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ABSTRACT

This paper concerns with the aspects of the object–oriented programming 
used to develop a nonlinear finite element for the analysis of plates based 
on Reissner–Mindlin theory. To study the shear locking problem in thin 
plates which occurs in the case of using Full integration method, three 
kinds of finite elements namely Bilinear, Serendipity and Lagrange with 
Full, Reduced and Selective Reduced integration methods, are used. By 
implementing three design patterns of Model–Analysis Separation, Model–
UI Separation and Modular Analyzer in the code, the reusability and the 
extendibility of the program in adding new elements with different number 
of nodes and integration methods have been increased.    
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1.0 IntrodUctIon

Most existing finite element software packages are developed in 
procedural–based programming languages. These packages are 
normally monolithic and difficult for a programmer to maintain and 
extend, though some of them are quite rich in terms of functionality. 
Extensibility usually requires access to, and manipulation of internal 
data structures. Due to the lack of data encapsulation and protection, 
small changes in one piece of code can ripple through the rest of the 
software system. For example, to add a new element to an existing 
procedural–based finite element analysis software package, the 
programmer is usually required to specify, at the element level, 
the memory pointers to global arrays. Exposing such unnecessary 
implementation details increases the software complexity and adds a 
burden to a programmer.
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Object Oriented (OO) design principles and programming techniques 
can be utilized in finite element analysis programs to support better 
data encapsulation and to facilitate code reuse. A number of object–
oriented finite element program designs and implementations have 
been presented in the literature over the past decade [1–4].

As shown in mentioned papers, the modularity, reusability and 
extendibility capacities of object–oriented finite element codes are the 
major characteristics of the approach. The object–oriented methodology 
has been most successfully applied to various domains of interest in 
finite element developments. Description becomes easier for algorithms 
and more natural for basic mathematical equations. Thus, the object–
oriented paradigm has been shown to be more appropriate for the easy 
description of complex phenomena. 

Software engineering researchers are developing sets of organizational 
concepts for designing qualified object–oriented software. These 
concepts called design patterns. Design patterns in software engineering 
have been proven to offer great benefits. Especially as engineering 
software becomes more object–oriented, the importance of design 
patterns cannot be underestimated.

In this research a set of design patterns for engineering finite element 
program is implemented using an object–oriented framework in C# 
to an example. This example is the elastic–plastic analysis of bending 
plates based on Reissner–Mindlin plate theory. To study the behavior of 
these plates, three kinds of finite element, namely Bilinear, Serendipity 
and Lagrange, are used. To overcome the shear locking problem, three 
integration methods for each element are used to determine the element 
stiffness matrix. This example shows by applying the design patterns 
in object–oriented framework, the usability, extensibility, flexibility and 
maintainability of the code has been increased.  

2.0  the object–orIented programmIng approach

A traditional (non–OO) program can be viewed as a logical procedure 
that takes input data, processes it and returns the output. The main 
program is built around simpler procedures or functions. In designing 
a procedural code, one focuses on how to define the logic rather 
than how to define the data and its organization. In contrast, an OO 
program is built around objects which encapsulate both the data and 
the operations on the data. An object can be viewed as an abstraction 
which relates variables and methods.
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Therefore, the first step in building an OO program is to identify the 
objects and how they relate to each other. Once the objects are identified 
they can be generalized to a class of objects. A group of objects with 
the same character is called a class (See figure 1). The software only 
contains classes. These encapsulate data and data methods. The generic 
procedures are called methods. The methods represent the behavior of 
an object and constitute its external interface.
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Object–oriented programming can be said to have four key concepts: 
abstraction, encapsulation, inheritance and polymorphism. Detailed 
descriptions of the main concepts of OO programming can be found in 
many papers [5-7]. Here we merely provide reminders.

Abstraction consists of extracting the most relevant features of the 
system to be modeled. It provides adequate generalization and 
eliminates irrelevant details. In OOP, abstraction means to list the 
defining characteristics of the classes. It also means to state the public 
interface of the classes, i.e., how their objects will interact with other 
objects.

