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Projective sets, intuitionistically
WIM VELDMAN

Abstract: We try to develop intuitionistic descriptive set theory and study ‘definable’
subsets of Baire space N = ωω . The logic of our arguments is intuitionistic and
we also use L.E.J. Brouwer’s Thesis on bars in ωω and his continuity axioms. We
avoid the operation of taking the complement of a subset of ωω as much as possible,
as the resulting sets, like negative statements, are not very useful in constructive
mathematics.

A subset of ωω is (positively) projective if it results from a closed or an open subset
of ωω × ωω(= ωω) by a finite number of applications of the two operations of
projection and universal projection or co-projection. A subset of ωω is Σ1

1 or
analytic if it is the projection of a closed subset of ωω . We give some examples of
Σ1

1 subsets of ωω like the set of (the codes of) all closed subsets of ωω that are
positively uncountable and also the set of (the codes of) all closed subsets of ωω

containing an element coding a (positively) infinite subset of ω .

A subset of ωω is called strictly analytic if it is the projection of a spread, ie a
closed and located subset of ωω . Some analytic subsets of ωω fail to be strictly
analytic. We will see that Brouwer’s Thesis on bars in ωω proves separation and
boundedness theorems for strictly analytic subsets of ωω .

A subset of ωω is called Π1
1 or co-analytic if it is the co-projection of an open

subset of ωω × ωω(= ωω). Most co-analytic sets are not the complement of an
analytic set. There is no symmetry between analytic and co-analytic sets as there is
in classical descriptive set theory. As an example of a Π1

1 set we consider the set of
the codes of all closed subsets of ωω all of whose members code an almost-finite
subset of ω .

We also study the set of the codes of closed and located subsets of ωω that are
almost-countable, or, equivalently, reducible in Cantor’s sense. This set is probably
not Π1

1 .

Finally, we explain the important fact that the (positive) projective hierarchy
collapses: every (positively) projective set is Σ1

2 ie the projection of a co-analytic
subset of ωω .
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2 Wim Veldman

1 Introduction

This paper on descriptive set theory is one in a series. We explore the field of study laid
bare by pre-intuitionists1 like R. Baire, É. Borel, H. Lebesgue, N. Lusin and M. Souslin,
and consider it from L.E.J. Brouwer’s intuitionistic point of view. In [35], we proved
an intuitionistic Borel hierarchy theorem. In [36], we discovered the fine structure
of the intuitionistic Borel hierarchy, and, in particular, the fine structure of the class
Σ0

2 , consisting of the countable unions of closed subsets of ωω . In both [35] and [36],
the argument is far from classical and essential use is made of Brouwer’s Continuity
Principle.

We now are going to treat projective sets. Our earlier paper [33] already contains some
surprising results on apparently simple analytic and co-analytic subsets of ωω .

This introductory section is divided into three parts. In the first part, we briefly present
the basic assumptions of intuitionistic analysis and we agree on a number of notations.
In the second part, we introduce intuitionistic descriptive set theory. The reader may
decide to skip these first two parts and use them only if further reading makes it necessary
to consult them. In the third part, we describe the further contents of the paper.

1.1 The language and axioms of intuitionistic analysis

The logical constants are used in their intuitionistic sense. A statement P ∨ Q is
considered proven only if one either has a proof of P or a proof of Q. A statement
∃x ∈ V[P(x)] is considered proven only if one is able to produce an element x of V
with a proof of the fact that x has the property P.

Brouwer not only refined the language of mathematics but also introduced a number
of assumptions one should call axiomatic. He was of course the first to use them, see
[2, 3, 5, 6, 10]. The question how to state and defend them has been further discussed
by others, see Heyting [12], Howard–Kreisel [13], Kleene–Vesley [16], Myhill [23],
Troelstra [28], Troelstra–van Dalen [29], and Veldman [30, 32, 35, 34, 40]. One
finds them below in Sections 1.1.3 (Axioms of Countable Choice), 1.1.6 (Brouwer’s
Continuity Principle and Axioms of Continuous Choice), 1.1.7 (the Fan Theorem), 1.1.8
(Stumps), 1.1.9 (Bar Induction) and 1.1.10 (the Creating Subject).

1Brouwer uses this term in [4, page 140] and [5, page 1].
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Projective sets, intuitionistically 3

1.1.1 Finite sequences of natural numbers

ω is the set of the natural numbers. We use m, n, . . . , s, t . . . as variables over ω .

S : ω → ω is the successor function: ∀n[S(n) = n + 1].

p : ω → ω is the function enumerating the primes: p(0) = 2, p(1) = 3, p(2) = 5, . . ..

We code finite sequences of natural numbers by natural numbers: ⟨ ⟩ := 0 is the
(code number of) the empty sequence, and, for all k > 0, for all m0,m1, . . .mk−1 ,
⟨m0,m1, . . . ,mk−1⟩ :=

∏
i<k p(i)mi · p(k − 1) − 1.

length(0) := 0 and, for each s > 0, length(s) := 1 + the largest k such that p(k)
divides s + 1.

For each s, for each i, if i < length(s) − 1, then s(i) := the largest m such that p(i)m

divides s + 1; if i = length(s) − 1, then s(i) := the largest m such that p(i)m+1 divides
s + 1; and, if i ≥ length(s), then s(i) := 0. Observe that for each s, k , if length(s) = k ,
then s = ⟨s(0), s(1), . . . , s(k − 1)⟩.

For each n,

ωn := {s | length(s) = n} and [ω]n := {s ∈ ωn | ∀i[i + 1 < n → s(i) < s(i + 1)]}.

[ω]<ω :=
⋃

n[ω]n .

For all s and t , s ∗ t is the number u satisfying: length(u) = length(s) + length(t),
∀i < length(s)[u(i) = s(i)] and ∀j < length(t)[u(length(s) + j) = t(j)].

For all s, n such that n ≤ length(s), s(n) := sn := ⟨s(0), s(1), . . . , s(n − 1)⟩.

For all s, t :

s ⊑ t ↔ ∃u[t = s ∗ u] s ⊏ t ↔ (s ⊑ t ∧ s ̸= t) s ⊐ t ↔ t ⊏ s

s <lex t ↔ ∃n[n < length(s) ∧ sn ⊏ t ∧ s(n) < t(n)]

s ⊥ t ↔ s # t ↔ (s <lex t ∨ t <lex s) s <KB t ↔ (t ⊏ s ∨ s <lex t)

<KB is a linear ordering of ω , the Kleene–Brouwer-ordering, also called the Lusin–
Sierpinski-ordering; see Kechris [14, Section 2.G, page 11].

For all s, i, si is the number u satisfying: length(u) =the least k such that ⟨i⟩ ∗ k ≥
length(s) and ∀j < length(u)[u(j) = s(⟨i⟩ ∗ j)]. Note that, for each i, ⟨ ⟩i = ⟨ ⟩. Note
also that, for each p and i, ⟨p⟩i = ⟨ ⟩.

For all n and m, J(n,m) := (⟨n⟩ ∗ m) − 1. For each n, K(n) and L(n) are the numbers
satisfying n = J

(
K(n),L(n)

)
.
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4 Wim Veldman

For all s, t such that length(s) = length(t) , ⌜s, t⌝ is the number u satisfying length(u) =
length(s) and ∀i < length(s)

[
u(i) = J

(
s(i), t(i)

)]
.

For each u, uI and uII are the elements s, t of ω such that u = ⌜s, t⌝, ie length(uI) =
length(uII) = length(u) and ∀i < length(u)[uI(i) = K

(
u(i)

)
∧ uII(i) = L

(
u(i)

)
].

For each u, uI,I := (uI)I , uI,II := (uI)II , uII,I := (uII)I and uII,II := (uII)II .

Bin := 2<ω := {s | ∀i < length(s)[s(i) = 0 ∨ s(i) = 1]} is the set of the codes of
finite binary sequences.

For each m, Binm := {s ∈ Bin | length(s) = m}.

For all R ⊆ ω , ∀m∀n[mRn ↔ J(m, n) ∈ R].

For all A,B ⊆ ω , A × B := {J(m, n) | m ∈ A, n ∈ B}.

For all A ⊆ ω , n = µp[A(p)] if and only if A(n) and ∀p < n[¬A(p)].

1.1.2 Infinite sequences of natural numbers

Baire space ωω is the set of all infinite sequences of natural numbers. We use
α, β, . . . , φ, ψ, . . . σ, τ, . . . as variables over ωω .

An element of ωω is a function from ω to ω , and, given α, n we denote the result of
applying α to n by α(n).

[ω]ω := {ζ | ∀n[ζ(n) < ζ(n + 1)]}.

For every X ⊆ ω , Xω := {α | ∀n[α(n) ∈ X]}.

For all α and β , α ◦ β is the element γ of ωω satisfying ∀n
[
γ(n) = α

(
β(n)

)]
.

For all α and t , α ◦ t is the number u satisfying: length(u) = length(t) and
∀n < length(t)

[
u(n) = α

(
t(n)

)]
. In particular, for each t , S ◦ t is the number u

satisfying: length(u) = length(t) and ∀n < length(t) [u(n) = t(n) + 1].

For all α and β , α # β ↔ α ⊥ β ↔ ∃n[α(n) ̸= β(n)] and α = β ↔ ∀n [α(n) = β(n)].
It is a well-known fact that the relation #, called apartness, is co-transitive, ie for all
α, β, γ , if α # β , then either α # γ or γ # β .

For each s, for each α , s∗α is the element γ of ωω such that ∀i < length(s)[γ(i) = s(i)]
and ∀i[γ

(
length(s) + i

)
= α(i)].

For each s, for each X ⊆ ωω , s ∗ X := {s ∗ α | α ∈ X}.

Journal of Logic & Analysis 14:5 (2022)
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For each α , for each n, α(n) := αn := ⟨α(0), α(1), . . . , α(n − 1)⟩. α(0) := α0 :=
⟨ ⟩ = 0.

For all s and α , s ⊏ α↔ ∃n[s = αn] and s ⊥ α↔ α ⊥ s ↔ ¬(s ⊏ α). Note that for
all a and b, for all γ , if a ⊥ b then either a ⊥ γ or γ ⊥ b.

For all s, ωω ∩ s := {α | s ⊏ α}.

For each m, m is the element γ of ωω such that ∀n[γ(n) = m].

For all α and i, αi is the element γ of ωω such that ∀n[γ(n) = α(⟨i⟩ ∗ n)].

For all α,m and n, αm,n := (αm)n . Note that for all m, n and p, αm,n( p) =

α
(
⟨m, n⟩ ∗ p

)
.

For all α , for all s, sα is the element γ of ωω such that ∀n[γ(n) = α(s ∗ n)]. Note that
⟨m⟩α = αm .

For every X ⊆ ωω , X ω := {α | ∀n[αn ∈ X ]}.

For all α, β , ⌜α, β⌝ is the element γ of ωω such that ∀n[γ(n) = J
(
α(n), β(n)

)
].

For each γ , γI and γII are the elements α, β of ωω such that γ = ⌜α, β⌝, ie
∀n[γI(n) = K

(
γ(n)

)
∧ γII(n) = L

(
γ(n)

)
].

