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In this paper, prediction of fluid flow in shear driven cavities is presented.  
Lattice Boltzmann Method is used as the alternative to conventional 
Computational Fluid  Dynamics. The geometry of shear driven cavities as 
well as the Reynolds numbers is varied. The simulation is conducted for 
three types of shear driven cavities which are square cavity and triangular 
cavities. The obtained streamline patterns and the centre of vortex for each 
type is in excellent agreement with benchmark results. It is also found that 
the streamline patterns is significantly affected by the geometrical shape of 
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1.0 Introduction  
 
Recently, due to rapidly increasing computational power, computational methods have 
become the essential tools to conduct researches in various engineering fields. In parallel to 
the development of high speed digital computer, computational fluid dynamics (CFD) has 
become the new third approach apart from theory and experiment in the philosophical study 
and development of the whole discipline of fluid dynamics (Anderson, 1995).  
  
Solving the famous Navier-Stokes equation would require the knowledge of CFD since the 
non-linearity and complexity of the equation making it that there is currently no analytical 
solution to these equations except for a small number of special cases (Sidik, 2007).  A few 
examples of numerical methods were introduced by experts in CFD field in order to solve 
the Navier-Stokes equation numerically. The methods are like Finite Difference Method, 
Finite Element Method and Finite Volume Method. 
 
The Lattice Boltzmann Method (LBM) has become considerably alternative method to 
solve fluid flow (Munir et al , 2011).  The way LBM works is by predicting the evolution of 
particle distribution function and calculates the macroscopic variables by taking moment to 
the distribution function.  
  



ISSN: 2180-1053        Vol. 3     No. 2    July-December 2011

Journal of Mechanical Engineering and Technology 

56 59 
 

The basic idea of Boltzmann work is that a gas is composed of interacting particles that can 
be explained by classical mechanics.   The mechanics can be very simple where it contains 
streaming in space and billiard-like collisions interactions (Sidik, 2007).  The starting point 
in LBM scheme is by tracking the evolution of the single-particle distribution.  The concept 
of particle distribution has already well developed in the field of statistical mechanics while 
discussing the kinetics theory of gases and liquids.  The definition implies that the probable 
number of molecules in a certain volume at certain time made from a huge number of 
particles in a system that travel freely, without collisions, for distances (mean free path) 
long compared to their sizes.  Once the distribution functions are obtained, the 
hydrodynamics equation can be derived. 
 
There are many advantages of LBM as compared to the conventional computational fluid 
dynamics. One of the main merits of LBM is that it has been proven successfully able to 
solve compressible Navier-Stokes equations (Malapinas et al., 2010). Apart from that, the 
algorithm of LBM can be easily re-worked to enable it to be applied on more complex 
simulation components (Mohd Irwan et al., 2010). 
 
1.1 Mesoscale Lattice Boltzmann Model 

 
Ludwig Boltzmann (1844-1906) introduced a transport equation based on statistical 
mechanics describing the evolution of gas particle in a system as; 
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a and c  stand for density distribution function, mesoscopic speed, acceleration 
due to external force and collision function respectively. If there is no external force, Eq. (1) 
is no more than a hyperbolic wave equation with source term given as 
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Any solution of the Boltzmann equation, Eq. (2), requires an expression for the collision 
operator  . If the collision is to conserve mass, momentum and energy, it is required that 
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However, the expression for    is too complex to be solved.  Even if we only consider two-
body collision, the collision integral term needs to consider the scattering angle of the 
binary collision, the speed and direction before and after the collision, etc. Any replacement 
of collision must satisfy the conservation law as expressed in Eq. (3). The idea behind this 
replacement is that large amount of detail of two-body interaction is not likely to influence 
significantly the values of many experimental measured quantities (Succi, 2001). 
There are a few version of collision operator published in the literature. However, the most 
well accepted version due to its simplicity and efficiency is the Bhatnagar Gross Crook 
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collision model with a single relaxation time (Bhatnagar et al., 1954). The equation that 
represents this model is given by ; 
 