The encapsulation concept means hiding the class internal 
implementation while the class interface is visible. Interaction among 
objects is controlled by the message mechanism. When an object receives 
a message, it performs an associated method. The implementation 
details are not known by the client code. This means that information 
is hidden outside the class and its derived classes. Information hiding 
is very useful, for example, if the class public interface is unaltered, 
the internal implementation can be changed without affecting how the 
other classes and application programs access that class. 

The class information can be specialized using the inheritance principle. 
Subclasses inherit data and methods of their super–classes. In this way, 
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it is possible to reuse codes in many applications with consequent 
reduction in development time and costs. The inheritance principle 
with C# virtual classes introduces an important generalization feature. 
Pointers to higher level objects of the class hierarchy can represent 
lower level ones in application programs. This characteristic allows 
developing type independent code with dynamic binding at runtime. 
New classes can be added to the hierarchy and the application code 
will still work with this new type (See figure. 2).
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to be performed at runtime. 
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Since object–oriented programming implemented in finite element method for the first time, 
numerous approaches have been proposed. The design of an OO finite element program is 
affected by a number of factors, including software requirements, language features, 
executing environment, etc, that cause to make some differences between the programs. Of 
course, there are similarities too that reflect consensus among researchers. As this field of 
research continues to mature, best practices in program design will begin to emerge. It would 
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Polymorphism means that objects will answer differently for a same 
message. For instance, the message "+" may mean concatenation 
and sum, respectively, for string and matrix classes. Polymorphism 
and inheritance allow achieving a fairly generic code that selects the 
methods to be performed at runtime.

3.0  desIgn patterns

Since object–oriented programming implemented in finite element 
method for the first time, numerous approaches have been proposed. 
The design of an OO finite element program is affected by a number of 
factors, including software requirements, language features, executing 
environment, etc, that cause to make some differences between the 
programs. Of course, there are similarities too that reflect consensus 
among researchers. As this field of research continues to mature, best 
practices in program design will begin to emerge. It would be useful to 
capture the key features of these practices in a language–independent 
and reusable format. Design patterns are a means of achieving this 
goal. Liu et.al. [8] and Fenves et.al. [9] explicitly used some of these 
patterns in their finite element systems. Heng and Mackie [10] used 
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design patterns to identify best practice in object–oriented finite element 
program design. In this study, three of them will use in a nonlinear 
finite element method.

3.1.  model–analysis separation

This pattern decomposes a finite element program into model and 
analysis subsystems. Rucki and Miller [11] were among the first to 
explicitly separate analysis classes from the model subsystem. Dubois–
Pèlerin and Pegon [12] believed that a clear distinction between analysis–
related classes and those related to the model is vital to implementing 
a flexible program. 

3.2.  model–UI separation

The Model–UI separation pattern separates methods and data related to 
the user interface (UI) from model classes. Most modern finite element 
systems have integrated graphical user interfaces. In OO finite element 
programming, a graphical user interface could be implemented by 
adding UI–related responsibilities to the model classes [13]. In OO 
finite element programming, the principle of separating graphical 
classes from model classes was proposed by Ju and Hosain [14].

3.3.  modular analyzer

This pattern decomposes the analysis subsystem into components. 
Marczak [15] decomposed his analysis subsystem along different lines 
and also added components representing analysis types, integration 
schemes, and equation solution algorithms.

In the next sections object oriented finite element implementation will 
be illustrated using an example of a plate. First, a review of a plate 
formulation for finite elements in bending– shear based on the theory 
of Reissner–Mindlin plate is carried out.

4.0 reIssner–mIndlIn plate theorY

In Reissner–Mindlin plates, normal to the mid–surface (z=0) remains 
straight but not necessary normal to the mid–surface after deformation 
[16]. So the effect of shear deformation is considered in this plate unlike 
Kirchhoff formulation.
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4.1.  fundamental relation

The displacement components at a typical point in a Mindlin plate may 
be represented as:
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4.2. Strain–displacement relations 

For Mindlin plate theory, the strain components may be written in terms of the displacements 
of the middle surface as follows: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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curvatures and xyκ  is shear curvature. 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 

4.3. Stress– Strain relations 
The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 

4.3. Stress– Strain relations 
The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 
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The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 