For each α , αI,I := (αI)I , αI,II := (αI)II , αII,I := (αII)I and αII,II := (αII)II .

For all R ⊆ ωω , ∀α∀β[αRβ ↔ ⌜α, β⌝ ∈ R].

For all R ⊆ ωω , ∀α∀n[αRn ↔ nRα↔ ⟨n⟩ ∗ α ∈ R].

For all A ⊆ ωω,B ⊆ ω , A× B := B ×A := {⟨n⟩ ∗ α | α ∈ A, n ∈ B}.

For all A,B ⊆ ωω , A× B;= {⌜α, β⌝ | α ∈ A, β ∈ B}.

For all A ⊆ ωω , for all n, A ↾ n := {α | ⟨n⟩ ∗ α ∈ A}.

For all X ⊆ ωω , for all n, Xn := {α | ⟨n⟩ ∗ α ∈ X}.

An infinite sequence X0,X1, . . . of subsets of ωω is the same as the set X = {⟨n⟩ ∗ α |
n ∈ ω, α ∈ Xn}.

For all A,B ⊆ ωω :

A ⊆ B ↔ ∀α[α ∈ A → α ∈ B]

A ⊊ B ↔
(
A ⊆ B ∧ ¬(B ⊆ A)

)
A = B ↔ (A ⊆ B ∧ B ⊆ A)

A ≠ B ↔ ¬(A = B)
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6 Wim Veldman

For all X0,X1 ⊆ ωω , X0 # X1 ↔ ∀α[∀i < 2[αi ∈ Xi] → α0 # α1].

If X0 # X1 , then X0 ∩ X1 = ∅, but the converse may fail to be true.

For every infinite sequence X0,X1, . . . of subsets of ωω , we define: #n(Xn) ↔
∀α

[
∀n[αn ∈ Xn] → ∃i∃j[αi # αj]

]
. If #n(Xn) then

⋂
n Xn = ∅, but the converse may

fail to be true.

Cantor space C := 2ω := {α | ∀n[α(n) < 2]}. (We use both notations.)

For each α ,

Dα := {n | α(n) ̸= 0} is the subset of ω decided by α , and
Eα := {m | ∃n[α(n) = m + 1]} is the subset of ω enumerated by α .

For each s,

Ds := {n < length(s) | s(n) ̸= 0} and
Es := {m | ∃n < length(s)[s(n) = m + 1]}.

Note that for each α , Dα =
⋃

n Dαn and Eα =
⋃

n Eαn .

For each X ⊆ ω ,

X is inhabited if and only if ∃n[n ∈ X],
X is decidable if and only if ∃α[X = Dα], and
X is enumerable if and only if ∃α[X = Eα].

For each α , Tα := {s | ∀t ⊏ s[α(t) = 0]}. Tα is called the tree determined by α . Note
that ∀α[0 = ⟨ ⟩ ∈ Tα].

For all α and β , for all γ , we define:

γ : α ≤∗ β ↔
(
∀s[s ∈ Tα → γ(s) ∈ Tβ] ∧ ∀s∀t[s ⊏ t → γ(s) ⊏ γ(t)]

)
γ : α <∗ β ↔

(
∀s[s ∈ Tα → γ(s) ∈ Tβ] ∧ ∀s∀t[s ⊏ t → γ(s) ⊏ γ(t)]and

∧ γ(⟨ ⟩) ̸= ⟨ ⟩
)

For all α, β , we define α <∗ β ↔ ∃γ[γ : α <∗ β] and α ≤∗ β ↔ ∃γ[γ : α ≤∗ β].

For each δ , Enδ := {δn | n ∈ ω} is the subset of ωω enumerated by δ .

1.1.3 Axioms of Countable Choice

First Axiom of Countable Choice:

AC0,0 : For all R ⊆ ω × ω , if ∀m∃n [mRn], then ∃α∀m[mRα(m)].

Second Axiom of Countable Choice:

AC0,1 : For all R ⊆ ωω × ω , if ∀m∃α [mRα], then ∃α∀m [mRαm].

Journal of Logic & Analysis 14:5 (2022)



Projective sets, intuitionistically 7

1.1.4 Open and closed subsets of ωω , and spreads

For each β , Gβ := {α | ∃n[β(αn) ̸= 0]} and Fβ := {α | ∀n[β(αn) = 0]}.

The pair of sets (Gβ,Fβ) is called a complementary pair of rank 1.

For each X ⊆ ωω :

X is open or Σ0
1 if and only if ∃β[X = Gβ].

X is closed or Π0
1 if and only if ∃β[X = Fβ].

X is inhabited if and only if ∃γ[γ ∈ X ].
X is located if and only if ∃γ[Dγ = {s | ∃α ∈ X [s ⊏ α]}].
X is semi-located if and only if ∃γ[Eγ = {s | ∃α ∈ X [s ⊏ α]}].

For every X ⊆ ωω , X := {α | ∀n∃γ ∈ X [αn ⊏ γ]}. X is called the closure of X .
X is not necessarily Π0

1 .2

One easily proves that for every X ⊆ ωω , X = X , and X is (semi-)located if and only
if X is (semi-)located.

F ⊆ ωω is a spread if and only if F = F and F is located.

For each β , we define: β is a spread-law, Spr(β), if and only if β ∈ 2ω and
∀s

[
β(s) = 0 ↔ ∃n[β(s ∗ ⟨n⟩) = 0]

]
. One easily proves that F ⊆ ωω is a spread if and

only if ∃β[Spr(β) ∧ F = Fβ].

Note that for all β , if Spr(β), then Fβ = ∅ if and only if β(0) = 1 if and only if β = 1,
and ∃γ[γ ∈ Fβ] (Fβ is inhabited) if and only if β(0) = 0. The empty set ∅ thus is a
spread, and one may decide, for every spread F , either F = ∅ or ∃γ[γ ∈ F].

Assume Spr(β) and β(c) = 0. We define: Fβ ∩ c := {γ ∈ Fβ | c ⊏ γ}. Note that
Fβ ∩ c itself is a spread.

For each β , we define β is a perfect-spread-law, Pfspr(β), if and only if:

Spr(β) ∧ β(0) = 0 ∧ ∀s
[
β(s) = 0 →
∃t∃u[s ⊏ t ∧ s ⊏ u ∧ t ⊥ u ∧ β(t) = β(u) = 0]

]
F ⊆ ωω is a perfect spread if and only if ∃β[Pfspr(β) ∧ F = Fβ].

2One may see this as follows. For every α , define Yα := {γ | γ = 0 ∧ α # 0} and note that
Yα := Yα . Assume that every Yα is Π0

1 . Then ∀α∃β∀γ[γ ∈ Yα → γ ∈ Fβ], and therefore
∀α∃β[α # 0 ↔ ∀n[β(0n) = 0]]. Using Axiom AC1,1 (see Section 1.1.6) one may derive a
contradiction.
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8 Wim Veldman

1.1.5 Continuous functions

For all φ, α,m, we define: φ maps α onto m, φ : α 7→ m, if and only if

∃n
[
φ(αn) = m + 1 ∧ ∀i < n[φ(αi) = 0]

]
If ∃m[φ : α 7→ m], we let φ(α) denote the unique m such that φ : α 7→ m.

For every X ⊆ ωω , for all φ, we define: φ codes a function from X to ω , φ : X → ω ,
if and only if ∀α ∈ X∃m[φ : α 7→ m].

φ(X ) := {m | ∃α ∈ X [φ : α 7→ m]} = {φ(α) | α ∈ X}.

For every X ⊆ ωω , ωX := {φ | φ : X → ω}.

For all φ, α, β , we define: φ maps α onto β , φ : α 7→ β , if and only if φ(0) =

φ(⟨ ⟩) = 0 and ∀n[φn : α 7→ β(n)].

If ∃β[φ : α 7→ β], we let φ|α denote the unique β such that φ : α 7→ β .

For every X ,Y ⊆ ωω , for all φ, we define: φ maps X into Y , φ : X → Y , if and
only if ∀α ∈ X∃β ∈ Y[φ : α 7→ β].

φ|X := {β | ∃α ∈ X [φ : α 7→ β]} = {φ|α | α ∈ X}.

For all X ,Y ⊆ ωω , for all φ, we define: φ embeds X into Y , φ : X ↣ Y , if and only
if φ : X → Y and ∀α ∈ X∀β ∈ X [α # β → φ|α # φ|β]. Emb(X ,Y) := {φ | φ :
: X ↣ Y}. For all X ,Y ⊆ ωω , X embeds into Y if and only if ∃φ[φ : : X ↣ Y].

For all X ,Y ⊆ ωω , for all φ, we define: φ is a surjective mapping from X onto Y ,
φ : X ↠ Y , if and only if φ : X → Y and ∀β ∈ Y∃α ∈ X [φ|α = β]. X maps onto
Y if and only if there exists a surjective mapping from X onto Y .

For all X ⊆ ωω , (ωω)X := {φ | φ : X → ωω}.

Note that (ωω)(ωω) = {φ | φ : ωω → ωω} = {φ ∈ ω(ωω) | φ(0) = 0}.

For all φ, s we let φ|s be the largest number t such that length(t) ≤ length(s) and
∀j < length(t)∃p ≤ length(s)[φj(sp) = t(j) + 1 ∧ ∀i < p[φj(si) = 0]]. Note
that ∀φ∀s[length(φ|s) ≤ length(s)]. Note that ∀φ∀α∀β[φ : α 7→ β ↔ ∀n∃m[βn ⊑
φ|αm]].

For all φ,ψ in (ωω)(ωω) , we define φ ⋆ ψ in (ωω)(ωω) such that, for all n, for all s, for
all p, φn(s) = p + 1 if and only if n < length

(
φ|(ψ|s)

)
and

(
φ|(ψ|s)

)
(n) = p + 1.

Note that ∀α[(φ ⋆ ψ)|α = φ|(ψ|α)].

Let F ⊆ ωω be an inhabited spread. Find β such that Spr(β) and F = Fβ . Now
define ρ : ωω → ωω such that, for all α and m,

Journal of Logic & Analysis 14:5 (2022)
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if β(ρ|αm ∗ ⟨α(m)⟩) = 0, then (ρ|α)(m) = α(m), and
if β(ρ|αm ∗ ⟨α(m)⟩) ̸= 0, then (ρ|α)(m) = µk[β(ρ|αm ∗ ⟨k⟩) = 0].

ρ is called the canonical retraction of ωω onto F . Note that ∀α[ρ|α ∈ F],
∀α[ρ|α # α↔ ∃m[β(αm) ̸= 0]], and ∀α ∈ F[ρ|α = α].

Assume that Spr(β) and B ⊆ ω is a bar in Fβ , ie ∀γ ∈ Fβ∃n[γn ∈ B]. Define
B′ := B ∪ {s | β(s) ̸= 0}. Then B′ is a bar in ωω , ie ∀γ∃n[γn ∈ B′]. In order to see
this, we use the canonical retraction ρ of ωω onto Fβ . Let γ be given. Find n such that
ρ|γn ∈ B. Either ρ|γn = γn and γn ∈ B; or, ρ|γn ̸= γn and ∃m ≤ n[β(γm) ̸= 0]. In
both cases, γn ∈ B′ .