    


eqff 
      (4) 

where eqf  is the equilibrium distribution function and   is the time to reach equilibrium 
condition during collision process and is often called the relaxation time. Eq. (4) also 
describes that 1/   of non-equilibrium distribution relaxes to equilibrium state within time  
  on every collision process.  Substituting Eq. (4) into Eq. (2) yield  
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The equation (5) above is known as Boltzmann Bhatnagar- Gross-Krook(BGK) equation. 
Eq. (5) describes two main processes at mesoscale level. The left hand side refers to the 
propagation of distribution function to the next node in the direction of its probable velocity, 
and the right hand side represents the collision of the particle distribution functions. In 
lattice Boltzmann formulation, magnitude of c is set up so that in each time step t, every 
distribution function propagates in a distance of lattice nodes spacing x. This will ensure 
that distribution function arrives exactly at the lattice nodes after t and collides 
simultaneously. 
In order to apply Eq. (5) into the digital computer, the mesoscopic velocity space has to be 
discretised. This can be done by discretising the physical space into uniform lattice nodes. 
Every node in the network is then connected with its neighbours through a number of lattice 
velocities to be determined through the model chosen. The general form of the lattice 
velocity model is expressed as DnQm where D represents spatial dimension and Q is the 
number of connection (lattice velocity) at every node. There are many lattice velocity 
models published in the literature, however, the most well used due to its simplicity is 
D2Q9.  
 
1.2 The Lattice Boltzmann Equation Descretization 

 
The Boltzmann equation with BGK collision model is as below: 
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where Eq. (5) is well-known as the BGK Boltzmann equation as stated in previous sub 
section. The Maxwell-Boltzmann equilibrium distribution function is defined as (Liboff, 
1990) 
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The BGK lattice Boltzmann equation can be derived by further discretise Eq. (5) using an 
Euler time step in conjunction with an upwind spatial discretization and then setting the grid 
spacing divided by the time step equal to the velocity; 
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As a result: 
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The equation above has a simple physical interpretation in which the collision term is 
evaluated locally and there is only one streaming step operation per lattice velocity. This 
stream and collide particle interpretation is a result of the fully Lagrangian character of the 
equation for which the lattice spacing is the distance traveled by the particles during a time 
step ( Sterling, 1996). 
 
Although first order discretizations have been used, the Lattice Boltzmann method is second 
order in both space and time when contributions that result from discretization error are 
taken to represent physics (Reider et al., 1995).  
 
The macroscopic variables such as the density,   and flow velocity, u  can be evaluated as 
the moment to the distribution function as follow 
 

 eqff  or   cc dffd eq        
 (10) 

ucc  eqff  or ucccc   dffd eq        
 (11) 

 
1.3 Prediction of flow for shear driven cavities by using LBM scheme 

 
Over the years, fluid flow behaviors inside lid driven cavities have drawn many interested 
researchers and scientists. Examples of the applications of lid driven cavities are in material 
processing, dynamics of lakes, metal casting, galvanizing and etc. Two dimensional LBM 
simulation has been done successfully by Houat &Youcefi in 2011Numerous studies have 
been carried out on flow patterns inside a cavity.   Excellent reviews on lid driven square 
cavity were done by (Ghia et al. , 1982), (Erturk et al., 2005) and (Erturk et al., 2007).  
Erturk et al. has successfully conducted simulation of flows inside triangular cavities.  
However, all these researchers conducted the fluid flow simulation by solving the Navier-
Stokes equations.In addition to that, numerical simulations of fluid flow in square cavity by 
using LBM have been done by (Hou et al., 1995). However, the Reynolds number had been 
used is only up to 7000. Apart from the square cavity, simulations of triangular cavity up to 
500 by using LBM has been shown successfully by (Duan et al., 2007). 
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2.0  Method of solution to solve flow in shear driven cavities 
 
In this section, the details of methodology in simulating fluid flow inside shear driven 
cavities are presented. 
 
