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ABSTRACT  

 
The main goal of this paper is to derive the forward and inverse kinematics 

model of the ABB IRB 140 industrial manipulator. This work provides essential 

kinematics information that could be a useful reference for future research on the 

robot. It can also serve as teaching material for students in the area of robotics, 

especially forward and inverse kinematics, to aid students' understanding of 

these subjects. Denavit-Hartenberg analysis (DH) is presented to write the 

forward kinematic equations. Initially, a coordinate system is attached to each of 

the six links of the manipulator. Then, the corresponding four link parameters 

are determined for each link to construct the six transformation matrices ( 𝑇𝑖
𝑖−1 ) 

that define each frame relative to the previous one. While, to develop the 

kinematics that calculates the required joint angles (𝜃1 − 𝜃6), both geometrical 

and analytical approaches are used to solve the inverse kinematic problem. After 

introducing the forward and inverse kinematic models, a MATLAB code is 

written to obtain the solutions of these models. Then, the forward kinematics is 

validated by examining a set of known positions of the robot arm, while the 

inverse kinematics is checked by comparing the results obtained in MATLAB 

with a simulation in Robot Studio. 
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1.0 INTRODUCTION 

 

'Kinematics is the science of geometry in motion' (Jazar, 2010). This means it deals only 

with geometrical issues of motion such as the position and orientation regardless the 

force that causes them. There are two types of kinematics, the forward and inverse 

kinematics. Forward kinematic analysis is concerned with the relationship between the 

joint angle of the robot manipulator and the position and orientation of the end-effector 

(Spong, Hutchinson, & Vidyasagar, 2006) (Paul, 1981) . In other words, it deals with 

finding the homogeneous transformation matrix that describes the position and 

orientation of the tool frame with respect to the global reference frame. On the other 

hand, inverse kinematics is used to calculate the joint angles required to achieve the 

desired position and orientation. The same transformation matrix which resulted from 

the forward kinematics in order to describe the position and the orientation of the tool 

frame relative to the robot base frame is used here in the inverse kinematics to solve for 

the joint angles. Several academic studies investigating the kinematics of the robot 

manipulators have been carried out to increase their intelligence and usability. Various 
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approaches have been introduced for the analysis. In his book, Selig (Selig, 2013) has 

discussed several ways of analyzing robots using geometrical approach. Jazar (Jazar, 

2010) also reviewed a number of analytical methods for the analysis of serial robots. 

The concept of the homogeneous transformation matrix is very old in the area of 

kinematic analysis. However, it is still very popular and valuable. 

 

Several authors (Craig, 2005; Jazar, 2010; Shahinpoor, 1987; Uicker, Pennock, & 

Shigley, 2011) have discussed the formulation of the homogeneous transformation 

matrix. In 2012, K. Mitra introduced a different procedure for the formulation of the 

homogeneous matrix. His method was based on motion transfer at the joints from the 

base to the end effector. This technique was validated through a numerical study on a 5 

DOF robot (Mitra, 2012). Also, A. Khatamian produced a new analytical method for 

solving the forward kinematics of a six DOF manipulator (Khatamian, 2015). 

 

Several approaches have been used to solve the inverse kinematic problem. Some 

researchers have investigated the inverse kinematics of robot manipulators using 

standard techniques such as geometric, algebraic, etc. In 2012, Deshpande and George 

presented an analytical solution for the inverse kinematics derived from the D-H 

homogeneous transformation matrix (Deshpande & George, 2012). In the same vein, 

Neppalli et al developed a closed-form analytical approach to solve the inverse 

kinematics for multi-section robots. In this novel approach, the problem is decomposed 

into several easier sub-problems. Then, an algorithm is employed to produce a complete 

solution to the inverse kinematic problem (Neppalli, Csencsits, Jones, & Walker, 2009). 

S. Yahya et al proposed a new geometrical method to find the inverse kinematics of the 

planar manipulators (Samer Y, 2009).  

 

Other researchers have solved the inverse kinematic problem using advanced techniques 

such as artificial neural network and biomimetic approach. In 2014, Feng et al produced 

a novel learning algorithm, called extreme learning machine, based on a neural network 

to generate the inverse kinematic solution of robot manipulator (Feng, Yao-nan, & Yi-

min, 2014). The findings of this advanced method revealed that the extreme learning 

machine has not only significantly reduced the computation time but also enhanced the 

precision. 

 

2.0 ROBOT SPECIFICATIONS 

 

Figure 1 shows the compact six degree of freedom industrial ABB IRB 140 

manipulator. The robot has six revolute joints controlled by Ac-motors. It is designed 

specifically for manufacturing industries to perform a wide range of applications such as 

welding, packing, assembly, etc. The specifications, axes and dimensions of the robot 

manipulator are shown below in Table 1.  
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Table 1. The ABB IRB 140 specifications (ABB, 2000) 

Manipulator Weight 98 kg 

Tool Centre Point TCP Max. Speed 250 mm/s 

Endurance Load in XY Direction ± 1300 N 

Endurance Load in Z Direction ± 1000 N 

Endurance Torque in XY Direction ± 1300 N.m 

Endurance Torque in Z Direction ± 300 N.m 

 

 

 

Figure 1. The ABB IRB 140 manipulator (ABB, 2000)  

  