1.1.6 Brouwer’s Continuity Principle and the Axioms of Continuous Choice

Brouwer’s Continuity Principle:

BCP : For every spread F , for every R ⊆ F × ω , if ∀α ∈ F∃n[αRn],
then ∀α ∈ F∃m∃n∀β ∈ F[αm ⊏ β → βRn].

First Axiom of Continuous Choice:

AC1,0 : For every spread F , for all R ⊆ F × ω , if ∀α ∈ F∃n[αRn],
then ∃φ[φ : F → ω ∧ ∀α ∈ F[αRφ(α)]].

Second Axiom of Continuous Choice:

AC1,1 : For every spread F , for all R ⊆ F × ωω , if ∀α ∈ F∃β[αRβ],
then ∃φ[φ : F → ωω ∧ ∀α ∈ F[αRφ|α]].

1.1.7 The Fan Theorem

For all X ⊆ ωω , for all B ⊆ ω , we define: BarX (B) ↔ ∀γ ∈ X∃n[γn ∈ B].

For each β , we define: Fan(β) ↔
(
Spr(β) ∧ ∀s∃n∀m > n[β(s∗⟨m⟩) ̸= 0]

)
. If Fan(β),

one says: β is a fan-law. F ⊆ ωω is a fan if and only if ∃β[Fan(β) ∧ F = Fβ].

The Fan Theorem:

For every fan F ⊆ ωω and every B ⊆ ω , if BarF (B) then ∃s[Ds ⊆ B ∧
BarF (Ds)].

The restricted Fan Theorem:

FT: For each fan F ⊆ ωω and every δ , if BarF (Dδ) then ∃n
[
BarF (Dδn)

]
.

Journal of Logic & Analysis 14:5 (2022)
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1.1.8 Stumps

Axiom on the existence of the set of stumps:

STP: ST P is a subset of 2ω such that:3

(i) 1∗ := 1 ∈ ST P ;
(ii) for all σ in 2ω , if

(a) σ(0) = 0, and
(b) for all n, σn ∈ ST P ,
then σ ∈ ST P ; and

(iii) for all Q ⊆ ST P , if
(a) 1∗ ∈ Q, and
(b) for all σ in ST P , if σ(0) = 0 and, for all n, σn ∈ Q, then σ ∈ Q;
then ST P = Q.

The elements of ST P are called stumps.

For each β in ωω , we define β∗ in 2ω by: for all s, β∗(s) = 1 if β(s) = 0 and
β∗(s) = 0 if β(s) ̸= 0.

1∗ is/codes the empty stump. For each σ in ST P , σ = 1∗ if and only if σ(0) = 1.

For each σ ≠ 1∗ in ST P , for each n, σn is a stump, the n–th immediate substump of
σ . (Also, for each n, (1∗)n = 1∗ is a stump.)

We define relations <,≤ on ST P by simultaneous transfinite induction: for all σ, τ in
ST P ,

(i) σ ≤ τ ↔
(
σ ̸= 1∗ → ∀n[σn < τ ]

)
, and

(ii) σ < τ ↔
(
τ ̸= 1∗ ∧ ∃n[σ ≤ τ n]

)
.

Using the axiom STP one proves the following.

Principle of Induction on ST P :

For all Q ⊆ ST P , if ∀σ ∈ ST P[∀τ ∈ ST P[τ < σ → τ ∈ Q] → σ ∈
Q] then ST P = Q.

One may prove:4 for all σ, τ in ST P , σ ≤ τ if and only if σ ≤∗ τ .

For all α , we let S∗(α) be the element β of ωω such that β(0) = 0 and ∀n[βn = α].
S∗(α) is called the successor of α .

Note that ∀α ∈ ST P[S∗(α) ∈ ST P].
3There is a small difference between the set ST P as it is introduced here and the sets called

Stp in Veldman [35, 36], respectively.
4The relation ≤∗ has been defined at the end of Section 1.1.2.
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1.1.9 Bar Induction

Brouwer’s Thesis on bars in ωω :

BT: For each B ⊆ ω , if Barωω (B), then ∃σ ∈ ST P[Barωω (B ∩ Tσ)].

Recall, from Section 1.1.2, that Tσ = {s | ∀t ⊏ s[σ(t) = 0]}.

B ⊆ ω is monotone if and only if ∀s∀n[s ∈ B → s ∗ ⟨n⟩ ∈ B].

C ⊆ ω is inductive if and only if ∀s[∀n[s ∗ ⟨n⟩ ∈ C] → s ∈ C].

BT proves the following.

Principle of Bar Induction:

BI: For all B,C ⊆ ω , if Barωω (B), B ⊆ C , and C is monotone and
inductive, then 0 = ⟨ ⟩ ∈ C .

Assume Spr(β). We define:

B ⊆ ω is monotone within {s | β(s) = 0} if and only if:

∀s[
(
β(s) = 0 ∧ s ∈ B

)
→ ∀n[β(s ∗ ⟨n⟩) = 0 → s ∗ ⟨n⟩ ∈ B]]

C ⊆ ω is inductive within {s | β(s) = 0} if and only if:

∀s[
(
β(s) = 0 ∧ ∀n[β(s ∗ ⟨n⟩) = 0 → s ∗ ⟨n⟩ ∈ C]

)
→ s ∈ C]

BI admits the following extension:

BI, extended to spreads: For all β such that Spr(β) and β(0) = 0, for all
B,C ⊆ ω , if BarFβ

(B), B ⊆ C , and C is monotone and inductive within
{s | β(s) = 0}, then 0 = ⟨ ⟩ ∈ C .

Using BI and calling to aid the canonical retraction ρ of ωω onto Fβ , one easily proves
this extended form of BI from BI itself.

1.1.10 The creating subject

The Brouwer–Kripke axiom, also called: Kripke’s scheme5 is the following statement:

KS: Given any definite mathematical proposition P, one may build α

such that P ↔ ∃n[α(n) ̸= 0].

5Kripke’s scheme plays a role in the proof of Theorem 2.11 and it is mentioned in Section 5.
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12 Wim Veldman

The idea underlying the axiom is that, once P is given, I may, identifying myself with
the creating subject, start thinking upon it, and the truth of P will consist in my finding
a proof of P, at some point of time. Time is supposed to be divided into stages that
are numbered by natural numbers. For each n, α(n) ̸= 0 if and only if, at stage n, I
possess a proof of P.

This is a rather wild idea, actually too wild, if we allow P to be a statement about an
object that is itself unfinished, like an infinite sequence β = β(0), β(1), . . . of natural
numbers I am creating step by step, freely choosing each one of its values. At any stage,
only finitely many values will have been determined, and the statement: ∀n[β(n) = 0],
provided it has not been violated already, is unprovable at any stage, although possibly
true ‘in the end’.

We therefore require P to be definite:6 P should not be about unfinished objects. In a
formal context, one forbids that the formula corresponding to the proposition contain a
free variable over elements of Baire space.

If one do not take this precaution, KS leads to a contradiction with AC1,1 , as was first
observed by J. Myhill, see Myhill [23]:

Assume ∀β∃α[β = 0 ↔ ∃n[α(n) ̸= 0]]. Applying AC1,1 , find φ : ωω → ωω

such that ∀β[β = 0 ↔ ∃n[(φ|β)(n) ̸= 0]]. Then find n such that (φ|0)(n) ̸= 0.
Finally, find m such that ∀β[0m ⊏ β → (φ|β)(n) = (φ|0)(n)] and conclude that
∀β[0m ⊏ β → β = 0], a contradiction.

Myhill wanted to give up AC1,1 because of this argument. Johan de Iongh proposed
the restriction of KS to definite propositions; see Gielen–de Swart–Veldman [11, §3].

Theorem 1.1 (Consequences of KS)

(i) If X ⊆ ω is definite, then ∃δ[X = Eδ], ie X is enumerable.
(ii) If X ⊆ ωω is definite, then ∃δ[Eδ = {s | ∃γ ∈ X [s ⊏ γ]}], ie X is semi-located.

Proof (i) Let X ⊆ ω be definite. By KS, ∀n∃α[n ∈ X ↔ ∃m[α(m) ̸= 0]]. Using
AC0,1 , find α such that ∀n[n ∈ X ↔ ∃m[αn(m) ̸= 0]]. Now define δ such that δ(0) = 0
and, for all n,m, if αn(m) ̸= 0 then δ(⟨n⟩ ∗ m) = n + 1; if not, then δ(⟨n⟩ ∗ m) = 0,
and note that X = Eδ .

(ii) Let X ⊆ ωω be definite. The set {s | ∃γ ∈ X [s ⊏ γ]} also is definite, and one may
apply (i).

6The term ‘definite’ will also be applied to (other) mathematical objects. The infinite sequence
0, for instance, deserves to be called definite.
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1.1.11 Semi-classical principles

The Limited Principle of Omniscience:

LPO: ∀α[∃n[α(n) ̸= 0] ∨ ∀n[α(n) = 0]].

The Lesser Limited Principle of Omniscience:7

LLPO: ∀α[∀m[2m ̸= µp[α(p) ̸= 0] ∨ ∀m[2m + 1 ̸= µp[α(p) ̸= 0]].

Note that LPO → LLPO: Let α be given. Define β such that ∀n[β(n) ̸= 0 ↔
2n + 1 = µp[α(p) ̸= 0]]. If ∃n[β(n) ̸= 0]], then ∀m[2m ̸= µp[α(p) ̸= 0], and if
∀n[β(n) = 0], then ∀m[2m + 1 ̸= µp[α(p) ̸= 0]].

LLPO and BCP together give a contradiction: assuming both, find p such that
∀α[0p ⊏ α→ ∀m[2m ̸= µp[α(p) ̸= 0]] or ∀α[0p ⊏ α→ ∀m[2m+1 ̸= µp[α(p) ̸= 0]].
The sequences 0(2p) ∗ 1 and 0(2p + 1) ∗ 1 show that both alternatives are false.

Markov’s Principle,

MP : ∀α[¬¬∃n[α(n) ̸= 0] → ∃n[α(n) ̸= 0]]

has been defended by Markov for algorithmically computable α only.

1.2 Descriptive set theory

Information on classical descriptive set theory may be found in Lusin [17], Moschovakis
[22], Kechris [14] and Srivastava [27]. Some results on the borderline of classical and
intuitionistic descriptive set theory may be found in Moschovakis [19] and [21].

1.2.1 Some basic notions

For all X ,Y ⊆ ωω , for all φ : ωω → ωω , we define: φ reduces X to Y if and only
if ∀α[α ∈ X ↔ φ|α ∈ Y]. We define: X reduces to Y , X ⪯ Y , if and only if
there exists φ : ωω → ωω reducing X to Y . For all X0,X1,Y0,Y1 ⊆ ωω , we define:
(X0,X1) simultaneously reduces to (Y0,Y1), (X0,X1) ⪯ (Y0,Y1), if and only if there
exists φ : ωω → ωω reducing X0 to Y0 and also X1 to Y1 .