2.1   Simulation of flow for shear driven square cavity 
 
The lid driven cavity flow is a flow inside a cavity where the top wall slides to the right at a 
constant speed of U while the other three walls are made stationary.   This type of flow has 
been used as a benchmark problem for many numerical methods due to its simple geometry 
but complicated flow behaviors.  The geometry of the square cavity for this problem is 
shown in FIGURE  1. 
 
 
 
 
 
 
 
 
 
 

FIGURE 1 Geometry of shear driven square cavity 
 
LBM is applied to this lid driven cavity flow of height L.  The Reynolds number (Re) was 
varied from 100 to 10000. TABLE 1 shows the grid size used for the corresponding 
Reynolds numbers. 
 

TABLE 1 Grid size for each Reynolds number for lid driven square cavity flow 
 

Reynold
s 

Number 

 
Grid Size 

100 400 x 400 
400 400 x 400 

1000 400 x 400 
3200 400 x 400 
5000 400 x 400 
7500 
1000 

400 x 400  
400 x 400 

 
For triangular cavity case, three types of the triangular cavity geometry is selected for this 
problem. FIGURE  2 shows the geometry of the triangles. 
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FIGURE 1 Geometry of shear driven square cavity 
 
LBM is applied to this lid driven cavity flow of height L.  The Reynolds number (Re) was 
varied from 100 to 10000. TABLE 1 shows the grid size used for the corresponding 
Reynolds numbers. 
 

TABLE 1 Grid size for each Reynolds number for lid driven square cavity flow 
 

Reynold
s 

Number 

 
Grid Size 

100 400 x 400 
400 400 x 400 
1000 400 x 400 
3200 400 x 400 
5000 400 x 400 
7500 
1000 

400 x 400  
400 x 400 

 
For triangular cavity case, three types of the triangular cavity geometry is selected for this 
problem. FIGURE  2 shows the geometry of the triangles. 
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FIGURE  2 Geometry of triangular cavities used 
 

 
The grid size used for triangular cavity with 90° at top right corner is shown in TABLE 2 
below.  
 
 

TABLE 2. Grid size for each Reynolds number for lid driven triangular cavity flow for triangular 
cavity’ type a’ 

Reynold
s 

Number 

 
Grid Size 

100 300 x 300 
500 300 x 300 
1000 300 x 300 
1500 300 x 300 
2000 300 x 300 
2500 

 
300 x 300  

 
 
In addition to that, the grid size used for triangular type ‘b’is shown in TABLE 3 below. 
 

TABLE 3. Grid size for each Reynolds number for lid driven triangular cavity flow for triangular 
cavity’ type b’ 

 
Reynold

s 
Number 

 
Grid Size 

100 300 x 300 
500 300 x 300 
1000 300 x 300 
1500 300 x 300 
2000 300 x 300 
2500 

 
300 x 300  

 
 

 
(a)Isosceles right triangle with 90 º at top 
right corner(type a) 

(b)Isosceles right triangle with 
90º at top left corner (type b) 

(c)Isosceles right triangle with 90º at corner 
angle (type c) 
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FIGURE  2 Geometry of triangular cavities used 
 

 
The grid size used for triangular cavity with 90° at top right corner is shown in TABLE 2 
below.  
 
 

TABLE 2. Grid size for each Reynolds number for lid driven triangular cavity flow for triangular 
cavity’ type a’ 

Reynold
s 

Number 

 
Grid Size 
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1000 300 x 300 
1500 300 x 300 
2000 300 x 300 
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In addition to that, the grid size used for triangular type ‘b’is shown in TABLE 3 below. 
 

TABLE 3. Grid size for each Reynolds number for lid driven triangular cavity flow for triangular 
cavity’ type b’ 

 
Reynold
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Number 

 
Grid Size 
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1000 300 x 300 
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(a)Isosceles right triangle with 90 º at top 
right corner(type a) 

(b)Isosceles right triangle with 
90º at top left corner (type b) 

(c)Isosceles right triangle with 90º at corner 
angle (type c) 
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TABLE 4 depicts the corresponding grid size with respect to Reynolds number. 
 