4.3. Stress– Strain relations 
The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
which may be expressed as follows: 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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4.3.  stress– strain relations

The moment–curvature relationships and the bending moments are 
[16]:
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 

4.3. Stress– Strain relations 
The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
which may be expressed as follows: 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 

4.3. Stress– Strain relations 
The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
which may be expressed as follows: 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 

4.3. Stress– Strain relations 
The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
which may be expressed as follows: 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 

4.3. Stress– Strain relations 
The moment–curvature relationships and the bending moments are [16]: 
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Where h is the plate thickness and ][ bD  is the flexural rigidity matrix for an isotropic material 
which may be expressed as follows: 
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Where E is Young’s modulus, ν  is Poisson’s ratio. The shear force–shear strain relationships 
and also the shear forces are given as: 
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Where bε  is bending strains vector, sε  is shear strains vector and xκ , yκ  are bending 
curvatures and xyκ  is shear curvature. 
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Here, k is the shear modification factor and is normally set equal to 5/6 for homogeneous 
isotropic plates. 

4.4. Finite Element Formulation 

The normal displacement and normal rotation of the mid–plane at a typical point with local 
coordinates, ),( ηξ  in an element with n nodes are obtained using: 
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Where iN  is the shape function corresponded node i, and iw  , xiθ  and yiθ  are the 
displacement and rotation values of node i. The curvatures in Eq. (3) are expressed as: 
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Where biB  is the curvature–displacement matrix. The shear strains in Eq. (4) can be expressed 
as: 
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Here, k is the shear modification factor and is normally set equal to 5/6 
for homogeneous isotropic plates.
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4.4.  finite element formulation

The normal displacement and normal rotation of the mid–plane at a 
typical point with local coordinates, 
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 in an element with n nodes 
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Here, k is the shear modification factor and is normally set equal to 5/6 for homogeneous 
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Where iN  is the shape function corresponded node i, and iw  , xiθ  and yiθ  are the 
displacement and rotation values of node i. The curvatures in Eq. (3) are expressed as: 
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Where iN  is the shape function corresponded node i, and iw  , xiθ  and yiθ  are the 
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Where Jdet is the determinant of Jacobian matrix. To obtain shape functions derivative 
respect to x, y chair rule can be applied, so: 
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The relation between Cartesian coordinate and local coordinate may be written as: 
ηξ ddJdydx det=                                                                                                                 (25) 
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Where Jdet is the determinant of Jacobian matrix. To obtain shape functions derivative 
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The relation between Cartesian coordinate and local coordinate may be written as: 
ηξ ddJdydx det=                                                                                                                 (25) 
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The relation between Cartesian coordinate and local coordinate may be written as: 
ηξ ddJdydx det=                                                                                                                 (25)                    (25)

Substituting equation (25) into equation (17) and equation (18), we can 
obtain:
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4.5. Shear locking 

Plate finite elements based on Mindlin theory require only C0 continuity for displacement and 
independent rotations, unlike Kirchhoff theory. Therefore, the behavior of the Mindlin plate 
elements is usually very good for a moderately thick plate situation. 
However, when a thin plate is considered, these displacement–based elements cause a 
problem known as ‘‘shear locking’’. When the full integration of the stiffness matrices is used 
with standard Mindlin finite elements, very stiff results may be obtained in application to thin 
plates. This means that the bending energy, which should dominate the shear terms, will be 
incorrectly estimated to be zero in thin plate problems. 

To avoid the shear locking problem in thin plates, the reduced and selective reduced 
integration techniques were proposed in early 1970s [17, 18]. The reduced integration 
procedure is the reduction in the order of integration in computing the stiffness matrix of the 
finite element. Similarly, the selective integration procedure is also a kind of reduced 
integration rule which is used to evaluate the stiffness matrix associated with the shear strain 
energy. That is to say, this has been adopted to the shear stiffness matrix only and full 
integration is used on the remaining terms [19]. Therefore, the eK ][ element stiffness matrix 
can be obtained by separating into bending terms and shear terms. With these definitions, 

eK ][  element stiffness matrix is given by simplifying the equation (19). 