3.0 FORWARD KINEMATICS 

 

To mathematically model a robot and hence determine the position and orientation of 

the end effector with respect to the base or any other point, it is necessary to assign a 

global coordinate frame to the base of the robot and a local reference frame at each 

joint. Then, the Denavit-Hartenberg analysis (DH) is presented to build the 

homogeneous transformation matrices between the robot joint axes (Craig, 2005) 

(Siciliano, Sciavicco, Villani, & Oriolo, 2010). These matrices are a function of four 

parameters resulted from a series of translations and rotations around different axes. The 

illustration of how frame {i} is related to the previous frame {i −1} and the description 

of the frame parameters are shown in figure 2 below. 
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Figure 2. The description of frame {i} with respect to frame {i −1}(Craig, 2005) 

 

 

These modified D-H parameters can be described as: 

 αi-1: Twist angle between the joint axes Zi and Zi-1 measured about Xi-1. 

 ai-1: Distance between the two joint axes Zi and Zi-1 measured along the common 

normal. 

 θi: Joint angle between the joint axes Xi and Xi-1 measured about Zi. 

 di: Link offset between the axes Xi and Xi-1 measured along Zi.  

Thus, the four Transformations between the two axes can be defined as: 

 

 

 

After finishing the multiplication of these four transformations, the homogeneous 

transform can be obtained as: 

 

Ti
i−1 =

(

 
 

cθi −sθi 0 ai−1 

sθicαi−1 cθicαi−1 −sαi−1 −disαi−1
sθisαi−1 cθisαi−1 cαi−1 dicαi−1
0 0 0 1 )

 
 

                                                           (1.1) 

 

The ABB IRB 140 frames assignment is shown below in figure 3. 

 

 

 

 

 

 

 

 

  

𝑇𝑖
𝑖−1 = 𝑅𝑜𝑡(𝑋𝑖−1, 𝛼𝑖−1 ) x 𝑇𝑟𝑎𝑛𝑠(𝑋𝑖−1, 𝑎𝑖−1) x 𝑅𝑜𝑡(𝑍𝑖 , 𝜃𝑖) x 𝑇𝑟𝑎𝑛𝑠(0,0, 𝑑𝑖) 
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Figure 3. ABB IRB140 frames assignment 

According to this particular frame assignment, the modified D-H parameters are defined 

in Table 2 below.   

Table 2. The ABB IRB 140 D-H parameters 

 

  

 

 

 

 

 

 

 

 

 

 

For the simplicity of calculations and matrix product, it can be assumed that S2 = sin 

(θ2-90), C2 = cos (θ2-90). After achieving the D-H table, the individual transformation 

matrix for each link is achieved by substituting the link parameters into the general 

homogeneous transform derived in matrix (1.1) above. 

 

Axis (i) αi-1 ai-1 di θi 

1 0 0 d1 = 352 θ1 

2 -90 a1 = 70 0 θ2-90 

3 0   a2 = 360 0 θ3 

4 -90 0   d4 = 380 θ4 

5 90 0 0 θ5 

6 -90 0 0 θ6 



Journal of Mechanical Engineering and Technology 

 

 ISSN: 2180-1053         Vol. 9 No.2       July – December 2017                         6 

 

 

𝑇1
0 =

(

 
 
𝑐𝜃1 −𝑠𝜃1 0 𝑎0 

𝑠𝜃1𝑐𝛼0 𝑐𝜃𝑖𝑐𝛼01 −𝑠𝛼0 −𝑑1𝑠𝛼0
𝑠𝜃1𝑠𝛼0 𝑐𝜃1𝑠𝛼0 𝑐𝛼0 𝑑1𝑐𝛼0
0 0 0 1 )

 
 
          𝑇1

 0 = (

𝑐1 −𝑠1 0 0 
𝑠1 𝑐1 0 0
0 0 1 𝑑1
0 0 0 1

)  

 

𝑇2
1 =

(

 
 
𝑐𝜃2 −𝑠𝜃2 0 𝑎1 

𝑠𝜃2𝑐𝛼1 𝑐𝜃2𝑐𝛼1 −𝑠𝛼1 −𝑑2𝑠𝛼1
𝑠𝜃2𝑠𝛼1 𝑐𝜃2𝑠𝛼1 𝑐𝛼1 𝑑2𝑐𝛼1
0 0 0 1 )

 
 
        𝑇2

 01 = (

𝑐2 −𝑠2 0 𝑎1
0 0 1 0
−𝑠2 −𝑐2 0 0
0 0 0 1

)  

 

𝑇3
2 =

(

 
 
𝑐𝜃3 −𝑠𝜃3 0 𝑎2 

𝑠𝜃3𝑐𝛼2 𝑐𝜃3𝑐𝛼2 −𝑠𝛼2 −𝑑3𝑠𝛼2
𝑠𝜃3𝑠𝛼2 𝑐𝜃3𝑠𝛼2 𝑐𝛼2 𝑑3𝑐𝛼2
0 0 0 1 )

 
 
           𝑇3

 2 = (

𝑐3 −𝑠3 0 𝑎2 
𝑠3 𝑐3 0 0
0 0 1 0
0 0 0 1

)  

 

𝑇4
3 =

(

 
 