TABLE 4. Grid size for each Reynolds number for lid driven triangular cavity flow for triangular 
cavity type ‘ c ‘ 

 
Reynold

s 
Number 

 
Grid Size 

100 400 x 200 
400 400 x 200 
700 400 x 200 

1000 400 x 200 
3000 400 x 200 
5000 400 x 200 
7000 400 x 200 
10000 400 x 200 

 
For each case, velocity, U of 0.1 lu/s is applied on top side of the triangular cavities. 
The simulation was done by using Fortran 90 language. The flowchart of the programming 
implementation is depicted in FIGURE  3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE  3 Flow chart of the execution of the programming 
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FIGURE  2 Geometry of triangular cavities used 
 

 
The grid size used for triangular cavity with 90° at top right corner is shown in TABLE 2 
below.  
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In addition to that, the grid size used for triangular type ‘b’is shown in TABLE 3 below. 
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TABLE 2
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TABLE 4 depicts the corresponding grid size with respect to Reynolds number. 
 

TABLE 4. Grid size for each Reynolds number for lid driven triangular cavity flow for triangular 
cavity type ‘ c ‘ 

 
Reynold

s 
Number 

 
Grid Size 

100 400 x 200 
400 400 x 200 
700 400 x 200 

1000 400 x 200 
3000 400 x 200 
5000 400 x 200 
7000 400 x 200 
10000 400 x 200 

 
For each case, velocity, U of 0.1 lu/s is applied on top side of the triangular cavities. 
The simulation was done by using Fortran 90 language. The flowchart of the programming 
implementation is depicted in FIGURE  3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE  3 Flow chart of the execution of the programming 
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3.0  Simulation Results  
 
3.1  Shear Driven Square Cavity 
 
FIGURE   4 (a)-(h) shown below depicts the corresponding streamline contours for lid 
driven cavity square cavity.    
 
 
 
 
 
 
 

(a) Re= 100                  (b) Re=400 
 
 
 
 
 
 
 
 

(a) Re=1000                (d)  Re=3200 
 
 
 
 
 
 
 
          (e)    Re=5000     (f)  Re= 7500 
 
 
 
 
 
 
 
 (g) Re= 10000                                     (h) Re= 12500 
 

FIGURE  4 Streamline patterns for lid driven square cavity by using LBM scheme 
 
From the FIGURE 4 shown above, it can be deduced the number of secondary vortex 
increases when the Reynolds number is increased.  For instance, when Reynolds number 
applied is 400, the first secondary vortex appears in the streamline patterns. The second 
secondary vortex appeared when Reynolds number is increased to 1000 as shown in 
FIGURE  4 (b).  The maximum number of secondary vortex appeared in the streamline 
contours for this type of problem is three. 
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Next, the location of the primary vortex for every Reynolds number was also calculated and 
is shown in TABLE 5 below. 
 

TABLE 5. Location of the centre of the primary vortex for lid driven square cavity. 
 

Reynolds 
number 

(Re) 

Obtained 
Results 

Reference 
benchmark 

(Ghia et 
al.,1982) 

Reference 
Benchmark 
(Hou, et al., 

1995) 

100 (0.6200,0.740
0) 

   (0.6172, 
0.7344) 

(0.6196,0.737
3) 

400 (0.5600,0.600
0) 

(0.5547,0.605
5) 

(0.5608,0.607
8) 

1000 (0.5300,0.565
0) 

(0.5313,0.562
5) 

(0.5333,0.564
7) 

3200 (0.5200, 
0.5400) 

(0.5165,0.546
9) 

NA 

5000 (0.5150,0.535
0) 

(0.5117,0.535
2) 

(0.5176,0.537
3) 

7500 (0.5150,0.523
5) 

(0.5117,0.532
2) 

(0.5176,0.533
3) 

10000 (0.5133,0.528
3) 

(0.5117,0.533
3) 

NA 

 
From the results presented in FIGURE  4 (a) to (h) and also TABLE 5, it is proven that the 
LBM is able to produce an excellent agreement with the results predicted by conventional 
numerical methods.  They are apparent that the flow structures are in good agreement with 
the results published in the literature by previous researchers. 
 