Table 1 shows the full, reduced, and selective reduced integration rules used to test the shear 
locking response of the Bilinear, Serendipity and Lagrange elements in this paper. 

4.6. Plasticity 

In the Mindlin plate relations, yield function can be written as a function of bending and shear 
moments [16]. In this case, we can assume that the whole section of the plate be plastic. Then, 
we use a yield criterion expressed in terms of bending and shear moments, similar to the 
Iliushin’s yield function [20]. The Iliushin’s yield function F can be written as: 
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Where M are the stress intensities given by: 

2222 3 xyyxyx MMMMMM +−+=                                                                                           (29)

                                                                               (26)

59

Substituting equation (25) into equation (17) and equation (18), we can obtain: 

∫ ∫
+

−

+

−
=

1

1

1

1
det][][][][ ηξ ddJBDBK bb

T
b

e
b                                                                                (26) 

∫ ∫
+

−

+

−
=

1

1

1

1
det][][][][ ηξ ddJBDBK ss

T
s

e
s                                                                                (27) 

4.5. Shear locking 

Plate finite elements based on Mindlin theory require only C0 continuity for displacement and 
independent rotations, unlike Kirchhoff theory. Therefore, the behavior of the Mindlin plate 
elements is usually very good for a moderately thick plate situation. 
However, when a thin plate is considered, these displacement–based elements cause a 
problem known as ‘‘shear locking’’. When the full integration of the stiffness matrices is used 
with standard Mindlin finite elements, very stiff results may be obtained in application to thin 
plates. This means that the bending energy, which should dominate the shear terms, will be 
incorrectly estimated to be zero in thin plate problems. 

To avoid the shear locking problem in thin plates, the reduced and selective reduced 
integration techniques were proposed in early 1970s [17, 18]. The reduced integration 
procedure is the reduction in the order of integration in computing the stiffness matrix of the 
finite element. Similarly, the selective integration procedure is also a kind of reduced 
integration rule which is used to evaluate the stiffness matrix associated with the shear strain 
energy. That is to say, this has been adopted to the shear stiffness matrix only and full 
integration is used on the remaining terms [19]. Therefore, the eK ][ element stiffness matrix 
can be obtained by separating into bending terms and shear terms. With these definitions, 

eK ][  element stiffness matrix is given by simplifying the equation (19). 

Table 1 shows the full, reduced, and selective reduced integration rules used to test the shear 
locking response of the Bilinear, Serendipity and Lagrange elements in this paper. 

4.6. Plasticity 

In the Mindlin plate relations, yield function can be written as a function of bending and shear 
moments [16]. In this case, we can assume that the whole section of the plate be plastic. Then, 
we use a yield criterion expressed in terms of bending and shear moments, similar to the 
Iliushin’s yield function [20]. The Iliushin’s yield function F can be written as: 

0)(
2
0

2
0

2

=−=
σ

kY
M
MF                                                                                                                (28) 

Where M are the stress intensities given by: 

2222 3 xyyxyx MMMMMM +−+=                                                                                           (29)

                                                                                (27)

4.5.  shear locking

Plate finite elements based on Mindlin theory require only C0 continuity 
for displacement and independent rotations, unlike Kirchhoff theory. 
Therefore, the behavior of the Mindlin plate elements is usually very 
good for a moderately thick plate situation.

However, when a thin plate is considered, these displacement–based 
elements cause a problem known as ‘‘shear locking’’. When the full 
integration of the stiffness matrices is used with standard Mindlin 
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the order of integration in computing the stiffness matrix of the finite 
element. Similarly, the selective integration procedure is also a kind of 
reduced integration rule which is used to evaluate the stiffness matrix 
associated with the shear strain energy. That is to say, this has been 
adopted to the shear stiffness matrix only and full integration is used 
on the remaining terms [19]. Therefore, the 
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And 0M  is the moment capacity of the cross section. When the cross section is fully plastic, 
and the moment capacity of the cross section given by: 
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The symbol 0σ  is the uniaxial yield stress; )(kY is a material parameter, which depends on 
the isotropic hardening parameter k and h is the thickness of the plate. Mx, My and Mxy are 
stress couples defined by (6). 