𝑐𝜃4 −𝑠𝜃4 0 𝑎3 

𝑠𝜃4𝑐𝛼3 𝑐𝜃4𝑐𝛼3 −𝑠𝛼3 −𝑑4𝑠𝛼3
𝑠𝜃4𝑠𝛼3 𝑐𝜃4𝑠𝛼3 𝑐𝛼3 𝑑4𝑐𝛼3
0 0 0 1 )

 
 
          𝑇4

 3 = (

𝑐4 −𝑠4 0 0 
0 0 1 𝑑4
−𝑠4 −𝑐4 0 0
0 0 0 1

)  

 

𝑇5
4 =

(

 
 
𝑐𝜃5 −𝑠𝜃5 0 𝑎4 

𝑠𝜃5𝑐𝛼4 𝑐𝜃5𝑐𝛼4 −𝑠𝛼4 −𝑑5𝑠𝛼4
𝑠𝜃5𝑠𝛼4 𝑐𝜃5𝑠𝛼4 𝑐𝛼4 𝑑5𝑐𝛼4
0 0 0 1 )

 
 
           𝑇5

 4 = (

𝑐5 −𝑠5 0 0 
0 0 −1 0
𝑠5 𝑐5 0 0
0 0 0 1

)  

 

𝑇6
5 =

(

 
 
𝑐𝜃6 −𝑠𝜃6 0 𝑎5 

𝑠𝜃6𝑐𝛼5 𝑐𝜃6𝑐𝛼5 −𝑠𝛼5 −𝑑6𝑠𝛼5
𝑠𝜃6𝑠𝛼5 𝑐𝜃5𝑠𝛼5 𝑐𝛼5 𝑑6𝑐𝛼5
0 0 0 1 )

 
 
           𝑇6

 5 = (

𝑐6 −𝑠6 0 0 
0 0 1 0
−𝑠6 −𝑐6 0 0
0 0 0 1

)  

 

Once the homogeneous transformation matrix of each link is obtained, forward 

kinematic chain can be applied to achieve the position and orientation of the robot end-

effector with respect to the global reference frame (robot base). 

 

𝑇2
0  = 𝑇1

0  X 𝑇2
1  

𝑇2
 0 = (

𝑐1 −𝑠1 0 0 
𝑠1 𝑐1 0 0
0 0 1 𝑑1
0 0 0 1

) X (

𝑐2 −𝑠2 0 𝑎1
0 0 1 0
−𝑠2 −𝑐2 0 0
0 0 0 1

) = (

𝑐1𝑐2 −𝑐1𝑠2 −𝑠1 𝑐1𝑎1
𝑠1𝑐2 −𝑠1𝑠2 𝑐1 𝑠1𝑎1
−𝑠2 −𝑐2 0 𝑑1
0 0 0 1

)  

 

𝑇3
0  = 𝑇2

0   X 𝑇3
2  



   
Forward and Inverse Kinematics Analysis and Validation of the ABB IRB 140 Industrial Robot 

ISSN: 2180-1053         Vol. 8 No.2       July – December 2017                         7 

 

𝑇3
 0 = (

𝑐1𝑐2 −𝑐1𝑠2 −𝑠1 𝑐1𝑎1
𝑠1𝑐2 −𝑠1𝑠2 𝑐1 𝑠1𝑎1
−𝑠2 −𝑐2 0 𝑑1
0 0 0 1

)𝑋(

𝑐3 −𝑠3 0 𝑎2 
𝑠3 𝑐3 0 0
0 0 1 0
0 0 0 1

)  

 

𝑇3
0  =  (

𝑐1𝑐2𝑐3 − 𝑐1𝑠2𝑠3 −(𝑐1𝑐2𝑠3 + 𝑐1𝑠2𝑐3) −𝑠1 𝑐1𝑐2𝑎2 + 𝑐1𝑎1 )
𝑠1𝑐2𝑐3 − 𝑠1𝑠2𝑠3 −(𝑠1𝑐2𝑠3 + 𝑠1𝑠2𝑐3) 𝑐1 𝑠1𝑐2𝑎2 + 𝑠1𝑎1 )
−(𝑠2𝑐3 + 𝑐2𝑠3) 𝑠2𝑠3 − 𝑐2𝑐3 0 −𝑠2𝑎2 + 𝑑1

0 0 0 1

)  

𝑇 3
0 =  (

𝑐1𝑐23 −𝑐1𝑠23 −𝑠1 𝑐1(𝑐2𝑎2 + 𝑎1 )
𝑠1𝑐23 −𝑠1𝑠23 𝑐1 𝑠1(𝑐2𝑎2 + 𝑎1 )
−𝑠23 −𝑐23 0 −𝑠2𝑎2 + 𝑑1
0 0 0 1

)  

 

𝑇6
4  = 𝑇 5

 4 X 𝑇6
5  

𝑇 =6
 4 (

𝑐5 −𝑠5 0 0 
0 0 −1 0
𝑠5 𝑐5 0 0
0 0 0 1

)𝑋(

𝑐6 −𝑠6 0 0 
0 0 1 0
−𝑠6 −𝑐6 0 0
0 0 0 1

) = (

𝑐5𝑐6 −𝑐5𝑠6 −𝑠5 0 
𝑠6 𝑐6 0 0
𝑠5 𝑐6 −𝑠5 𝑠6 𝑐5 0
0 0 0 1

)      