3.2  Isosceles triangular type ‘a’ 
 
FIGURE  5 (a) to (f) show the streamline patterns of flow inside isosceles triangle cavity with 90° 
at top right corner.  
 
 
 
 
 
 
 
 
 
 
 

(a) Re=100       (b)   Re=500                                 (c)   Re=1000 
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From the results presented in FIGURE  4 (a) to (h) and also TABLE 5, it is proven that the 
LBM is able to produce an excellent agreement with the results predicted by conventional 
numerical methods.  They are apparent that the flow structures are in good agreement with 
the results published in the literature by previous researchers. 
 
3.2  Isosceles triangular type ‘a’ 
 
FIGURE  5 (a) to (f) show the streamline patterns of flow inside isosceles triangle cavity with 90° 
at top right corner.  
 
 
 
 
 
 
 
 
 
 
 

(a) Re=100       (b)   Re=500                                 (c)   Re=1000 
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           (d)       Re=1500                 (e)       Re=2000                      (e)       Re=2500  
    

FIGURE  5 Streamline patterns for isosceles triangular type ‘a’ 
 
From the figures shown above, there are two significant features revealed by the streamline 
contours. The first feature is that the number of vortices is increased when the Reynolds 
(Re) numbers are increased.  As we can see in FIGURE  5 (c), the number of vortex is 
increased from previous which are two to three when the Re number is 1000.  Furthermore, 
the second significant feature is that the centre of the primary vortex moves downstream to 
the right as Reynolds number is increased. For instance, FIGURE  5(a) depicts the centre of 
the primary vortex being located at 4/5 of the bottom vertex. However, this centre moves 
downward to 3/5 of the bottom vertex as the Reynolds number increases. Besides that, the 
primary vortex moves to downstream to the left as the value of the Reynolds number is 
increased.  The location of the primary vortex for respective Reynolds number is shown in 
FIGURE  6 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6 Effect of the Reynolds number to location of the centre of the primary  vortex for 
isosceles triangular type ‘a’  is shown in figure below. 

 
It is noticeable that the centre of the primary vortex moves downward to the left as the 
Reynolds number is increased.   Apart from the plotted location of the primary vortex, the 
coordinate of the primary vortex is also compared with the existing benchmarks. The results 
is presented in TABLE 6  below.  
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Next, the location of the primary vortex for every Reynolds number was also calculated and 
is shown in TABLE 5 below. 
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From the results presented in FIGURE  4 (a) to (h) and also TABLE 5, it is proven that the 
LBM is able to produce an excellent agreement with the results predicted by conventional 
numerical methods.  They are apparent that the flow structures are in good agreement with 
the results published in the literature by previous researchers. 
 
3.2  Isosceles triangular type ‘a’ 
 
FIGURE  5 (a) to (f) show the streamline patterns of flow inside isosceles triangle cavity with 90° 
at top right corner.  
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Next, the location of the primary vortex for every Reynolds number was also calculated and 
is shown in TABLE 5 below. 
 

TABLE 5. Location of the centre of the primary vortex for lid driven square cavity. 
 

Reynolds 
number 

(Re) 

Obtained 
Results 

Reference 
benchmark 

(Ghia et 
al.,1982) 

Reference 
Benchmark 
(Hou, et al., 

1995) 

100 (0.6200,0.740
0) 

   (0.6172, 
0.7344) 

(0.6196,0.737
3) 

400 (0.5600,0.600
0) 

(0.5547,0.605
5) 

(0.5608,0.607
8) 

1000 (0.5300,0.565
0) 

(0.5313,0.562
5) 

(0.5333,0.564
7) 

3200 (0.5200, 
0.5400) 

(0.5165,0.546
9) 

NA 

5000 (0.5150,0.535
0) 

(0.5117,0.535
2) 

(0.5176,0.537
3) 

7500 (0.5150,0.523
5) 

(0.5117,0.532
2) 

(0.5176,0.533
3) 

10000 (0.5133,0.528
3) 

(0.5117,0.533
3) 

NA 
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numerical methods.  They are apparent that the flow structures are in good agreement with 
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           (d)       Re=1500                 (e)       Re=2000                      (e)       Re=2500  
    