5.0  Application 

In this study, three design patterns are used to increase the reusability and extensibility of the 
nonlinear finite element program. For this aim, the elastic–plastic analysis of plates based on 
Mindlin theory is selected. As shown in section 4.5, to overcome the shear locking problem, 
the element stiffness matrix is divided in two terms and for each term, different integration 
method is used. In this paper three kinds of elements which have 4, 8 and 9 nodes, namely, 
Bilinear, Serendipity and Lagrange, respectively (See Figure. 3), and three integration 
methods are used to analysis the Mindlin's plate (See Table 1). Firstly, Model–Analysis
separation is used to decompose the finite element program to Model and Analysis packages. 
There are essentially two stages in finite element analysis. The first stage involves modeling 
the problem domain. The second stage involves analyzing the finite element model. It is 
natural therefore to decompose a finite element program into two major subsystems, one for 
modeling and the other for analysis. Model classes represent finite element entities such as 
elements, nodes, and degrees–of–freedom (D.O.F.). The Analysis subsystem is responsible for 
forming and solving the system of equations. The two subsystems should be loosely coupled. 
This means minimizing dependencies across subsystem boundaries. In a procedural code, 
using many kinds of element with different number of nodes and D.O.Fs persuade the 
programmer to manipulate the analysis section. But in an object–oriented program, by using 
the Model–Analysis separation pattern, programmer is able to change the element without 
manipulation of the Analysis packages. On the other hand, to implement the different 
integration method, programmer changes just the Analysis packages. 
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5.0  applIcatIon

In this study, three design patterns are used to increase the reusability 
and extensibility of the nonlinear finite element program. For this aim, 
the elastic–plastic analysis of plates based on Mindlin theory is selected. 
As shown in section 4.5, to overcome the shear locking problem, the 
element stiffness matrix is divided in two terms and for each term, 
different integration method is used. In this paper three kinds of 
elements which have 4, 8 and 9 nodes, namely, Bilinear, Serendipity and 
Lagrange, respectively (See figure. 3), and three integration methods 
are used to analysis the Mindlin's plate (See Table 1). Firstly, Model–
Analysis separation is used to decompose the finite element program 
to Model and Analysis packages. There are essentially two stages in 
finite element analysis. The first stage involves modeling the problem 
domain. The second stage involves analyzing the finite element model. 
It is natural therefore to decompose a finite element program into two 
major subsystems, one for modeling and the other for analysis. Model 
classes represent finite element entities such as elements, nodes, and 
degrees–of–freedom (D.O.F.). The Analysis subsystem is responsible 
for forming and solving the system of equations. The two subsystems 
should be loosely coupled. This means minimizing dependencies 
across subsystem boundaries. In a procedural code, using many kinds 
of element with different number of nodes and D.O.Fs persuade the 
programmer to manipulate the analysis section. But in an object–
oriented program, by using the Model–Analysis separation pattern, 
programmer is able to change the element without manipulation of 
the Analysis packages. On the other hand, to implement the different 
integration method, programmer changes just the Analysis packages.
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Figure. 3 The finite elements and the shape functions (a) Bilinear  
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Table 1 Integration rules. 
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Figure. 4 shows the packages participating in this pattern and their dependencies. The Model
package contains model classes, while the Calculation and Solvers packages together form the 
Analysis subsystem. Calculation classes represent different types of analysis. The Solvers
package consists of mathematical classes for solving system equations. There is no coupling 
between Solvers and Model.

figure. 3 The finite elements and the shape functions (a) Bilinear 
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figure. 4 shows the packages participating in this pattern and their 
dependencies. The Model package contains model classes, while the 
Calculation and Solvers packages together form the Analysis subsystem. 
Calculation classes represent different types of analysis. The Solvers 
package consists of mathematical classes for solving system equations. 
There is no coupling between Solvers and Model.
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Figure. 4 Packages in the Model–Analysis separation pattern. 

Since for each element, numbers of nodes are different, FEM classes are also different. But 
the UI models of elements are the same. Therefore, the UI–Model separation pattern is used. 
UI–related responsibilities should be assigned to UI objects. UI classes should be grouped 
together in a subsystem that is dependent on the Model subsystem. This allows the more 
volatile UI subsystem to be changed without affecting model classes. Naturally, there should 
be no coupling between the Analysis and UI subsystems. 

