 1 2 31 1 2 1 1 21 1

11 12 13 14

n n nm n m n n n

r Q R Q R Q R Q R      
   

 

(43) 1 2 31 1 2 1 1 21 1

21 22 23 24

n n nm n m n n nQ R Q R Q R Q R
     

   
 

where: 
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(44) 

 

 

 

 

21 1 1 2 1

22 1 2 2 2

23 2 3 2 3 1 3 1 1

24 2 2 4 1 4 1 2

1

1

Q A m A C

Q A m A C

Q n n A C A C A D

Q n A C A C A D

 

 

     

    
 

 

 

 

 

11 1 1 2 1

12 2 1 2 2

13 2 3 1 3 2 3 1 1

14 2 1 4 2 4 1 2

1

1

Q m A A C

Q m A A C

Q n n A C A C A D

Q n A C A C A D

 

 

     

    
 

 In Eqs. (41), (42) and (43) the constants C1 and C2 are still unknown. As mentioned 

previously, these constants must be calculated from mechanical boundary conditions i.e. 

(45) 
 

 

 

  *

1 1
      

rr i i

r o o r

Rr r P

r r P R K P



 

     
 

         

in which: 

(46) 
* o

i

P
P

P


 

By applying the boundary conditions of Eq. (45), constants C1 and C2 are obtained as: 

(47) 

 

1 3 4 1 32 1 2 1 2 1

1 1 2 1 1 1 2 1 1 1 2 1

1 1 1 *

13 141 1 1 1 1 1

1
1 1 2

n n n n nm n m n m n

m n m n m n m n m n m n

K K K K K P
Q Q

K K K K K K
C

m A A

       

           

   
  

   


 

(48) 

 

1 3 4 1 31 1 1 1 1 1

2 1 1 1 2 1 1 1 2 1 1 1

1 1 1 *

13 141 1 1 1 1 1

2
2 1 2

n n n n nm n m n m n

m n m n m n m n m n m n

K K K K K P
Q Q

K K K K K K
C

m A A

       

           

   
  

   


 

It is obvious that the calculation of the constants C1 and C2, will subsequently results in 

the non-dimensional radial displacement U together with the non-dimensional radial and 

circumferential stresses σr and σθ. 

 

2.1.2 Case 2  ni =0 

 

With the same procedure, the solution of the differential equation becomes: 

(49)  1 2lnT D R D 
 

where D1 and D2 are the constants that must be calculated from the thermal boundary 

conditions expressed in Eq. (35): 

(50)  

*

1

2

1

ln

1

T
D

K

D

 



   

Thus, in this case by substituting Eqs. (23), (24) and (50) into Eq. (19), F(R) turns into:       

(51)        2 21 1

1 2 1 1 1 2 2ln
n n

F R n n D R R D n n D R
 

          

Consequently, the particular solution I(R) will be realized by substituting Eq. (51) in Eq. 

(31): 
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(52)    2 21 1

3 4ln
n n

I R C R R C R
 

 
 

where: 

(53) 

 

  

 

  

  

   

1 2 1

3

1 2 2 2

1 1 2 2 1 2 1 2 1

4 2 2

1 2 2 2 1 2 2 2

1 1

2 2

1 1 1 1

n n D
C

m n m n

D n n D n n n n D
C

m n m n m n m n

  


     


        
              

The complete solution for U(R), which is the sum of homogenous and particular 

solutions, develops into:  

(54)    1 2 2 21 1

1 2 3 4ln
m m n n

U R C R C R C R R C R
 

   
 

At last, by substituting Eqs. (23), (24), (49) and (54) into Eq. (14), the resulting radial 

and circumferential stress expressions are: 

(55)  1 1 2 1 1 2 1 21 1

11 12 13 14ln
m n m n n n n n

r Q R Q R Q R R Q R      
   

 

(56)  1 1 2 1 1 2 1 21 1

21 22 23 24ln
m n m n n n n n

Q R Q R Q R R Q R
     

   
 

where: 