Let K be a class of subsets of ωω .
7 LPO and LLPO were introduced by E. Bishop, as special cases of the principle of the

excluded middle X ∨ ¬X . If one reads well-known theorems constructively, many of them
turn out to be equivalent to one of these ‘principles’. From a constructive point of view, these
‘principles’ are, of course, totally wrong.
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14 Wim Veldman

Assume X ⊆ ωω . We often say ‘X is K’ for ‘the set X belongs to the class K’ .

We define X ⊆ ωω is K–complete if and only if K is the class of all Y ⊆ ωω reducing
to X , and we define X ⊆ ωω is K–universal if and only if K is the class of all sets of
the form X ↾ α , for some α in ωω .

Note that if X is K–universal then X is K–complete.

1.2.2 Open sets and closed sets

Σ0
1 := {Gβ | β ∈ ωω} and Π0

1 := {Fβ | β ∈ ωω}.

E1 := {α | ∃n[α(n) ̸= 0]} = {α | α # 0} and A1 := {α | ∀n[α(n) = 0]} = {0}. E1

is Σ0
1 –complete and A1 is Π0

1 –complete.

US1 := {α | αII ∈ GαI} = {α | ∃n[αI(αIIn) ̸= 0]} and UP1 := {α | αII ∈ FαI} =

{α | ∀n[αI(αIIn) = 0]}. US1 is Σ0
1 –universal and UP1 is Π0

1 –universal.

1.2.3 Borel sets of finite rank

For each m > 0, for each β , we define Gm
β ,Fm

β ⊆ ωω by induction. G1
β := Gβ and

F1
β := Fβ ; and, for each m > 0, Gm+1

β =
⋃

n Fm
βn and Fm+1

β =
⋂

n Gm
βn .

For each m > 0, for each β , the pair of sets (Gm
β ,Fm

β ) is called a complementary pair
of (positively) Borel sets of rank m.

For each m > 0, Σ0
m := {Gm

β | β ∈ ωω} and Π0
m := {Fm

β | β ∈ ωω}.

For each m > 0, we define Em,Am ⊆ ωω by induction. E1,A1 were defined in Section
1.2.2. For each m > 0, Em+1 := {α | ∃n[αn ∈ Am]} and Am+1 := {α | ∀n[αn ∈ Em]}.

For each m > 0:

Em is Σ0
m –complete and Am is Π0

m –complete.
(Em,Am) is a complementary pair of rank m.
USm := {α | αII ∈ Gm

αI
} and UPm := {α | αII ∈ Fm

αI
}.

USm is Σ0
m –universal and UPm is Π0

m –universal.
(USm,UPm) is a complementary pair of rank m.
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1.2.4 Borel sets in general

The set HRS of the hereditarily repetitive stumps is defined inductively: for each
stump σ , σ ∈ HRS ↔

(
σ(0) = 0 → ∀n[σn ∈ HRS ∧ ∀m∃n > m[σn = σm]

)
.

For each σ in HRS , for each β , we define Gσβ ,Fσ
β ⊆ ωω by induction: if σ = 1∗ ,

then Gσβ = Gβ and Fσ
β = Fβ ; and, if σ ̸= 1∗ , then Gσβ :=

⋃
n Fσn

βn and Fσ
β :=

⋂
n Gσ

n

βn .

Note that for each σ in HRS , for each β , Gσβ # Fσ
β . The pair of sets (Gσβ ,Fσ

β ) is
called a complementary pair of (positively) Borel sets of rank σ .

For each σ in HRS , Σ0
σ := {Gσβ | β ∈ ωω} and Π0

σ := {Fσ
β | β ∈ ωω}.

For each σ in HRS , we define Eσ,Aσ ⊆ ωω by induction: if σ = 1∗ , then
Eσ := E1 and Aσ := A1 ; and, if σ ̸= 1∗ , then Eσ := {α | ∃n[αn ∈ Aσn]} and
Aσ := {α | ∀n[αn ∈ Eσn]}. For each σ in HRS , Eσ is Σ0

σ–complete and Aσ is
Π0
σ–complete and (Eσ,Aσ) is a complementary pair of rank σ .

For each σ in HRS , USσ := {α | αII ∈ GσαI
} and UPσ := {α | αII ∈ Fσ

αI
}. For

each σ in HRS , USσ is Σ0
σ–universal, UPσ is Π0

σ–universal and (USσ,UPσ) is a
complementary pair of rank σ .

The function S∗ : ωω → ωω has been defined in Section 1.1.8. Note that ∀σ ∈
HRS[S∗(σ) ∈ HRS].

Define 1∗ := 1 and, for all m, (m + 1)∗ = S∗(m∗). Note that for all m > 0, Σ0
m = Σ0

m∗

and Em = Em∗ and Π0
m = Π0

m∗ and Am = Am∗ , . . .

Borel := {Gσβ | σ ∈ HRS, β ∈ ωω}.

The following is proven in Veldman [35, Theorems 4.9, 7.9, 7.10].

Theorem 1.2 (Borel Hierarchy Theorem)

(i) For all σ, τ in HRS , if σ < τ , then Eσ,Aσ reduce to both Eτ and Aτ .
(ii) (Not using BCP): For all σ in HRS :

∀φ : ωω → ωω∃α[(α ∈ Eσ ↔ φ|α ∈ Eσ) ∧ (α ∈ Aσ ↔ φ|α ∈ Aσ)]

(iii) (Using BCP): For all σ in HRS :
∀φ : ωω → ωω[φ|Eσ ⊆ Aσ → ∃α[α ∈ Aσ ∧ φ|α ∈ Aσ]] and
∀φ : ωω → ωω[φ|Aσ ⊆ Eσ → ∃α[α ∈ Eσ ∧ φ|α ∈ Eσ]]; or, equivalently,
for all X in Π0

σ , if Eσ ⊆ X then ∃α ∈ Aσ[α ∈ X ], and
for all X in Σ0

σ , if Aσ ⊆ X , then ∃α ∈ Eσ[α ∈ X ]

Theorem 1.2(iii) implies that Eσ positively fails to be Π0
σ and Aσ positively fails to be

Σ0
σ . For the intuitionistic mathematician, Theorem 1.2(ii) does not establish the hierarchy,

as, for almost every σ in HRS , he is unable to prove: ¬∃α[α /∈ Eσ ∧ α /∈ Aσ].
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16 Wim Veldman

1.2.5 On disjunction

For every infinite sequence X0,X1,X2, . . . of subsets of ωω , we define:

Dn(Xn) := {α | ∃n[αn ∈ Xn]} and Cn(Xn) := {α | ∀n[αn ∈ Xn]}

Dn(Xn),Cn(Xn) are the disjunction and the conjunction of the infinite sequence
X0,X1,X2, . . ., respectively.

Note that, for each σ in HRS , if σ ̸= 1∗ , then Eσ = Dn(Aσn) and Aσ = Cn(Eσn).

For all X0,X1 ⊆ ωω , we define:

D(X0,X1) := {α | ∃i < 2[αi ∈ Xi]} and D2(X0) := D(X0,X0)

D(X0,X1) is called the disjunction of X0 and X1 .

Note that Z ⊆ ωω reduces to D(X0,X1) if and only if there exist Z0,Z1 such that
Z = Z0 ∪ Z1 and ∀i < 2[Zi ⪯ Xi].

The following result is not difficult but very important.

Theorem 1.3 ¬
(
D2(A1) ⊆ D2(A1)

)
.

Proof Assume D2(A1) ⊆ D2(A1) = {α | α0 = 0 ∨ α1 = 0}. Note that D2(A1) is a
spread containing 0. Applying BCP, find m such that either ∀α ∈ D2(A1)[0m ⊏ α→
α0 = 0]; or ∀α ∈ D2(A1)[0m ⊏ α→ α1 = 0]. Both alternatives are false.

Theorem 1.3 shows that the union of two Π0
1 –sets is not always Π0

1 : D(A1,A1) does
not reduce to A1 . This result admits of a vast extension.

Assume that σ ∈ HRS . Define, as in Veldman [35, page 39]:

σ is weakly comparative ↔
(
σ(0) = 0 → ∀m∀n∃p[σm ≤ σp ∧ σn ≤ σp]

)
The following result is [35, Theorem 8.8].

Theorem 1.4 (The persisting difficulty of disjunction) For each σ in HRS , if σ is
weakly comparative, then D(A1,Aσ) does not reduce to AS∗(σ) .
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1.2.6 Projective sets

For each X ⊆ ωω , Ex(X ) := {α | ∃β[⌜α, β⌝ ∈ X ]} = {αI | α ∈ X} and
Un(X ) := {α | ∀β[⌜α, β⌝ ∈ X ]}. Ex(X ) is called the projection of X , and Un(X ) is
called the co-projection of X .

For each β , EFβ := Ex(Fβ) and UGβ := Un(Gβ).

Σ1
1 := {EFβ | β ∈ ωω} is the class of the analytic sets and Π1

1 := {UGβ | β ∈ ωω}
is the class of the co-analytic sets. Σ1

1 thus consists of the projections of the closed
subsets of ωω and Π1

1 consists of the co-projections of the open subsets of ωω .

For each β ,
(
EFβ,UGβ

)
is called a complementary

(
Σ1

1,Π
1
1
)

–pair.

US1
1 := {α | αII ∈ EFαI} and UP1

1 := {α | αII ∈ UGαI}. We shall prove that US1
1

is Σ1
1 –universal; see Theorem 2.1(i). We shall prove that UP1

1 is Π1
1 –universal; see

Theorem 4.1(i).

E1
1 := {α | ∃γ∀n[α(γn) = 0]} and A1

1 := {α | ∀γ∃n[α(γn) ̸= 0]}. We shall prove
that E1

1 is Σ1
1 –complete, see Theorem 2.1(ii). We shall prove that A1

1 is Π1
1 –complete,

see Theorem 4.1(ii).

For certain purposes, the class Σ1
1 is too wide. We therefore introduce the class

Σ1,∗
1 := {EFβ | Spr(β)} of the strictly analytic sets. Σ1,∗

1 consists of the projections of
the subsets of ωω that are both closed and located.

For certain purposes, the class Π1
1 is too narrow. We therefore introduce the class:

Π1+
1 := {Un(X ) | X ∈ Borel}

Π1+
1 is the class of the broadly co-analytic sets.

For each β , UEFβ := Un(EFβ) and EUGβ := Ex(UGβ).

Π1
2 := {UEFβ | β ∈ ωω} and Σ1

2 := {EUGβ | β ∈ ωω}.

For each β , (EUGβ, UEFβ) is a complementary (Σ1
2, Π

1
2)–pair.

E1
2 := {α | ∃δ∀γ∀n[α(⌜γ, δ⌝n) = 0]} and A1

2 := {α | ∀δ∃γ∃n[α(⌜γ, δ⌝n) ̸= 0]}. We
shall prove that E1

2 is Σ1
2 –complete, and that A1

2 is Π1
2 –complete; see Theorem 7.1(ii).