Figure. 5 shows the dependencies between the UI, Mesh and FE packages. UI contains 
classes such as Struct, Curve, and Point. A Struct represents a (sub) domain of the finite 
element model. The Curve of a Struct describes its boundary. Each Curve is in turn defined by 
its Point. These UI classes are used to build and manipulate a model on screen. Classes in the 
Mesh package are responsible for generating the mesh based on the on–screen model, creating 
element and node objects in the process. The class diagram in Figure. 6 shows some Model
and UI classes. 
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In the nonlinear analysis, loading is applied as a linear increment. By using the Modular 
Analysis pattern, the linear increment is carried out by Elastic package and results involve in 
the plastic package. This increases the reusability and extensibility of the code, so in other 
nonlinear analyses, the Elastic packages remain fix. 
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Since for each element, numbers of nodes are different, FEM classes are 
also different. But the UI models of elements are the same. Therefore, 
the UI–Model separation pattern is used. UI–related responsibilities 
should be assigned to UI objects. UI classes should be grouped together 
in a subsystem that is dependent on the Model subsystem. This allows 
the more volatile UI subsystem to be changed without affecting model 
classes. Naturally, there should be no coupling between the Analysis 
and UI subsystems.

figure. 5 shows the dependencies between the UI, Mesh and FE 
packages. UI contains classes such as Struct, Curve, and Point. A Struct 
represents a (sub) domain of the finite element model. The Curve of a 
Struct describes its boundary. Each Curve is in turn defined by its Point. 
These UI classes are used to build and manipulate a model on screen. 
Classes in the Mesh package are responsible for generating the mesh 
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based on the on–screen model, creating element and node objects in 
the process. The class diagram in Figure. 6 shows some Model and UI 
classes.

62

Figure. 4 Packages in the Model–Analysis separation pattern. 

Since for each element, numbers of nodes are different, FEM classes are also different. But 
the UI models of elements are the same. Therefore, the UI–Model separation pattern is used. 
UI–related responsibilities should be assigned to UI objects. UI classes should be grouped 
together in a subsystem that is dependent on the Model subsystem. This allows the more 
volatile UI subsystem to be changed without affecting model classes. Naturally, there should 
be no coupling between the Analysis and UI subsystems. 

Figure. 5 shows the dependencies between the UI, Mesh and FE packages. UI contains 
classes such as Struct, Curve, and Point. A Struct represents a (sub) domain of the finite 
element model. The Curve of a Struct describes its boundary. Each Curve is in turn defined by 
its Point. These UI classes are used to build and manipulate a model on screen. Classes in the 
Mesh package are responsible for generating the mesh based on the on–screen model, creating 
element and node objects in the process. The class diagram in Figure. 6 shows some Model
and UI classes. 

FEUI

Model

Mesh

Figure. 5 Packages in the Model–UI separation pattern. 

In the nonlinear analysis, loading is applied as a linear increment. By using the Modular 
Analysis pattern, the linear increment is carried out by Elastic package and results involve in 
the plastic package. This increases the reusability and extensibility of the code, so in other 
nonlinear analyses, the Elastic packages remain fix. 

figure. 5 Packages in the Model–UI separation pattern.

In the nonlinear analysis, loading is applied as a linear increment. By 
using the Modular Analysis pattern, the linear increment is carried 
out by Elastic package and results involve in the plastic package. 
This increases the reusability and extensibility of the code, so in other 
nonlinear analyses, the Elastic packages remain fix.
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Classes that implement Calculation (Figure. 7) represent various types of analysis. For 
example, Static analyzes a finite element model statically. Extending the program to perform, 
say, transient response analysis can be achieved by implementing a new subtype. 

Figure. 7: Calculation classes.

6.0  Example 

The numerical example considered for validation is an isotropic square plate of constant 
thickness, simply supported on its four sides, subjected to a uniformly distributed load q =
1.0kPa. The stress–strain behavior of the plate is elastic–perfect plastic with Young’s modulus 
of E = 10.92kPa, Poisson’s ratio of ν = 0.3 and yield stress of σ = 1600kPa. The geometry and 
material properties are shown in Figure. 8.  

figure. 6 Model and UI classes.