 

𝑇6
3  = 𝑇 4

 3 X 𝑇6
4  

𝑇6
3  = (

𝑐4 −𝑠4 0 0 
0 0 1 𝑑4
−𝑠4 −𝑐4 0 0
0 0 0 1

)𝑋(

𝑐5𝑐6 −𝑐5𝑠6 −𝑠5 0 
𝑠6 𝑐6 0 0
𝑠5 𝑐6 −𝑠5 𝑠6 𝑐5 0
0 0 0 1

) 

𝑇6
3  = (

𝑐4𝑐5𝑐6−𝑠4𝑠6 −𝑐4𝑐5𝑠6−𝑠4𝑐6 −𝑐4𝑠5 0 
𝑠5 𝑐6 −𝑠5 𝑠6 𝑐5 𝑑4

−𝑠4𝑐5𝑐6−𝑐4𝑠6 𝑠4𝑐5𝑠6−c4𝑐6 𝑠4𝑠5 0
0 0 0 1

)                                                                                   

𝑇6
0  = 𝑇 X3

0 𝑇6
 3  

 𝑇 =6
0 (

𝑐1𝑐23 −𝑐1𝑠23 −𝑠1 𝑐1(𝑐2𝑎2 + 𝑎1 )
𝑠1𝑐23 −𝑠1𝑠23 𝑐1 𝑠1(𝑐2𝑎2 + 𝑎1 )
−𝑠23 −𝑐23 0 −𝑠2𝑎2 + 𝑑1
0 0 0 1

)𝑋(

𝑐4𝑐5𝑐6−𝑠4𝑠6 −𝑐4𝑐5𝑠6−𝑠4𝑐6 −𝑐4𝑠5 0 
𝑠5 𝑐6 −𝑠5 𝑠6 𝑐5 𝑑4

−𝑠4𝑐5𝑐6−𝑐4𝑠6 𝑠4𝑐5𝑠6−c4𝑐6 𝑠4𝑠5 0
0 0 0 1

) 

𝑇 6
0 =   (

𝑟11 r12 r13 x 
r21 r22 r23 y
r31 r32 r33 𝑧
0 0 0 1

) 

                                                                                                                                 

r11 =  𝑐1𝑐23 (𝑐4𝑐5𝑐6−𝑠4𝑠6) − 𝑐1𝑠23𝑠5 𝑐6 + 𝑠1(𝑠4𝑐5𝑐6+𝑐4𝑠6) 
 
r12 =  𝑐1𝑐23(−𝑐4𝑐5𝑠6−𝑠4𝑐6) + 𝑐1𝑠23𝑠5 𝑠6 − 𝑠1(𝑠4𝑐5𝑠6−c4𝑐6) 
 
r13 =  −𝑐1𝑐23𝑐4𝑠5 − 𝑐1𝑠23𝑐5 − 𝑠1𝑠4𝑠5   
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r21 =  𝑠1𝑐23 (𝑐4𝑐5𝑐6−𝑠4𝑠6) − 𝑠1𝑠23𝑠5 𝑐6 − 𝑐1(𝑠4𝑐5𝑐6+𝑐4𝑠6) 
 
r22 =  𝑠1𝑐23(−𝑐4𝑐5𝑠6−𝑠4𝑐6) + 𝑠1𝑠23𝑠5 𝑠6 + 𝑐1(𝑠4𝑐5𝑠6−c4𝑐6)  
 
r23 = −𝑠1𝑐23𝑐4𝑠5 − 𝑠1𝑠23𝑐5 + 𝑐1𝑠4𝑠5  
 
r31 = −𝑠23 (𝑐4𝑐5𝑐6−𝑠4𝑠6) − 𝑐23𝑠5 𝑐6 
 
r32 = −𝑠23 (−𝑐4𝑐5𝑠6−𝑠4𝑐6) + 𝑐23𝑠5 𝑠6   
 
r33 =  𝑠23𝑐4𝑠5 − 𝑐23𝑐5 
 
x =   − 𝑑4𝑐1𝑠23 + 𝑐1(𝑐2𝑎2 + 𝑎1 )   
 
y =   − 𝑑4𝑠1𝑠23 + 𝑠1(𝑐2𝑎2 + 𝑎1 )   
 
z =   − 𝑠2𝑎2 + 𝑑1 − 𝑑4𝑐23  
 

It is also possible to find the position of the Tool Centre Point (TCP) with respect to the 

robot base. According to the robot frame assignment, it is simply a transition along the z 

axis of frame {6} by d6 (distance from Joint 6 to the TCP). Therefore, the final position 

of the end effector with respect to the robot global reference frame can be expressed as: 

 

Ptcp = 𝑇6
0  𝑋 P6 

 

Ptcp = (

𝑟11 r12 r13 x 
r21 r22 r23 y
r31 r32 r33 𝑧
0 0 0 1

)𝑋(

0
0
d6
1

)  = (

d6 r13 + x 
d6 r23 + y
d6 r33 + z

1

) 

 
 

4.0 FORWARD KINEMATIC VALIDATION 

After finding the homogeneous transformation matrix ( 𝑇)6
0  that describes the end 

effector position and orientation with respect to the robot global reference frame, the 

position of the robot in space is expressed by the vector 
0
P6ORG which gives the values 

of x, y and z vectors as follow:   