US1
2 := {α | αII ∈ EUGαI} and UP1

1 := {α | αII ∈ UEFαI}. We shall prove that
US1

2 is Σ1
2 –universal, and that UP1

2 is Π1
2 –universal; see Theorem 7.1(i).
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1.2.7 Perhaps

For every X ⊆ ωω , Perhaps(X ) := {α | ∃β ∈ X [α # β → α ∈ X ]}.

If X is inhabited, then X ⊆ Perhaps(X ).

X ⊆ ωω is perhapsive if and only if X = Perhaps(X ).

In Waaldijk [41], perhapsive subsets of ωω are called weakly stable. [41] is the
birthplace of the notion of ‘perhapsity’. The notion has been studied further in Veldman
[31, 33, 36].

Theorem 1.5
(i) For all X ,Y ⊆ ωω , if X ⪯ Y and Y is perhapsive, then X is perhapsive.

(ii) D2(A1) and E2 are not perhapsive.
(iii) A2 is perhapsive and ¬

(
D2(A1) ⪯ A2

)
.

(iv) A1
1 is perhapsive and ¬

(
D2(A1) ⪯ A1

1
)

.

Proof (i) Let X ,Y, φ be given such that φ : ωω → ωω reduces X to Y and Y is
perhapsive. Let α, β be given such that β ∈ X and α # β → α ∈ X . Note that
φ|β ∈ Y ; and, if φ|α # φ|β , then α # β , α ∈ X , and φ|α ∈ Y . As Y is perhapsive,
we conclude that φ|α ∈ Y and α ∈ X .

We thus see ∀α[∃β ∈ X [α # β → α ∈ X ] → α ∈ X ], ie X is perhapsive.

(ii) Let α in D2(A1) be given. Define α0 such that (α0)0 = 0 and ∀j[¬∃n[j =

⟨0⟩ ∗ n] → α0(j) = α(j)]. Note that α0 ∈ D2(A1) and, if α # α0 , then α1 = 0 and
α ∈ D2(A1). We thus see that ∀α ∈ D2(A1)[α ∈ Perhaps

(
D2(A1)

)
]. Using Theorem

1.3, we conclude that D2(A1) ̸= Perhaps
(
D2(A1)

)
, ie D2(A1) is not perhapsive.

As D2(A1) is Σ0
2 and reduces to E2 , also E2 is not perhapsive, by (i).

(iii) Let α, β be given such that β ∈ A2 and α # β → α ∈ A2 . Let m be given.
Find n such that βm(n) ̸= 0. Either αm(n) = βm(n) ̸= 0; or α # β , α ∈ A2 , and
∃p[αm(p) ̸= 0]. We thus see that ∀m∃p[αm(p) ̸= 0], ie α ∈ A2 . Conclude that
∀α[∃β ∈ A2[α # β → α ∈ A2] → α ∈ A2], ie A2 is perhapsive.

It follows that D2(A1) does not reduce to A2 , by (ii) and (i).

(iv) Let α, β be given such that β ∈ A1
1 and α # β → α ∈ A1

1 . Let γ be given.
Find n such that β(γn) ̸= 0. Either α(γn) = β(γn) ̸= 0; or α # β , α ∈ A1

1 , and
∃p[α(γp) ̸= 0]. We thus see that ∀γ∃p[α(γp) ̸= 0], ie α ∈ A1

1 . Conclude that
∀α[∃β ∈ A1

1[α # β → α ∈ A1
1] → α ∈ A1

1], ie A1
1 is perhapsive.

It follows that D2(A1) does not reduce to A1
1 , by (ii) and (i).

Note that, as A2 ⪯ A1
1 , (iii) in fact follows from (iv).
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1.3 The main results of this paper

Apart from this introductory section, the paper contains sections numbered 2 to 7.

In Section 2, we first establish some properties of the class Σ1
1 .

We then prove that the set

IF := {α | ∃β ∈ (Tα)ω∀n[β(n + 1) <KB β(n)]}

ie the set of all α such that the tree Tα := {s | ∀t ⊏ s[α(t) = 0]} is (positively) ill-
founded with respect to the Kleene-Brouwer-ordering <KB , is Σ1

1 but not Σ1
1 –complete.

We also prove that the set

UNC := {β | ∀α∃γ ∈ Fβ∀n[γ # αn]}

of codes of the positively uncountable closed subsets of ωω is Σ1
1 –complete, and that

the same holds for the set

Share∗(INF) := {β | Spr(β) ∧ ∃α ∈ Fβ∀m∃n > m[α(n) ̸= 0]}

of codes of the spreads that contain an element α such that Dα = {n | α(n) ̸= 0} is an
infinite subset of ω .

The final subsection of Section 2 is devoted to the class Σ1∗
1 of the strictly analytic

subsets of ωω . Σ1∗
1 is a proper subclass of Σ1

1 and is lacking some of the useful closure
properties of Σ1

1 .

In Section 3, we give intuitionistic proofs of the Separation Theorems due to Lusin
and Novikov. Novikov’s Theorem is the stronger one and says that, given any infinite
sequence X0,X1, . . . of Σ1∗

1 subsets of ωω such that #n(Xn), (that is, in a constructively
strong sense:

⋂
n(Xn) = ∅), one may find an infinite sequence B0,B1, . . . of Borel

subsets of ωω such that ∀n[Xn ⊆ Bn] and #n(Bn). The proofs use Brouwer’s Thesis on
bars in ωω .

We give an intuitionistic proof of Lusin’s result that the range of a strongly one-to-one
function from a spread into ωω is (positively) Borel. It is shown that the positively
Borel set D2(A1) := {α | α0 = 0 ∨ α1 = 0} positively fails to be the range of a
strongly one-to-one function from a spread into ωω .

In Section 4, we establish some properties of the class Π1
1 of the co-analytic subsets of

ωω . We prove that the set

WF := {α | ∀β ∈ (Tα)ω∃n[β(n) ≤KB β(n + 1)]}
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ie the set of all α such that the tree Tα is well-founded with respect to <KB , coincides
with A1

1 and thus is Π1
1 –complete. The proof uses Brouwer’s Thesis on bars in ωω .

We also show that the set

Sink∗(ALMOST ∗FIN ) := {β | Spr(β) ∧ ∀α ∈ Fβ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0]}

consisting of the codes of all spreads all of whose elements α have the property that
Dα is an almost-finite subset of ω , is Π1

1 –complete. We then prove that the set

E1
1 ! := {α | ∃γ[∀n[α(γn) = 0] ∧ ∀δ[δ # γ → ∃n[α(δn) ̸= 0]]}

consisting of those α that admit exactly one path γ is not Π1
1 although, in classical

descriptive set theory, E1
1 ! is Π1

1 –complete. It remains true that every Π1
1 set reduces to

E1
1 !.

In Section 5, we prove that there exist Σ1
1 sets that positively fail to be Π1

1 and Π1
1

sets that positively fail to be Σ1∗
1 . We use Kripke’s scheme KS in order to prove that

there are Π1
1 sets that are not Σ1

1 . We also see that some Σ1
1 sets positively fail to be

(positively) Borel and that some Π1
1 sets are not (positively) Borel. Using Brouwer’s

Thesis on bars in ωω , we prove one half of Souslin’s Theorem: Σ1∗
1 ∩Π1

1 ⊆ Borel.
The converse statement fails intuitionistically.

In Section 6, we study the set

ALMOST ∗COUNT := {β | Spr(β) ∧ ∃δ∀γ ∈ Fβ∀α∃n[γα(n) = δnα(n)]}

of codes of almost-countable spreads. This set is Σ1
2 and probably not Π1

1 , although
we have no proof of the latter fact. We prove, again using Brouwer’s Thesis on bars in
ωω , that the almost-countable spreads are just the spreads that are reducible in Cantor’s
sense and that they form a hierarchy in various senses, the so-called Cantor–Bendixson
hierarchy.

In Section 7, we study the class Π1
2 of the co-projections of analytic sets and the

class Σ1
2 of the projections of co-analytic sets. We prove that the Second Axiom of

Continuous Choice, AC1,1 , implies: Π1
2 ⊆ Σ1

2 and thus causes the collapse of the
(positive) projective hierarchy. We draw a parallel with arithmetic, where Church’s
Thesis causes the collapse of the (positive) arithmetical hierarchy.

2 Analytic sets

2.1 The class Σ1
1

Some relevant definitions may be found in Section 1.2.6.
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Definition 1 X ⊆ ωω is analytic or Σ1
1 if and only if there exists β such that

X = EFβ := Ex(Fβ) = {α | ∃γ[⌜α, γ⌝ ∈ Fβ]}.

X ⊆ ωω thus is analytic if X is the projection of a closed subset of ωω .

Definition 2 A Souslin system is a mapping s 7→ Ps that associates to every s a
subset Ps of ωω . The Souslin operation applied to such a system produces the set
AsPs :=

⋃
α

⋂
n Pαn .

The next theorem shows that the class Σ1
1 behaves nicely. The class is closed under the

operations of countable union and countable intersection, and contains all (positively)
Borel subsets of ωω . Every set reducing to an analytic set is itself analytic. The class
Σ1

1 is also closed under projection and under the Souslin operation.

Theorem 2.1
(i) US1

1 := {α | αII ∈ EFαI} is Σ1
1 –universal.

(ii) E1
1 := {α | ∃γ∀n[α(γn) = 0]} is Σ1

1 –complete.
(iii) For every infinite sequence X0,X1, . . . in Σ1

1 ,
⋃

n Xn ∈ Σ1
1 and

⋂
n Xn ∈ Σ1

1 , ie
∀β∃γ∃δ[

⋃
n EFβn = EFγ ∧

⋂
n EFβn = EFδ].

(iv) Borel ⊆ Σ1
1 , ie ∀σ ∈ HRS∀β∃γ∃δ[Gσβ = EFγ ∧ Fσ

β = EFδ].
(v) For all X ⊆ ωω , if X ∈ Σ1

1 , then Ex(X ) ∈ Σ1
1 , ie ∀β∃γ[Ex(EFβ) = EFγ].

(vi) For all X ,Y ⊆ ωω , if X ⪯ Y ∈ Σ1
1 then X ∈ Σ1

1 , ie ∀β∀φ : ωω → ωω∃γ[{α |
φ|α ∈ EFβ} = EFγ].

(vii) For each β , AsEFβs ∈ Σ1
1 .

Proof (i) For each α , α ∈ US1
1 ↔ αII ∈ EFαI ↔ ∃γ[⌜αII, γ⌝ ∈ FαI ] ↔

∃γ∀n[αI(⌜αII, γ⌝n) = 0]. Define β such that, for all n, for all a, c in ωn , β(⌜a, c⌝)) ̸= 0
if and only if, for some m < n, ⌜aII, c⌝m < n and aI(⌜aII, c⌝m) ̸= 0. Then, for each
α , α ∈ EFβ if and only if ∃γ[⌜α, γ⌝ ∈ Fβ] if and only if ∃γ∀n[β(⌜α, γ⌝n) = 0] if
and only if ∃γ∀n[αI(⌜αII, γ⌝n) = 0] if and only if αII ∈ EFαI if and only if α ∈ US1

1 .
Conclude that US1

1 = EFβ ∈ Σ1
1 .

Also, for each ε, EFε = US1
1 ↾ ε. Conclude that US1

1 is Σ1
1 –universal.