Classes that implement Calculation (figure. 7) represent various 
types of analysis. For example, Static analyzes a finite element model 
statically. Extending the program to perform, say, transient response 
analysis can be achieved by implementing a new subtype.
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6.0  example

The numerical example considered for validation is an isotropic 
square plate of constant thickness, simply supported on its four sides, 
subjected to a uniformly distributed load q = 1.0kPa. The stress–strain 
behavior of the plate is elastic–perfect plastic with Young’s modulus of 
E = 10.92kPa, Poisson’s ratio of ν = 0.3 and yield stress of σ = 1600kPa. 
The geometry and material properties are shown in figure. 8. 
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Figure. 8 An isotropic square plate, simply supported on its four sides, subjected to a uniformly 
distributed load. 

We compare our results obtained for Bilinear, Serendipity and Lagrange finite elements using 
Full, Reduced and Selective Reduced integration methods, with those published by Owen and 
Hinton [21]. As shown in Figure. 9, the Full and reduced Integration methods for Bilinear 
Element give very stiff results, but Selective Reduced is comparably good.  

Figure. 9 The load–deflection relation for Bilinear Element. 

For analysis of thin plate based on Mindlin theory, as shown in Figure. 10 and Figure. 11,
The Serendipity and Lagrange elements using both Reduced and Selective Reduced 
Integration methods are suitable. 

figure. 8 An isotropic square plate, simply supported on its four sides, 
subjected to a uniformly distributed load.

We compare our results obtained for Bilinear, Serendipity and Lagrange 
finite elements using Full, Reduced and Selective Reduced integration 
methods, with those published by Owen and Hinton [21]. As shown 
in figure. 9, the Full and reduced Integration methods for Bilinear 
Element give very stiff results, but Selective Reduced is comparably 
good. 
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For analysis of thin plate based on Mindlin theory, as shown in figure. 
10 and figure. 11, The Serendipity and Lagrange elements using both 
Reduced and Selective Reduced Integration methods are suitable.
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Figure. 10 The load–deflection relation for Serendipity Element. 

Figure. 11 The load–deflection relation for Lagrange Element. 

7.0  Conclusion 

The Object–Oriented approach is shown to offer undeniable advantages compared to earlier 
programming structures (procedural based). The encapsulation of the data largely improves 
the modularity, and thus the reliability and legibility of the code. Inheritance allows an 
automatic reusability of the already developed methods, and polymorphism is a powerful 
means to raise the level of abstraction.

Through the example of nonlinear analyzing the Mindlin plates, this paper has shown how 
using of design patterns into an Object Oriented finite element code, the reusability, 
extensibility and maintainability of the code increase. In determining of the nonlinear 
behavior of plates based on Mindlin theory, to access of better accuracy, using element with 

figure. 10 The load–deflection relation for Serendipity Element.
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7.0  conclUsIon

The Object–Oriented approach is shown to offer undeniable advantages 
compared to earlier programming structures (procedural based). The 
encapsulation of the data largely improves the modularity, and thus the 
reliability and legibility of the code. Inheritance allows an automatic 
reusability of the already developed methods, and polymorphism is a 
powerful means to raise the level of abstraction.

Through the example of nonlinear analyzing the Mindlin plates, this 
paper has shown how using of design patterns into an Object Oriented 
finite element code, the reusability, extensibility and maintainability of 
the code increase. In determining of the nonlinear behavior of plates 
based on Mindlin theory, to access of better accuracy, using element with 
higher degree of freedoms is proposed.  Also, to overcome the shear 
locking problem, different integration methods are used. Then, the code 
must be able to add new elements or integration methods. To achieve 
this aim, three design patterns are used in the Object Oriented code.  
By using Model–Analysis separation pattern, programmer can be able to 
add new elements to Model subsystem and new integration methods to 
Analysis subsystem without any manipulation of the other subsystem. 
The clear division of responsibilities makes both maintenance and 
subsequent extensions of the system easier. Also, decomposing the 
model subsystem to UI and FEM subsystems help to add new elements 
to FEM subsystems without change the UI subsystem. Finally, 
decomposing the analysis subsystem into components facilitates code 
reuse without complicating the main hierarchy.