FIGURE  5 Streamline patterns for isosceles triangular type ‘a’ 
 
From the figures shown above, there are two significant features revealed by the streamline 
contours. The first feature is that the number of vortices is increased when the Reynolds 
(Re) numbers are increased.  As we can see in FIGURE  5 (c), the number of vortex is 
increased from previous which are two to three when the Re number is 1000.  Furthermore, 
the second significant feature is that the centre of the primary vortex moves downstream to 
the right as Reynolds number is increased. For instance, FIGURE  5(a) depicts the centre of 
the primary vortex being located at 4/5 of the bottom vertex. However, this centre moves 
downward to 3/5 of the bottom vertex as the Reynolds number increases. Besides that, the 
primary vortex moves to downstream to the left as the value of the Reynolds number is 
increased.  The location of the primary vortex for respective Reynolds number is shown in 
FIGURE  6 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6 Effect of the Reynolds number to location of the centre of the primary  vortex for 
isosceles triangular type ‘a’  is shown in figure below. 

 
It is noticeable that the centre of the primary vortex moves downward to the left as the 
Reynolds number is increased.   Apart from the plotted location of the primary vortex, the 
coordinate of the primary vortex is also compared with the existing benchmarks. The results 
is presented in TABLE 6  below.  
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                     (d) Re=1500   (e) Re=2000            (f) Re= 2500 
 

FIGURE  7  Streamline pattern for isosceles triangular type ‘b’ 
 
The location of the primary vortex is presented in the next TABLE 7. 
 

TABLE 7. Location of the centre of the primary vortex for isosceles triangular cavity type ‘b’ 

Reynolds 
number
  

Reference 
(Erturk & 

Gokcol ,2007) 

Obtained 
Results by 
using LBM 

scheme 

100 
   
(0.4473,0.851
6) 

(0.4450,0.850
0) 

500 (0.5469,0.849
6) 

(0.5550,0.850
0) 

1000 (0.6094,0.869
1) 

(0.6050,0.865
0) 

1500 (0.6582,0.884
8) 

(0.6567,0.883
3) 

2000 (0.6953,0.896
5) 

(0.6900,0.893
3) 

2500 (0.7227,0.904
3) 

(0.7167,0.903
3) 

   
 
FIGURE   8 depicts the effect of the Reynolds number to location of the centre of the 
primary vortex. As indicated in the figure, the primary vortex moved upward to the right as 
the Reynolds number increases. This behaviour is further validated in TABLE 6 above 
which present the coordinate of the primary vortex with respect to the Reynolds number. 
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TABLE 6. Location of the centre of the primary vortex for isosceles triangular type ‘a’ 
 

Reynolds 
number
  

Reference 
(Erturk & 

Gokcol 
,2007) 

Obtained 
Results by 
using LBM 

scheme 

100 (0.7090,0.832
0) 

(0.7100,0.830
0) 

500 (0.7070,0.767
6) 

(0.7100,0.765
0) 

1000 (0.6992,0.755
9) 

(0.7000,0.755
0) 

1500 NA (0.7000,0.746
7) 

2000 NA (0.7000,0.746
7) 

2500 (0.6973,0.744
1) 

(0.7000,0.743
3) 

 
From TABLE 6 above, the results obtained is in good coherent as compared to the results 
done by previous researchers. 
 
3.3   Isosceles triangular type ‘b’ 
 
The results in term of streamline patterns for isosceles triangular type ‘b’ is shown in 
FIGURE   7 (a)-(f) below. As shown in the figure, it is noticeable that the secondary vortex 
becomes bigger as Reynolds number increases. The second significant feature of the results 
obtained is the additional number of secondary vortex when Reynolds number is higher.  
 
 
 
 
 
 
 
 
 
 

(a) Re=100                                (b)  Re= 500                                             (c) Re=1000 
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FIGURE  8  Effect of the Reynolds number to the location of the centre of the primary vortex for 
isosceles triangular type ‘b’ 

 
3.4  Isosceles triangular type ‘c’ 
 
The results in term of streamline patterns for isosceles triangular type ‘c’ is presented in 
FIGURE  9 (a) –(f) below. 
 