(ii) For each α , α ∈ E1
1 ↔ ∃γ∀n[α(γn) = 0]. Define F := {α | ∀n[αI(αIIn) = 0]}

and note E1
1 = Ex(F). Define β such that ∀a[β(a) = 0 ↔ ∀n[aIIn < length(aI) →

aI(aIIn) = 0]] and note that F = Fβ . We thus see that E1
1 ∈ Σ1

1 .

Let ε be given. Note that ∀α[α ∈ EFε ↔ ∃γ∀n[ε(⌜α, γ⌝n) = 0]]. Define φ : ωω →
ωω such that ∀α∀k∀c ∈ ωk[(φ|α)(c) = ε(⌜αk, c⌝)]. Note that φ reduces EFε to E1

1 .
Conclude that E1

1 is Σ1
1 –complete.
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(iii) Let X0,X1, . . . be an infinite sequence of analytic subsets of ωω . Using AC0,1 ,
find β such that ∀n[Xn = EFβn]. Note that for all α , α ∈

⋃
n Xn ↔ ∃n∃γ[⌜α, γ⌝ ∈

Fβn] ↔ ∃γ[⌜α, γ ◦S⌝ ∈ Fβγ(0)]. Define Z0 := {⌜α, γ⌝ | ∀k[βγ(0)(⌜α, γ ◦ S⌝k) = 0]},
and note that Z0 ∈ Π0

1 and
⋃

n Xn = Ex(Z0) ∈ Σ1
1 .

Note, using AC0,1 , that for all α:

α ∈
⋂

n

Xn ↔ ∀n∃γ[⌜α, γ⌝ ∈ Fβn] ↔ ∃γ∀n[⌜α, γn⌝ ∈ Fβn]

Define Z1 := {⌜α, γ⌝ | ∀n∀m[βn(⌜α, γn⌝m) = 0]}, and note that Z1 ∈ Π0
1 and⋂

n Xn = Ex(Z1) ∈ Σ1
1 .

(iv) follows from (iii) by induction on the class of positively Borel sets.

(v) Let β be given. Note that for every α:

α ∈ Ex(EFβ) ↔ ∃γ[⌜α, γ⌝ ∈ EFβ] ↔ ∃γ∃δ[⌜⌜α, γ⌝, δ⌝ ∈ Fβ]

↔ ∃γ[⌜⌜α, γI⌝, γII⌝ ∈ Fβ]

Define Z := {⌜α, γ⌝ | ∀n[β(⌜⌜α, γI⌝, γII⌝n) = 0]} and note that Z ∈ Π0
1 and

Ex(EFβ) = Ex(Z) ∈ Σ1
1 .

(vi) Let φ : ωω → ωω and β be given. For every α , φ|α ∈ EFβ ↔ ∃γ[⌜φ|α, γ⌝ ∈
Fβ]. Define Z := {⌜α, γ⌝ | ∀n[β(⌜φ|α, γ⌝n) = 0]} and note that Z ∈ Π0

1 and
{α | φ|α ∈ EFβ} = Ex(Z) ∈ Σ1

1 .

(vii) Let β be given. Note, using AC0,1 : for each α:

α ∈ AsEFβs ↔ ∃γ∀n[α ∈ EFβγn] ↔ ∃γ∀n∃δ[⌜α, δ⌝Fβγn]

↔ ∃γ∃δ∀n[⌜α, δn⌝ ∈ Fβγn] ↔ ∃γ∀n[⌜α, (γII)n⌝ ∈ FβγI n]

Define Z := {⌜α, γ⌝ | ∀n∀m[βγIn(⌜αI, (γII)n⌝m) = 0]} and note that Z ∈ Π0
1 and

AsEFβs = Ex(Z) ∈ Σ1
1 .

2.2 The set IF

Definition 3 For all s, t in ω one defines: s <KB t if and only if either t ⊏ s or
∃i[i < length(s) ∧ i < length(t) si = ti ∧ s(i) < t(i)].

<KB is a linear ordering on ω . We define, for all s, t , maxKB(s, t) := s if t ≤KB s, and
maxKB(s, t) := t otherwise. <KB is called the Kleene-Brouwer ordering of ω .

Definition 4 We define IF := {α | ∃β ∈ (Tα)ω∀n[β(n + 1) <KB β(n)]}.
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IF is the set of all α such that the tree Tα := {s | ∀t ⊏ s[α(t) = 0]} is (positively)
ill-founded with respect to the Kleene-Brouwer-ordering <KB .

In classical mathematics, IF = E1
1 , see also Theorem 4.2. In our intuitionistic context,

the two sets are different. The reason is that the class of all sets reducing to IF is not
closed under the operation of finite union:

Theorem 2.2

(i) The set D2(A1) does not reduce to the set IF : D2(A1) ⪯̸ IF .
(ii) The set E1

1 is a proper subset of the set IF : E1
1 ⫋ IF .

(iii) The set IF is Σ1
1 but not Σ1

1 –complete.

Proof Assume that φ : ωω → ωω reduces D2(A1) = {α | α0 = 0 ∨ α1 = 0} to
IF . Assume: α ∈ D2(A1). Define α0, α1 such that ∀i < 2[(αi)i = 0 ∧ ∀j[¬∃n[j =
⟨i⟩ ∗ n] → αi(j) = α(j)]]. Note that ∀i < 2[αi ∈ D2(A1) ∧ φ|αi ∈ IF]. Find δ0, δ1

such that ∀i < 2∀n[δi(n) ∈ Tφ|αi ∧ δi(n + 1) <KB δi(n)]. Define ζ such that, for each
n,

(1) if ∀i < 2∀j ≤ n[δi(j) ∈ Tφ|α], then ζ(n) = maxKB
(
δ0(n), δ1(n)

)
, and

(2) for all i < 2, if ∃j ≤ n[δi(j) /∈ Tφ|α], then ζ(n) = δ1−i(n).
This is a good definition: if, for some i < 2, for some j, δi(j) /∈ Tφ|α , then α # αi ,
and, therefore, α = α1−i , and, for each j, δ1−i(j) ∈ Tφ|α . Note that ∀n[ζ(n) ∈
Tφ|α ∧ ζ(n + 1) <KB ζ(n)], and conclude φ|α ∈ IF , and α ∈ D2(A1).

We thus see that ∀α ∈ D2(A1)[α ∈ D2(A1)]. According to Theorem 1.3, we have a
contradiction. Conclude that D2(A1) ⪯̸ IF .

(ii) Assume that α ∈ E1
1 . Find γ such that ∀n[α(γn) = 0]. Note that ∀n[γn ∈

Tα ∧ γ(n + 1) <KB γn] and α ∈ IF . We thus see that E1
1 ⊆ IF .

According to Theorem 2.1, D2(A1) ⪯ E1
1 , but, as we saw in (i), D2(A1) ⪯̸ IF .

Conclude that E1
1 ̸= IF and E1

1 ⫋ IF .

(iii) Define Z := {⌜α, γ⌝ | ∀n[γ(n) ∈ Tα ∧ γ(n + 1) <KB γ(n)]} and note that
Z ∈ Π0

1 and IF = Ex(Z). Conclude that IF is Σ1
1 . As, according to (i), the analytic

set D2(A1) does not reduce to IF , IF is not Σ1
1 –complete.

2.3 The sets UNC , UNC ′ and UNC ′′

Definition 5 X ⊆ ωω is (positively) uncountable if and only if ∀α∃β ∈ X∀n[β # αn].
X ⊆ ωω is weakly (positively) uncountable if and only if ∃α[α ∈ X ] and ∀α ∈
X ω∃β ∈ X∀n[β # αn].
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Clearly, every uncountable subset of ωω is weakly uncountable. For spreads, the two
notions coincide:

Theorem 2.3 If F ⊆ ωω is a spread and weakly (positively) uncountable, then F is
(positively) uncountable.

Proof Let β be given such that Spr(β) and F := Fβ is weakly uncountable. Let ρ
be the canonical retraction of ωω onto F . Note that ∀α[ρ|α ∈ F ∧ (α # ρ|α →
∃n[β(αn) ̸= 0])]. Let α be given. Find δ in F such that ∀n[δ # ρ|(αn)].

Let n be given. As the apartness relation # is co-transitive and δ # ρ|(αn), either δ # αn

or αn # ρ|(αn). In the latter case, find m such that β(αnm) ̸= 0. Note β(δm) = 0 and
conclude that αnm ̸= δm, and δ # αn . Conclude that ∀n[δ # αn].

We thus see that ∀α∃δ ∈ F∀n[δ # αn], ie F is uncountable.

The following intuitionistic theorem is the same as Gielen–de Swart–Veldman [11,
Theorem 2.1], see also Veldman [39, Section 8], and was first proven by W. Gielen.
Cantor’s (classical) famous Perfect Set Theorem states that 2ω embeds continuously in
every uncountable Π0

1 subset of ωω . P.S. Alexandrov and F. Hausdorff, independently,
extended the result to Borel subsets of ωω and M. Souslin showed that it also holds for
Σ1

1 subsets of ωω . In our intuitionistic context the Theorem holds for every subset of
ωω . This is due to the Second Axiom of Continuous Choice, AC1,1 , see Section 1.1.6.

Theorem 2.4 X ⊆ ωω is (positively) uncountable if and only if 2ω embeds into X .

Proof (i) First, assume: X ⊆ ωω and 2ω embeds into X . Find φ : 2ω ↣ X . We
now prove that X is positively uncountable.

Let α be given. Using induction, define δ such that, for each n, δ(n) ∈ Bin and
δ(n) ⊏ δ(n+1) and φ|

(
δ(n+1)

)
⊥ αn, as follows. Define δ(0) = 0 = ⟨ ⟩. Suppose n is

given such that δ(n) has been defined. Find p such that φ|(δ(n)∗0p) ⊥ φ|(δ(n)∗1p). If
αn ⊥ φ|(δ(n)∗0p), define δ(n+1) := δ(n)∗0p; and, if not, define δ(n+1) := δ(n)∗1p.
It will be clear that α satisfies the requirements. Now find ε in 2ω such that ∀n[δ(n) ⊏ ε]
and define: β := φ|ε. Note that β ∈ X and ∀n[αn # φ|ε = β].

We thus see that ∀α∃β ∈ X∀n[αn # β], ie X is (positively) uncountable.

(ii) Next, assume X ⊆ ωω is (positively) uncountable. We want to prove that 2ω

embeds into X .
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Using the Second Axiom of Continuous Choice AC1,1 (see Section 1.1.6) find φ : ωω →
ωω such that ∀α[φ|α ∈ X ∧ ∀n[φ|α # αn]].

We first prove: ∀s∃t∃u[s ⊏ t ∧ s ⊏ u ∧ φ|t ⊥ φ|u]. Let s be given. Define ε
such that s ⊏ ε ∧ εs = φ|(s ∗ 0). Note that φ|(s ∗ 0) = εs # φ|ε. Find m such
that φ|(s ∗ 0m) ⊥ φ|εm and define t := s ∗ 0m and u := εm. Clearly, t, u satisfy the
requirements.