ISSN: 2180-1053        Vol. 4     No. 1    January-June 2012

Journal of Mechanical Engineering and Technology 

78

references

[1]  Miller G. R. An Object–Oriented Approach to Structural Analysis and 
Design. Computers and Structures 1991;40(1):75–82.

[2]  Dubois–Pelerin Y, Bomme P, Zimmermann T. Object–oriented finite 
element programming concepts. Proceedings of European Conference 
on New Advances in Computational Structural Mechanics, Elsevier, 
Amsterdam 1991;95–101.

[3]  Dubois–Pelerin Y, Zimmermann T, Bomme P. Object–oriented finite 
element programming: II. A prototype program in Smalltalk. Comput 
Methods Appl Mech Eng 1992;98:361–397.

[4]  Commend S, Zimmermann T. Object–Oriented Nonlinear 
Finite Element Programming: A Primer. Adv in Engng Software 
2001;32(8):611–628.

[5] Mackie R. I. Object–oriented finite element programming – The 
importance of data modeling. Advances in Engineering Software 
1999;32(9–11): 775–782.

[6]  Mackerle J. Object–oriented techniques in FEM and BEM, a 
bibliography (1996–1999). Finite Elements in Analysis and Design 
2000;36:189–196.

[7]  Patzak B, Bittnar Z. Design of object oriented finite element code, 
Advances in Engineering Software 2001;32:759–767.

[8]  Liu W, Tong M, Wu X, Lee GC. Object oriented modeling of 
structural analysis and design with application to damping device 
conFigureuration. J Comput Civil Eng 2003;17(2):113–22.

[9]  Fenves GL, McKenna F, Scott MH, Takahashi Y. An object oriented 
software environment for collaborative network simulation. In: 
Proceedings of the 13th world conference on earthquake engineering, 
Vancouver, Canada; 2004.

[10]  Heng B, Mackie R.I. Using design patterns in object–oriented finite 
element programming. Comput and Struct, doi:10.10161j.compstruc. 
2008.04.016.

[11]  Rucki MD, Miller GR. An algorithmic framework for flexible finite 
element based structural modeling. Comput Methods Appl Mech Eng 
1996;136:363–84.

[12]  Dubois–Pèlerin Y, Pegon P. Improving modularity in object–oriented 
finite element programming. Commun Numer Methods Eng 
1997;13:193–8.

[13]  Bettig BP, Han RPS. An object oriented framework for interactive 
numerical analysis in a graphical user interface environment. Int J 
Numer Methods Eng 1996;39(17):2945–72.



ISSN: 2180-1053        Vol. 4     No. 1    January-June 2012

Implementation of Nonlinear Finite Element Using Object–Oriented Design Patterns

79

[14]  Ju J, Hosain MU. Finite element graphic objects in C++. J Comput Civil 
Eng 1996;10(3):258–60.

[15]  Marczak RJ. An object–oriented programming framework for 
boundary integral equation methods. Comput Struct 2004;82:1237–
1257.

[16]  Mindlin RD. Influence of Rotatory Inertia and Shear on Flexural 
Motions of Isotropic Elastic Plates. J. Appl. Mech.1951;18(1):31–38.

[17]  Zienkiewicz OC, Taylor RL, Too JM. Reduced integration technique 
in general analysis of plates and shells. International Journal for 
Numerical Methods in Engineering 1971;3:275–90.

[18]  Pawsey SF, Clough RW. Improved numerical integration of thick 
shell finite elements. International Journal for Numerical Methods in 
Engineering 1971;3:575–86.

[19]  Briassoulis D. On the basics of the shear locking problem of Cv 
isoparametric plate elements. Comput Structs 1989;33:169–85.

[20] Iliushin A. Plastichnost. Moscow: Gostekhizdat, 1965(in Russian).

[21]  Owen D, Hinton E. Finite Elements in Plasticity: Theory and Practice. 
Swansea: Pineridge Press, 1980.