 

(57) 

 

 

 

 

21 2 1 1 1

22 2 2 1 2

23 2 2 3 1 3 1 1

24 2 3 2 2 4 1 4 1 2

1

1

Q A m A C

Q A m A C

Q n A C A C A D

Q A C n A C A C A D

 

 

    

     
 

 

 

 

 

11 1 1 2 1

12 1 2 2 2

13 2 1 3 2 3 1 1

14 1 3 2 1 4 2 4 1 2

1

1

Q A m A C

Q A m A C

Q n A C A C A D

Q A C n A C A C A D

 

 

    

     
 

The constants C1 and C2, in this case, are gained by applying mechanical boundary 

conditions expressed in Eq. (45), i.e. 

 

(58) 

 

 

1 3 1 32 1 2 1

1 1 2 1 1 1 2 1 1 1 2 1

1 1 *

13 141 1 1 1 1 1

1
1 1 2

ln
n n n nm n m n

m n m n m n m n m n m n

K K K K K P
Q Q

K K K K K K
C

A m A

    

           

  
   

   


 

(59) 

 

 

1 3 1 31 1 1 1

2 1 1 1 2 1 1 1 2 1 1 1

1 1 *

13 141 1 1 1 1 1

2
1 2 2

ln
n n n nm n m n

m n m n m n m n m n m n

K K K K K P
Q Q

K K K K K K
C

A m A

    

           

  
   

   

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3.0  RESULTS AND DISCUSSIONS 

In previous section, the governing equations of FGM thick-walled cylinder under 

mechanical and thermal loads were successfully derived using plane elasticity theory. In 

this section, a practical case study is investigated and the results are compared to that 

one obtained from elastic cylinders. Without any loss of generality, the inside and 

outside temperatures and relative pressures are assumed to be 25 ̊C, 300 ̊C, 80 MPa and 

zero, respectively. The elasticity modulus, Poisson’s ratio, the coefficients of thermal 

expansion and heat conduction at the inner surface of the cylinder were selected as Ei = 

200 GPa, ν=0.3, αi = 17.5×10-6 /◦C and ki=15 W/mK, respectively. Due to use of R as 

dimensionless radius, the derived equations are independent on the inner (ri) and outer 

(ro) radii; however, the radii values of ri=40 mm and ro=60 mm were chosen to analyze 

the numerical solution. To better investigation, the results have been presented for 

various values of FGM parameter in the range of -2≤n≤2. In order to perform numerical 

analysis, a geometry sample was modeled using finite element method for a 

comparative study. The finite element (FE) model was constructed using COMSOL 

Multiphysics® software. The outputs of this simulation have been utilized to compare 

the thermo-elastic results obtained from both analytical and numerical solutions for the 

functionally graded thick-walled cylinder under a combination of mechanical and 

thermal loads. 

 

Figure 2 shows the radial distribution of elasticity modulus E versus dimensionless 

radius R for various values of n. As can be observed from this figure, elasticity modulus 

is constant at inner surface for different values of n, while it increases at outer surface 

when n enhances from n=-2 to n=2. On the other hand, with attention. 

 

Figure 2. Radial distribution of elasticity modulus. 
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to the slope of elasticity modulus curves, it is seen that the absolute value of curve 

slopes for n>0, are greater than the case of n<0. Figure 3 indicates the radial distribution 

of temperature in homogeneous (n=0) and heterogeneous (n≠0) cylinders in present 

work. As shown in this figure, the temperature reduces by increasing the value of n 

from n=-2 to n=2. Moreover, this figure reveals that the temperature decreases with an 

increase in radius. 

 

Figure 3. Distribution of the normalized radial temperature under the thermal loading.  