 

𝑥 = −𝑑4𝑐1𝑠23 + 𝑐1(𝑐2𝑎2 + 𝑎1 )   
 
𝑦 = −𝑑4𝑠1𝑠23 + 𝑠1(𝑐2𝑎2 + 𝑎1 )   
 
𝑧 = −𝑠2𝑎2 + 𝑑1 − 𝑑4𝑐23  
 

    Given: S2 = Sin (θ2-90), C2 = Cos (θ2-90),  

 

                d1 = 352 mm, d4 = 380 mm, a1 = 70 mm  

 

                a2 = 360 mm. 
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The above equations are programmed in Matlab and a set of eight positions, illustrated 

below in figure 4, were chosen randomly to validate the forward kinematic model. The 

joint angles of each position are entered manually by the user to obtain the x, y and z 

vectors as shown in table 3 below. It can be clearly seen that there is no y component 

corresponding to these particular positions because Ɵ1 is always given to be zero. Then 

these joint angle values were entered through the robot operating software (Teach 

Pendant) in the lab. For each case, the actual robot position was similar to the x, y and z 

vector obtained from Matlab which proves the validity of the Matlab code.  

 

 

Figure 4. Set of robot’s positions  
 

  

Table 3. Matlab results of each position 

Position Joint angles X vector Y vector Z vector 

0 Ɵ1 = 0, Ɵ2 = 0, Ɵ3 = 0 450 0 712 

1 Ɵ1 = 0, Ɵ2 = 0, Ɵ3 = -90 70 0 1092 

2 Ɵ1 = 0, Ɵ2 = 0, Ɵ3 = 50 314 0 420.9 

3 Ɵ1 = 0, Ɵ2 = 110, Ɵ3 = -90 765 0 98.9 

6 Ɵ1 = 0, Ɵ2 = -90, Ɵ3 = 50 1.1 0 596 

7 Ɵ1 = 0, Ɵ2 = 110, Ɵ3 =-230 218 0 558 

8 Ɵ1 = 0, Ɵ2 = -90, Ɵ3 = -90 -670 0 352 
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5.0 INVERSE KINEMATICS  

 

Inverse kinematics is used to calculate the joint angles required to achieve the desired 

position and orientation in the robot workspace. The configuration of the robot governs 

the selection of the solution method. Since three consecutive axes of the robot intersect 

at a common point, Pieper's solution can be applied which provides a huge 

simplification of the inverse kinematic problem. An algebraic solution can also be 

implemented through the use of the inverse trigonometric functions. However, Piper's 

solution is chosen because it can be easily coded in Matlab. Pieper's approach works on 

the principle of separating the position solution for Ɵ1, Ɵ2 and Ɵ3 from the orientation 

solution to solve for Ɵ4, Ɵ5 and Ɵ6 (Pires, 2007). In general, there are two methods of 

solution, the analytical and geometrical approaches. A geometrical approach is initially 

implemented to find the joint variables Ɵ1, Ɵ2 and Ɵ3 that define the end effector 

position in space, while an analytical solution is applied to calculate the angles Ɵ4, Ɵ5 

and Ɵ6 which describe the end-effector orientation.  

5.1 Geometrical Solution  

 

According to the frame assignment shown in figure one, x and y components of frame 

{1} is the same as frame {0} because there is only a Z-directional offset between the 

two frames. Therefore, the projection of the wrist components on x-y plane of frame 

{0} has the same components on frame {1} (Carter, 2009; Vicente, 2007). In addition, 

since both link two and three are planar, the position vector in y direction changes with 

respect to θ1 only. Thus, two possible solutions for θ1 can be achieved by simply 

applying the arctangent function. 

𝜃1 =  𝑎𝑡𝑎𝑛2 (𝑃𝑦𝑡𝑐𝑝, 𝑃𝑥𝑡𝑐𝑝),                                                                                               (5.1)   
                                                                                         

𝜃1
′ =  𝛱 + 𝜃1                                                                                                                           (5.2) 

The solutions of θ2 and θ3 are obtained by considering the plane, shown in figure 5 

below, formed by the second and third planar links with respect to the robot reference 

frame. 
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Figure 5. Projection of links two and three onto the x y plane 

 

The cosine low is used to solve for θ3 as follow: 

ℎ2  =  𝐿2
2  +  𝐿3

2 − 2 𝑥 𝐿2 𝑥 𝐿3 𝑥 𝑐𝑜𝑠 (180 −  𝜁)   

Since the position is given with respect to robot’s Tool Center Point (TCP), L3 should 

be equal to d4+d6, where d6 is the distance from Joint 6 to the TCP. While, 
 

 𝐿2  =  𝑎2  , ℎ
2  =  𝑠2  + 𝑟2 , 𝑐𝑜𝑠 (180 − 𝜁)  =  − 𝑐𝑜𝑠 (𝜁) 

𝑠2  +  𝑟2  =  𝑎2
2 + (𝑑4  +  𝑑6) 

2  + 2 𝑥 𝑎2 𝑥 (𝑑4  +  𝑑6 ) 𝑐𝑜𝑠 (𝜁) 
 

𝐶𝑜𝑠 (𝜁)  =  
𝑠2  +  𝑟2 — 𝑎2

2 — (𝑑4  +  𝑑6)
2  

 2 𝑥 𝑎2 𝑥 (𝑑4  +  𝑑6 )
                                                                  (5.3) 

 

Now, we should have the value of (s) and (r) in term of Pxtcp, Pytcp, Pztcp and θ1.  