Now define ζ such that ζ(0) = 0 and, for each s in Bin, ζ(s ∗ ⟨0⟩) = u′ and
ζ(s ∗ ⟨1⟩) = u′′ , where u is the least v such that ζ(s) ⊏ v′ ∧ ζ(s) ⊏ v′′ ∧ φ|v′ ⊥ φ|v′′ .
Note that ∀s ∈ Bin ∀t ∈ Bin[s ⊏ t → ζ(s) ⊏ ζ(t)]. Find ρ : 2ω → ωω such that
∀γ ∈ 2ω∀n[ζ(γn) ⊏ ρ|γ]. Find ψ : 2ω → ωω such that ∀γ ∈ 2ω∀n[ψ|γ = φ|(ρ|γ)].
Note that ψ : 2ω → X . Also note that ∀s ∈ Bin ∀t ∈ Bin[s ⊥ t → φ|(ζ(s)) ⊥ φ|(ζ(t))].
Conclude that ψ : 2ω ↣ X and 2ω embeds into X .

Theorem 2.5
(i) The set ω(2ω) is Σ0

1 –complete.
(ii) The set (ωω)(2ω) is Π0

2 –complete.
(iii) The set Emb(2ω, ωω) is Π0

2 –complete.

Proof (i) Using the Fan Theorem FT, see Section 1.1.7, note that for all φ, φ ∈
ω(2ω) ↔ ∀γ ∈ 2ω∃n[φ(γn) ̸= 0] ↔ ∃m∀s ∈ Binm ∃n ≤ m[φ(sn) ̸= 0]. Conclude that
ω(2ω) is Σ0

1 .

We now want to prove that the set E1 reduces to the set ω(2ω) . Define φ : ωω → ωω

such that ∀α∀n∀s ∈ Binn[(φ|α)(s) = α(n)]. Note that, for each α , for each n, if
n = µp[α(p) ̸= 0] then φ|α : 2ω → ω and ∀α ∈ 2ω[φ(α) = α(n) − 1]. Clearly, φ
reduces E1 = {α | ∃n[α(n) ̸= 0]} to ω(2ω) . As E1 is Σ0

1 –complete, so is ω(2ω) .

(ii) and (iii). We first prove that the two sets (ωω)(2ω) and Emb(2ω, ωω) both belong to
Π0

2 .

First note that for all φ, φ ∈ (ωω)(2ω) if and only if ∀n[φn ∈ ω(2ω)]. Using (i), conclude
that (ωω)(2ω) ∈ Π0

2 .

Then note, using the Fan Theorem FT: for all φ, φ ∈ Emb(2ω, ωω) if and only if
φ ∈ (ωω)(2ω) and ∀s ∈ Bin ∀α ∈ 2ω∀β ∈ 2ω∃n[φ|s ∗ ⟨0⟩ ∗αn ⊥ φ|s ∗ ⟨1⟩ ∗ βn] if and
only if φ ∈ (ωω)(2ω) and ∀s ∈ Bin∃n∀t ∈ Binn ∀u ∈ Binn[φ|s ∗ ⟨0⟩ ∗ t ⊥ φ|s ∗ ⟨1⟩ ∗ u].
Conclude that Emb(2ω, ωω) ∈ Π0

2 .

We now prove that the set A2 reduces to both the set (ωω)(2ω) and the set Emb(2ω, ωω).
Define ψ : ωω → ωω such that, for all m, for all α , for all s in 2<ω , if m < length(s) and
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∃n < length(s)[αm(n) ̸= 0], then (ψ|α)m(s) = s(m)+1, and, if not, then (ψ|α)m(s) = 0.
Note that for all α , for all m, (i) if αm ∈ E1 then (ψ|α)m : 2ω → ω and, for all β in 2ω ,
(ψ|α)m(β) = β(m), and (ii) if ∃n[(ψ|α)m(βn) ̸= 0] then αm ∈ E1 . Conclude that for
all α , for all m, αm ∈ E1 if and only if (ψ|α)m : 2ω → ω . Therefore, for all α, α ∈ A2

if and only if ψ|α : 2ω → ωω .

We thus see that ψ reduces A2 to (ωω)(2ω) . As A2 is Π0
2 –complete, also (ωω)(2ω) is

Π0
2 –complete.

Note that for all α , if α ∈ A2 , then ψ|α : 2ω → ωω and ∀β ∈ 2ω[(ψ|α)|β = β].
Conclude that for all α , α ∈ A2 if and only if ψ|α ∈ Emb(2ω, ωω). We thus see
that ψ reduces A2 to Emb(2ω, ωω). As A2 is Π0

2 –complete, also Emb(2ω, ωω) is
Π0

2 –complete.

We will need the next Lemma, Lemma 2.6, in the proof of Theorem 2.7(iii).

Lemma 2.6

(i) For all finite A ⊆ ω , for every P ⊆ A, for every proposition Q, if ∀m ∈ A[m ∈
P ∨ Q], then ∀m ∈ A[m ∈ P] ∨ Q.

(ii) For all finite sets A,B ⊆ ω , for all P ⊆ A, for all Q ⊆ B, if ∀m ∈ A∀n ∈ B[m ∈
P ∨ n ∈ Q], then ∀m ∈ A[m ∈ P] ∨ ∀n ∈ B[n ∈ Q].

Proof (i) Use induction on the number of elements of A. If A = ∅, the statement is
true. Now assume the statement has been proven for A, and q ∈ ω \ A. We prove that
the statement is true for A∪{q}. Assume P ⊆ A∪{q} and ∀m ∈ A∪{q}[m ∈ P ∨ Q].
Then, by the induction hypothesis, ∀m ∈ A[m ∈ P] ∨ Q. But also q ∈ P ∨ Q.
Conclude that ∀m ∈ A ∪ {q}[m ∈ P] ∨ Q.

(ii) Assume that A,B are finite subsets of ω , and ∀m ∈ A∀n ∈ B[m ∈ P ∨ n ∈ Q].
Using (i), conclude that ∀n ∈ B[∀m ∈ A[m ∈ P] ∨ n ∈ Q]. Using (i) once more,
conclude that ∀m ∈ A[m ∈ P] ∨ ∀n ∈ B[n ∈ Q].

Definition 6 For each β , we define: β is a perfect-spread-law, Pfspr(β), if and only
if Spr(β) and β(0) = 0 and, for all s, if β(s) = 0, then:

∃t∃u[s ⊏ t ∧ s ⊏ u ∧ t ⊥ u ∧ β(t) = β(u) = 0]

If Pfspr(β), then Fβ = {α | ∀n[β(αn) = 0]} is called a perfect spread.
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In intuitionistic real analysis it is not true that the image of the closed interval [0, 1]
under a continuous function is itself a closed subset of R. One may see this from
the failure of the Intermediate Value Theorem8 and the failure of the theorem that a
continuous function from [0, 1] to R always attains its greatest value. The next theorem
brings to light related facts. The image of Cantor space 2ω under a continuous function
from 2ω to ωω is always a located subset of ωω but not always a closed subset of ωω .
The latter remains true, however, if the function is strongly injective. F ⊆ ωω is a
spread if and only if F is both located and closed; see Section 1.2.2.

Theorem 2.7
(i) Cantor space 2ω embeds into every perfect spread.

(ii) For each φ : 2ω → ωω , φ|2ω is a located subset of ωω .
(iii) For each φ : 2ω ↣ ωω , φ|2ω is a perfect spread and a fan.
(iv) ¬∀φ ∈ (ωω)(2ω)∃β[Spr(β) ∧ φ|2ω = Fβ].

Proof (i) Let F ⊆ ωω be a perfect spread. Find β such that Pfspr(β) and F = Fβ .
Define ζ such that ζ(0) = 0 and, for all s in Bin, ζ(s ∗ ⟨0⟩) := u′ and ζ(s ∗ ⟨1⟩) = u′′

where u is the least v such that v′ ⊥ v′′ and ζ(s) ⊏ v′ and ζ(s) ⊏ v′′ and β(v′) =

β(v′′) = 0. Define φ : 2ω → ωω such that ∀α ∈ 2ω∀n[ζ(αn) ⊏ φ|α]. Note that
∀α ∈ 2ω[φ|α ∈ Fβ]. Also note that for all α, β in 2ω , if α # β , then, for some n,
αn ⊥ βn and ζ(αn) ⊥ ζ(βn), and φ|α # φ|β . Conclude that φ : 2ω ↣ F .

(ii) Let φ : 2ω → ωω be given. We define δ as follows. Let s be given. Note
that ∀α ∈ 2ω∃m[s ⊏ φ|αm ∨ s ⊥ φ|αm]. Using FT, find m such that ∀α ∈
2ω[s ⊏ φ|αm ∨ s ⊥ φ|αm], ie ∀t ∈ Binm[s ⊏ φ|t ∨ s ⊥ φ|t]. Define δ(s) := 0
if ∃t ∈ Binm[s ⊏ φ|t] and δ(s) := 1 if ∀t ∈ Binm[s ⊥ φ|t]. Conclude that
∀s[δ(s) = 0 ↔ ∃α ∈ 2ω[s ⊏ φ|α]] and φ|2ω is a located subset of ωω . Also note that
Fan(δ) and φ|2ω ⊆ Fδ .

(iii) Let φ : 2ω ↣ ωω be given. Using (ii), find δ such that ∀s[δ(s) = 0 ↔ ∃α ∈
2ω[s ⊏ φ|α]] and Fan(δ) and φ|2ω ⊆ Fδ .

We first prove Pfspr(δ). Let s be given such that δ(s) = 0. Find α in 2ω such that
s ⊏ φ|α . Find m such that s ⊏ φ|αm. Find n such that φ|(αm ∗ 0n) ⊥ φ|(αm ∗ 1n)
and define: t := φ|(αm ∗ 0n) and u := φ|(αm ∗ 1n). Note δ(t) = δ(u) = 0 and s ⊏ t
and s ⊏ u and t ⊥ u.

Assume s ∈ Bin. Note that ∀α ∈ 2ω[φ|(s ∗ ⟨0⟩ ∗ αI) # φ|(s ∗ ⟨1⟩ ∗ αII)] and
∀α ∈ 2ω∃m[φ|

(
s ∗ ⟨0⟩ ∗ αIm

)
⊥ φ|

(
s ∗ ⟨1⟩ ∗ αIIm

)
] and, using FT, ∃m∀α ∈

8See [40].
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2ω[φ|
(
s∗⟨0⟩∗αIm

)
⊥ φ|

(
s∗⟨1⟩∗αIIm

)
], ie ∃m∀a ∈ Binm ∀b ∈ Binm[φ|(s∗⟨0⟩∗a) ⊥

φ|(s ∗ ⟨1⟩ ∗ b)]. Define ζ such that, for each s in Bin, ζ(s) is the least m such that
∀a ∈ Binm ∀b ∈ Binm[φ|(s ∗ ⟨0⟩ ∗ a) ⊥ φ|(s ∗ ⟨1⟩ ∗ b)].