 

Figure 4 demonstrates the dimensionless radial stress distribution 𝜎𝑟  versus 

dimensionless radius R in response of both analytical (AS) and numerical (NS) 

solutions. According to this figure, the magnitude of radial stress decreases/increases for 

n<0 / n>0, respectively. Therefore, this decrease and increase in the radial stress 

depends on |𝑛|. Based on this figure, for non-dimensional radius R<1.1, the stress 

values for all amount of n are relatively close to each other; while, significant 

differences in stress values are seen for R>1.1.  

 

The dimensionless circumferential stress 𝜎𝜃  versus dimensionless radius R for 

homogeneous (n=0) and heterogeneous (n≠0) cylinders is plotted in Figure 5. According 

to this figure, circumferential stress for more negative values of n in internal, central and  
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Figure 4. Normalized radial stress of homogeneous (n=0) and FGM heterogeneous 

(n≠0) cylinders under the combined thermo-mechanical loads. 

 

 

Figure 5.  Normalized circumferential stress of homogeneous (n=0) and FGM 

heterogeneous (n≠0) cylinders under the combined thermo-mechanical 

loads. 
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external regions of cylinder is less than, equal to and higher than the corresponding 

homogeneous (n=0) cylinder respectively and vice versa for more positive values of n. 

In other words, with reference to this figure, it can be found that the curves of 

circumferential stress meet and cross each other in the range of 1.3≤R≤1.4. Figures 4 

and 5 can illustrate the important role of radial thickness in terms of radial and 

circumferential stresses in FGM thick-walled cylinder. 

 

Figure 6 explains the distribution of normalized radial displacement versus non-

dimensional radius R in homogeneous (n=0) and heterogeneous (n≠0) cylinders. As can 

be observed from this figure, the displacement of heterogeneous (n≠0) cylinder is lower 

than homogeneous (n=0) one for negative values of n and would be vice versa for n>0. 

This ratio, of course, is almost constant along the wall and the amount of differences 

depend on the magnitude of |𝑛|.  

Figure 6.  Normalized radial displacement of homogeneous (n=0) and FGM 

heterogeneous (n≠0) cylinders under the combined thermo-mechanical 

loads 

 

Overall, according to the all above-mentioned results, it can be concluded that the radial 

and circumferential stresses and the radial displacement of FGM heterogeneous (n≠0) 
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whatever |𝑛| grows to be larger, more changes can be seen. Therefore, based on the 

need to decrease or increase in stress and displacement of FGM heterogeneous (n≠0), 

we can use the positive or negative n parameter in our design. Moreover, it can be found 

from Figures 4, 5 and 6 that there are good agreements between analytical (AS) and 

numerical (NS) solutions. These agreements give acceptable approvals on the governing 

equations obtained in this present study. The FEM contours of stresses and 
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displacements of both homogeneous (n=0) and FGM heterogeneous (n≠0) cylinders for 

all values of n are presented in Figure 7. 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

   

   

   

   
Figure 7. Distribution of (a) radial stress, (b) circumferential stress and (c) radial 

displacement of homogeneous (n=0) and FGM heterogeneous (n≠0) cylinders under the 

combined thermo-mechanical loads (Row No.1 to row No.5 are respectively related to: 

n=-2, -1, 0, 1, 2). 
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4.0  CONCLUSIONS 

In this research, both the analytic and numeric solutions of homogeneous and FGM 

heterogeneous thick-walled cylinders were successfully performed under a combination 

of mechanical and thermal loads. The numerical results indicated that the governing 

equations, obtained in present work, are acceptable in order to analyze the homogeneous 

and FGM heterogeneous thick-walled cylinders under joint mechanical and thermal 

loads. They let somebody see and predict the optimum state of problem in terms of 

stress and displacement based on desired design requirements. It was found that the 

material parameter has great effects on the stress and displacement of FGM 

heterogeneous thick-walled cylinders. In other words, from a design point of view, they 

would be useful parameters as they can be tailored to specific applications in order to 

control the stress and displacement of thick-walled FGM cylinder. 
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