 

𝑆 =  (𝑃𝑧𝑡𝑐𝑝  — 𝑑1) 
 

𝑟 = ± √  (𝑃𝑥𝑡𝑐𝑝 — 𝑎1 𝑐𝑜𝑠 (𝜃1))2  +  (𝑃𝑦𝑡𝑐𝑝 — 𝑎1 𝑠𝑖𝑛 (𝜃1))2    

 
Sub. (s) and (r) in (5.3) yield:  
 

𝐶𝑜𝑠 (𝜁) =
(𝑃𝑧𝑡𝑐𝑝 − 𝑑1)

2
+ (𝑃𝑥𝑡𝑐𝑝 − 𝑎1 𝐶𝑜𝑠 𝜃1)

2 + (𝑃𝑦𝑡𝑐𝑝 − 𝑎1 𝑆𝑖𝑛 𝜃1)
2 − 𝑎2

2 − (𝑑4  +  𝑑6)
2

2 𝑥 𝑎2 𝑥 (𝑑4  +  𝑑6 )
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𝑆𝑖𝑛 (𝜁)  =  ±√1 − 𝐶𝑜𝑠2 (𝜁)  
 

𝜁 =  𝑎𝑡𝑎𝑛2 (𝑆𝑖𝑛 (𝜁), 𝐶𝑜𝑠 (𝜁)) 
 

𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝜃3 =  − (90 +  𝜁)                                                                                                 (5.4) 
 

The negative sign in θ3 indicates that the rotation occurred in the opposite direction. 

Likewise, we can follow the same procedure to solve for θ2 using similar trigonometric 

relationships. 

 
𝜃2 =   𝛺 –  𝜆     

 
𝛺 =  𝑎𝑡𝑎𝑛2 (𝑠, 𝑟) 

 
𝜆 =  𝑎𝑡𝑎𝑛2 ((𝑑4  +  𝑑6 ) sin(𝜁) , 𝑎2  + (𝑑4  +  𝑑6 ) cos(𝜁))   
 

𝜃2 =  𝑎𝑡𝑎𝑛2 (𝑠, 𝑟) –  𝑎𝑡𝑎𝑛2 ((𝑑4  +  𝑑6 ) sin(𝜁) , 𝑎2  + (𝑑4  +  𝑑6 ) cos(𝜁)) 

 

Substitute the values of (s) and (r) yield: 

 

𝜃2 =   𝑎𝑡𝑎𝑛2 ((𝑃𝑧𝑡𝑐𝑝 − 𝑑1), ±√ (𝑃𝑥𝑡𝑐𝑝 — 𝑎1 cos(𝜃1))
2
+ (𝑃𝑦𝑡𝑐𝑝 — 𝑎1 sin(𝜃1))

2
 ) 

             − 𝑎𝑡𝑎𝑛2 ((𝑑4  +  𝑑6 ) 𝑠𝑖𝑛 (𝜁) , 𝑎2  +  (𝑑4  +  𝑑6 ) 𝑐𝑜𝑠 (𝜁))       
 

Again the rotation occurred in the opposite direction of the z axis as well as there are an 

initial rotation of 90
0 

between axis 1 and axis 2. Thus, the final value of θ2 is equal to: 

 

𝜃2 = – ((𝛺 –  𝜆) –  90)                                                                                                          (5.5) 
                                                                                         

It is important to say that any position within the robot workspace can be achieved with 

many orientations. Therefore, multiple solutions exist for the variables Ɵ1, Ɵ2 and Ɵ3 

due to the nature of trigonometric functions. In general, the problem of inverse 

kinematics may have eight solutions for the most six DOF manipulators (Nicolescu, 

Ilie, & Alexandru, 2015).  

 

As noticed above, every solution step resulted in two values that will be used in the next 

step, and so on. For example, there are four solutions for ζ that resulted from two 

different values of Ɵ1 [Ɵ1 and Ɵ1'], this procedure gives four solutions for θ3 [Ɵ3 Ɵ3' Ɵ3a 

Ɵ3a'] and eight solutions for Ɵ2 [Ɵ2 Ɵ2' Ɵ2a Ɵ2a' Ɵ2b Ɵ2b' Ɵ2c Ɵ2a'], each set of solution 

corresponds to different robot configurations of elbow-up and elbow-down 

representations. These values are listed in table 4 below to illustrate all the possible 

solution set.  
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Table 4.  Possible solution set 

Solution  THETA1 THETA3  THETA2 Set  

1  

Ɵ1 

Ɵ3 

 

Ɵ2 SET 1 

2 Ɵ2' 

3 Ɵ3' 

 

Ɵ2a SET 2 

4 Ɵ2a' 

5  

Ɵ1' 

 

Ɵ3a 

 

Ɵ2b SET 3 

6 Ɵ2b' 

7 Ɵ3a' 

 

Ɵ2c SET 4 

8 Ɵ2c' 

 

5.2 Analytical Solution 

 

After solving the first inverse kinematic sub-problem which gives the required position 

of the end effector, the next step of the inverse kinematic solution will deal with the 

procedure of solving the orientation sub-problem to find the joint angles Ɵ4, Ɵ5 and Ɵ6. 