 
 
 
 
 
 

(a) Re=  100                                   (b)       Re= 400                                      (c) Re=700 
 
 
 
 
 
 
 
    (d)  Re=1000     (e) Re=3000                (f) Re=5000  
 
 
 
 
 
 
 
 
 
 (g) Re= 7000    (h)  Re=10000 

FIGURE 9  Streamline pattern for isosceles triangular type ‘c’ 
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In FIGURE 9 shown above, the flow contours (streamline patterns) with different Reynolds 
numbers are presented. The flow patterns reveal two significant features.   Firstly, as Re 
numbers are increased, the primary vortex (eddy) moves downstream to the right. For an 
instance, at Re=100, the location of primary vortex is roughly at 4/5 from the bottom vertex 
as shown in FIGURE  9 (a). Apart from the secondary vortex, no other vortex is visible for 
Re=100. However, for Re=400, there is secondary vortex located near the stagnant corner of 
the triangle as shown in FIGURE 9 (b). The shape of this secondary vortex becomes larger 
as Reynolds numbers is further increased as shown in FIGURE   9 (d) to FIGURE  9 (h).  
 
The second significant feature is the number of vortices in the cavity which is increased as 
the Re number is increased.  FIGURE  9 (e) shows that the third secondary vortex appears 
for Re=3000, located about 3/5 from the bottom corner of the cavity.  The primary vortex 
moves further upstream to the left before splitting into another secondary vortex when 
Re=5000, as shown in FIGURE  9 (f). For Re=7000 and Re=10000, the numbers of vortex 
in the cavity are five and six respectively.  
 

TABLE 8 Location of the centre of the primary vortex for isosceles triangular type ‘c’ 
Reynolds 
number
  

Results 
obtained by 

LBM 

100 (0.5450,0.7600
) 

400 (0.6100,0.7500
) 

700 (0.5950,0.7150
) 

1000 (0.5875,0.7150
) 

3000 (0.7400,0.8200
) 

5000 (0.7350,0.8100
) 

7000 (0.7583,0.6200
) 

10000 (0.4117,0.5375
) 
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FIGURE   10 Effect of the Reynolds number to location of the centre of the primary vortex for 
isosceles triangular type ‘c’ 

 
From the FIGURE 10 above, initially the primary vortex moves to upstream to the right as 
Reynolds number increases. However, at Re=3000 onwards, the primary vortex moves 
downstream to the left. This profile is significantly different that profile for the other two 
type of triangular cavities shown in previous sections.  
 
 
4.0   Conclusion  
 
Among the microscopic models existing in the literature, LBM, the model developed from 
continous Boltzmann equation, has evolved into a powerful tool for modelling complex 
flow since it was first appeared in 1980s.  Although the approach is based on the 
microscopic interactions, all macroscopic continuum equations such as the Navier-Stokes 
equation can be derived and recovered.   
 
Fluid flow behaviours in shear driven cavities have been demonstrated by using Lattice 
Boltzmann scheme successfully.  It was found that, the present approach correctly predicted 
the flow feature for different Reynolds numbers and yield excellent agreement with the 
results from previous works.  The streamline contours or patterns are in good agreement 
with Ghia et al.,  and Erturk et. al.  
Apart from that, it is found that the streamline patterns are heavily affected by the Reynolds 
number and also the geometry of the cavity. 
  
However there are few demerits of LBM.  When Reynolds number is large, the relaxation 
parameter in the LBM approaches to the stability margin if the number of mesh points is not 
very large.  There are few solutions have been proposed (He et al., 1996). However, a novel 
solution to this problem is still required. There is also not sufficient evidence to show that 
the LBM can be applied to aerodynamic turbulent flows.  At present time, one of the 
weaknesses of LBM for Computational Fluid Dynamics (CFD) is the lack of turbulence 
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modelling. The application of LBM to turbulent flows at high Reynolds number remains as 
an area of future development.  
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