This can be done using Z-Y-X Euler's formula. As the orientation of the tool frame with 

respect to the robot base frame is described in term of Z-Y-X Euler's rotation, this 

means that each rotation will take place about an axis whose location depends on the 

previous rotation (Craig, 2005). The Z-Y-X Euler's rotation is shown below in figure 6. 

 

 

Figure 6. Z—Y—X Euler rotation   

The final orientation matrix that results from these three consecutive rotations will be as 

follow: 

𝑅6
0 = Rz'y'x' = Rz (α) Ry (β) Rx (γ) 
 

𝑅6
0  = (

𝑐α −𝑠α 0
𝑠α 𝑐α 0
0 0 1

)  𝑋 (
𝑐β 0 𝑠β 

0 1 0
−𝑠β 0 𝑐β

)  𝑋 (

1 0 0 
0 𝑐γ −𝑠γ
0 𝑠γ 𝑐γ

)    

 

𝑅6
0  = (

𝑐α𝑐β 𝑐α𝑠β𝑠γ − 𝑠α𝑐γ 𝑐α𝑠β𝑐γ + 𝑠α𝑠γ 

𝑠α𝑐β 𝑠α𝑠β𝑠γ + 𝑐α𝑐γ 𝑠α𝑠β𝑐γ − 𝑐α𝑠γ
−𝑠β 𝑐β𝑠γ 𝑐β𝑐γ

)     
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Recall the forward kinematic equation, 

  

𝑅3
0  =  (

𝑐1𝑐23 −𝑐1𝑠23 −𝑠1
𝑠1𝑐23 −𝑠1𝑠23 𝑐1
−𝑠23 −𝑐23 0

) 

 
𝑅6
3 = ( 𝑅) 𝑅6

𝑇    0
3
0  

 

𝑅6
3 = (

𝑐1𝑐23 𝑠1𝑐23 −𝑠23
−𝑐1𝑠23 −𝑠1𝑠23 −𝑐23
−𝑠1 𝑐1 0

)𝑥 (

𝑐α𝑐β 𝑐α𝑠β𝑠γ − 𝑠α𝑐γ 𝑐α𝑠β𝑐γ + 𝑠α𝑠γ 

𝑠α𝑐β 𝑠α𝑠β𝑠γ + 𝑐α𝑐γ 𝑠α𝑠β𝑐γ − 𝑐α𝑠γ
−𝑠β 𝑐β𝑠γ 𝑐β𝑐γ

) 

 

𝑅6
3 = (

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

)     

  

However, it can be concluded that the last three intersected joints form a set of ZYZ 

Euler angles with respect to frame {3}. Therefore, these rotations can be expressed as: 

 

Rz'y'z' = 𝑅6
3 = Rz (α) Ry (β) Rz (γ) 

𝑅6
3  = (

𝑐α −𝑠α 0
𝑠α 𝑐α 0
0 0 1

)  𝑋 (
𝑐β 0 𝑠β 

0 1 0
−𝑠β 0 𝑐β

)  𝑋 (

𝑐γ −𝑠γ 0

𝑠γ 𝑐γ 0

0 0 1

)     

 

𝑅6
3 = (

𝑐α𝑐β𝑐γ − 𝑠α𝑠γ −𝑐α𝑐β𝑠γ − 𝑠α𝑐γ 𝑐α𝑠β 

𝑠α𝑐β𝑐γ + 𝑐α𝑠γ −𝑠α𝑐β𝑠γ + 𝑐α𝑐γ 𝑠α𝑠β
−𝑠β𝑐γ 𝑠β𝑠γ 𝑐β

)  

 

Where 𝑅6
3  is given above as  

 

𝑅6
3

 = (

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

)   

 

It is possible now to use the ZYZ Euler's angles formula to obtain the solutions for Ɵ4, 

Ɵ5 and Ɵ6 where  

 

𝜃5 = 𝛽 = 𝑎𝑡𝑎𝑛2 (+√𝑔31
2 + 𝑔32

2  , 𝑔33)                                                                             (5.6)   

 

𝜃4 = 𝛼 = 𝑎𝑡𝑎𝑛2(
𝑔32 
𝑠𝛽
,
−𝑔31
𝑠𝛽

)                                                                                            (5.7) 

 

𝜃6 = 𝛾 = 𝑎𝑡𝑎𝑛2(
𝑔23
𝑠𝛽
,
𝑔13
𝑠𝛽
)                                                                                                (5.8) 
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For each of the eight solutions achieved from the geometric approach for Ɵ1, Ɵ2 and Ɵ3, 

there is another flipped solution of Ɵ4, Ɵ5 and Ɵ6 that can be obtained as:  

 

𝜃5
′ = 𝛽′ = 𝑎𝑡𝑎𝑛2 (−√𝑔31

2 + 𝑔32
2  , 𝑔33), 

 

𝜃4
′ = 𝛼′ = 𝑎𝑡𝑎𝑛2(

𝑔32 
𝑠𝛽′

,
−𝑔31
𝑠𝛽′

), 

 

𝜃6
′ = 𝛾′ = 𝑎𝑡𝑎𝑛2(

𝑔23
𝑠𝛽′
,
𝑔13
𝑠𝛽′
) 

 
However, if β = 0 or 180, this means that the robot in a singular configuration where the 

joint axes 4 and 6 are parallel. This results in a similar motion of the last three 

intersection links of the robot manipulator.  

Alternatively: 

 

If β = 𝜃5 = 0, the solution will be 

 

𝜃4 = 𝛼 = 0 
 
𝜃6 = 𝛾 = 𝑎𝑡𝑎𝑛2 (−𝑔12, 𝑔11) 
 
And if β = 𝜃5 = 180, the solution will be 

 
𝜃4 = 𝛼 = 0 
 
𝜃6 = 𝛾 = 𝑎𝑡𝑎𝑛2 (𝑔12, −𝑔11) 
 
 

6.0 INVERSE KINEMATIC VALIDATION 

 

The home position of the robot in space is chosen to check the validity of the inverse 

kinematic solution. This position can be represented by a point (Ptcp) in the robot 

workspace. This point describes the position of the Tool Centre Point (TCP) with 

respect to the robot base frame. By applying the inverse kinematic equations derived 

above, a set of joint angles is achieved. However, some of these angles do not yield a 

valid solution which is simply due to the fact that not all the joints can be rotated by 

360
0
. 

 

Ptcp (Home Position) = [𝑝𝑥𝑡𝑐𝑝  𝑝𝑦𝑡𝑐𝑝 𝑝𝑧𝑡𝑐𝑝] T = [515 0 712] T  
   

After performing the calculations in MATLAB, four sets of solution were obtained as 

shown in table 5 below: 

 

 

 

Or simply 𝜃4
′  = 180 +  𝜃4 

 

 Or simply 𝜃5
′ = − 𝜃5 

Or simply 𝜃6
′ = 180 +  𝜃6 
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Table 5. All possible Inverse kinematics solutions 

Ɵ1 Ɵ3 Ɵ2 Set 

 

0 

 

 

-180 

 

102 SET 1 

0 

0 

 

0 SET 2 

-102 

 

180 

 

-153 

 

93.7 SET 3 

-23 

-27 

 

23 SET 4 

-93.7 

 

However, because of the limitation on the joint angle range of movement, especially 

joints 2 and 3, some of these solutions are not valid. Nevertheless, they are shown above 

only to illustrate the calculation process. After that, these possible solutions are 

compared with the joint angle limits, listed below, and only valid solutions are 

presented in Matlab. 

 

Table 6. ABB IRB 140 joint angle limits (ABB, 2000) 

Joint Angle MAX MIN 

Ɵ1 180 -180 

Ɵ2 110 -90 

Ɵ3 50 -230 

Ɵ4 200 -200 

Ɵ5 115 -115 

Ɵ6 400 -400 

 

After filtering all the possible solutions according to the joint angle limitation, only 

three valid solutions were achieved as shown in table 7. 

Table 7. The valid inverse kinematics solutions 

Ɵ1 Ɵ2 Ɵ3 Set 

0 0 0 1
st
  

180 -23 -153 2
nd

   

0 102 -180 3
rd

  

 

The three solutions, shown above, actually represent different robot configurations of 

the home position. These are default, elbow-up and elbow-down representations. The 

elbow-up configuration that corresponds to joint angles (180, -23, -153) is shown in 

figure 7 below, while figure 8 shows the elbow-down configuration that corresponds to 

joint angles (0, 102, 180). Finally, the set (0, 0, 0) represents the default home position. 

It is important to note that the position vector in Robot Studio is given for the TCP with 

respect to the robot global reference frame. Thus to match our solution with the 

simulation in Robot Studio, the inverse kinematics was solved with respect to the 

robot’s TCP. 



   
Forward and Inverse Kinematics Analysis and Validation of the ABB IRB 140 Industrial Robot 

ISSN: 2180-1053         Vol. 8 No.2       July – December 2017                         17 

 

 

Figure 7. Elbow-up configuration 

  

 

Figure 8. Elbow-down configuration 

 

7.0 CONCLUSIONS   

  

This work was undertaken to build the forward and inverse kinematic models of the 

ABB IRB 140 industrial manipulator. The Denavit-Hartenberg analysis (DH) is 

introduced to form the homogeneous transformation matrices. From the derived 

kinematic equations, it can be concluded that the position of the robot is given as a 

function of Ɵ1, Ɵ2 and Ɵ3 only, while the three last intersection joint angles (Ɵ4, Ɵ5 and 

Ɵ6) are used to give the desired orientation in space. The position vectors (x, y and z) 

obtained from the kinematic equations were matched with the actual robot position in 

the lab for the same joint angle input. Therefore, it can be declared that the kinematic 

derivation was carried out successfully. Two approaches have been presented to solve 

the inverse kinematic problem. Those were the geometrical and analytical approaches. 

Multiple solutions have been produced due to the nature of trigonometric functions. 

However, it has been shown that not all the solutions that resulted from the inverse 

kinematics were valid. This is basically due to the physical restrictions on the joint 

angle range of movement. A simulation of the manipulator in Robot Studio has been 

introduced to prove the validity of the inverse kinematic model. It is also used to 

validate the written Matlab code. 
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