We now prove Fδ ⊆ φ|2ω . Let γ ∈ Fδ be given. Assume that s ∈ Bin. Note that
∀a ∈ Binζ(s) ∀b ∈ Binζ(s)[φ|(s ∗ ⟨0⟩ ∗ a) ⊥ γ ∨ γ ⊥ φ|(s ∗ ⟨1⟩ ∗ b)]. Conclude, using
Lemma 2.6 that ∀a ∈ Binζ(s)[φ|(s ∗ ⟨0⟩ ∗ a) ⊥ γ] ∨ ∀a ∈ Binζ(s)[γ ⊥ φ|(s ∗ ⟨1⟩ ∗ a)].

Define η in 2ω such that ∀s ∈ Bin[η(s) = 1 ↔ ∀a ∈ Binζ(s)[φ|(s ∗ ⟨0⟩ ∗ a) ⊥ γ]].
Define α in 2ω such that ∀n[α(n) = η(αn)]. Note that, for all β in 2ω , for all n, if
n = µp[α(p) ̸= β(p), then φ|β ⊥ γ , ie, for all β in 2ω , if β ⊥ α , then φ|β ⊥ γ .

We now prove φ|α = γ . Assume that φ|α ⊥ γ . Find n such that φ|αn ⊥ γ .
Define m = n + ζ(αn) and note that ∀d ∈ Bimm[d ⊥ αn → φ|d ⊥ γ]. Conclude
that ∀d ∈ Binm[φ|d ⊥ γ]. Note that ∀d ∈ Binm[length(φ|d) ≤ m]. Conclude that
δ(γm) ̸= 0, which is a contradiction. We thus see that ¬(φ|α ⊥ γ) and φ|α = γ .

Conclude that ∀γ ∈ Fδ∃α ∈ 2ω[φ|α = γ] and φ|2ω = Fδ .

(iv) Assume that ∀φ ∈ (ωω)(2ω)∃β[Spr(β) ∧ φ|2ω = Fβ]. Using Brouwer’s Continuity
Principle BCP (see Section 1.1.6) we prove that this assumption leads to a contradiction
as it implies LPO, see Section 1.1.11.

Let α be given. We intend to prove α = 0 ∨ α # 0.

Define φ : 2ω → ωω such that ∀γ ∈ 2ω[φ|(⟨0⟩ ∗ γ) = α ∧ φ|(⟨1⟩ ∗ γ) = 0].
Note that φ|2ω = {α, 0}. Find β such that Spr(β) and {α, 0} = Fβ . Note that
∀s[β(s) = 0 ↔ (s ⊏ α ∨ s ⊏ 0)]. Note that ∀γ ∈ Fβ[γ = α ∨ γ = 0]. Applying
BCP, find m such that either ∀γ ∈ Fβ[0m ⊏ γ → γ = 0], and 0m ⊥ α ∨ α = 0; or
∀γ ∈ Fβ[0m ⊏ γ → γ = α], and α = 0. Conclude that α = 0 ∨ α # 0.

We thus see that ∀α[α = 0 ∨ α # 0], ie LPO, a contradiction.

Definition 7 We introduce three subsets of ωω :

UNC := {β | ∀α∃γ ∈ Fβ∀n[γ # αn]}
UNC′ := {β ∈ UNC | Spr(β)}
UNC′′ := {β | ∀α∃γ ∈ EFβ∀n[γ # αn]}

UNC , UNC′ and UNC′′ are the sets of the codes of (positively) uncountable closed
sets, (positively) uncountable located closed sets and (positively) uncountable analytic
sets, respectively.
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The classical result corresponding to the following theorem is due to W. Hurewicz,
see Kechris [14, Theorem 27.5]. The proof in [14] is very different from ours and not
constructive.

Theorem 2.8 UNC , UNC′ and UNC′′ are Σ1
1 –complete.

Proof We first prove that UNC is Σ1
1 .

Using Theorem 2.4, note that, for each β , β ∈ UNC if and only if there exists
φ : 2ω ↣ Fβ . Now define A := {⌜β, φ⌝ | φ : 2ω ↣ ωω ∧ ∀s ∈ 2<ω∀t[t ⊑ φ|s →
β(t) = 0]}. Then UNC = Ex(A). Note, using Theorem 2.5, A ∈ Π0

2 . Conclude,
using Theorem 2.1, that UNC ∈ Σ1

1 .

We now prove that UNC is Σ1
1 –complete. Define φ : ωω → ωω such that, for all α ,

for all s, (φ|α)(s) = 0 if and only if there exists u such that ∀t ⊑ u[α(t) = 0] and
length(u) = length(s) and ∀i < length(s)[s(i) = 2u(i) + 1 ∨ s(i) = 2u(i) + 2]. We
prove that φ reduces E1

1 to UNC .

First, assume that α ∈ E1
1 . Find γ such that ∀n[α(γn) = 0]. Define β such that, for

all s, β(s) = 0 if and only if ∀i < length(s)[s(i) = 2γ(i) + 1 ∨ s(i) = 2γ(i) + 2].
Note that Pfspr(β) and Fβ ⊆ Fφ|α . Conclude, using Theorems 2.5(i) and 2.4, that
φ|α ∈ UNC .

Now let α be given such that φ|α ∈ UNC . Using Theorem 2.5, find β such that
Pfspr(β) and Fβ ⊆ Fφ|α . Find δ in Fβ . Find γ such that ∀n[δ(n) = 2γ(n)+1 ∨ δ(n) =
2γ(n) + 2]. Conclude that ∀n[α(γn) = 0] and α ∈ E1

1 . We thus see that E1
1 reduces to

UNC . As E1
1 is Σ1

1 –complete (see Theorem 2.1) so is UNC .

We now consider UNC′ . Define A′ := {⌜β, φ⌝ ∈ A | Spr(β)}. Note that A′ ∈ Π0
2

and UNC′ = Ex(A′). Conclude that UNC′ ∈ Σ1
1 . We now want to prove that UNC′

is Σ1
1 –complete. We would like to use again the function φ we used in the previous

paragraph, but, unfortunately, not: for every α , φ|α is a spread-law. We therefore
define ψ : ωω → ωω such that, for all α , for all s, (ψ|α)(s) = 0 if and only if there
exist k, t such that (φ|α)(t) = 0 and s = t ∗ 0k . Observe that, for every α , ψ|α is a
spread-law and Fφ|α ⊆ Fψ|α . We prove that ψ reduces E1

1 to UNC′ .

First, assume that α ∈ E1
1 . Then Fφ|α ∈ UNC . Note that Fφ|α ⊆ Fψ|α , so also Fψ|α

is (positively) uncountable, and, as ψ|α is a spread-law, ψ|α ∈ UNC′ .

Now let α be given such that ψ|α ∈ UNC′ . Find β such that Pfspr(β) and Fβ ⊆ Fψ|α .
Note that for all s, if ∃γ ∈ Fβ[s ⊏ γ], then ∀i < length(s)[s(i) > 0]], and (φ|α)(s) = 0.
Conclude that Fβ ⊆ Fφ|α and α ∈ E1

1 .
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We now consider UNC′′ . Define A′′ := {⌜β, φ⌝ | φ : 2ω ↣ EFβ}. Note, using the
Second Axiom of Continuous Choice AC1,1 (see Section 1.1.6), for every β , for every
φ, φ : 2ω → EFβ if and only if ∃ψ : 2ω → ωω∀γ ∈ 2ω[⌜φ|γ, ψ|γ⌝ ∈ Fβ]. Define
A∗ := {⌜β, φ⌝ | φI : 2ω ↣ ωω ∧ φII : 2ω → ωω ∧ ∀γ ∈ 2ω[⌜φI|γ, φII|γ⌝ ∈ Fβ]}.
Note that UNC′′ = Ex(A′′) = Ex(A∗), and, using Theorem 2.5, A∗ ∈ Π0

2 . Conclude
that UNC′′ ∈ Σ1

1 .

In order to see that UNC′′ is Σ1
1 –complete, we remind ourselves of the fact: Π0

1 ⊆ Σ1
1 .

Define τ : ωω → ωω such that ∀β∀s[(τ |β)(s) = β(sI)] and note that ∀β[EFτ |β = Fβ].
Conclude that τ reduces UNC to UNC′′ , and, as UNC is Σ1

1 –complete, so is
UNC′′ .

2.4 Share(INF) and Share(INF ∩ 2ω)

The following definition occurs already in Veldman [31].

Definition 8 For each X ⊆ ωω , we define Share(X ) := {β | Spr(β) ∧ ∃γ ∈ Fβ[γ ∈
X ]}.

If β ∈ Share(X ), one says: ‘The spread Fβ shares an element with the set X ’.

Definition 9 INF := {α | ∀m∃n > m[α(n) ̸= 0]}.

If α ∈ INF , then Dα := {n | α(n) ̸= 0} is a decidable and infinite subset of ω .

The next result corresponds to a well-known fact in classical descriptive set theory, see
Kechris [14, page 209, Exercise 27] or [27, page 137, Exercise 4.2.3].

Theorem 2.9 Share(INF) and Share(INF ∩ 2ω) are Σ1
1 –complete.

Proof We first observe that these two sets are indeed Σ1
1 . Note that {β | Spr(β)} is

Π0
2 . For each β , β ∈ Share(INF ) if and only if Spr(β) and ∃α∃ζ ∈ [ω]ω∀n[β(αn) =

0 ∧ α ◦ ζ(n) ̸= 0]. Conclude, using Theorem 2.1, Share(INF) is Σ1
1 .

For each β , β ∈ Share(INF ∩ 2ω) if and only if Spr(β) and ∃α ∈ 2ω∃ζ ∈
[ω]ω∀n[β(αn) = 0 ∧ α ◦ ζ(n) ̸= 0]. Conclude that Share(INF ∩ 2ω) is Σ1

1 .

We now prove that Share(INF ) and Share(INF ∩ 2ω) are Σ1
1 –complete. First define

δ such that δ(0) = 0 and ∀s∀n[δ(s ∗ ⟨n⟩) = δ(s) ∗ 0n ∗ ⟨1⟩]. Then define φ : ωω → ωω

such that ∀α∀s[(φ|α)(s) = 0 ↔ ∃n∃t[s = δ(t) ∗ 0n ∧ ∀u ⊑ t[α(u) = 0]]]. Note that,
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for each α , Spr(φ|α), ie φ|α is a spread-law, and Fφ|α ⊆ 2ω . We show that φ reduces
E1

1 to both Share(INF ∩ 2ω) and Share(INF).

First, assume that α ∈ E1
1 . Find γ such that ∀n[α(γn) = 0]. Note that ∀n∀t[t ⊑

δ(γn) → (φ|α)(t) = 0]. Find ε in 2ω such that ∀n[δ(γn) ⊏ ε]. Note that ε ∈ Fφ|α and,
as ∀n[ε

(
n +

∑i=n
i=0 γ(i)

)
= 1], also ε ∈ INF . Conclude that φ|α ∈ Share(INF ∩

2ω) ⊆ Share(INF).

Now assume that φ|α ∈ Share(INF). Find ε in INF ∩ Fφ|α . Define γ such
that γ(0) := µi[ε(i) ̸= 0] and ∀n[γ(n + 1) = µi[ε

(
γ(n) + i + 1

)
̸= 0]. Note that

∀n[δ(γn) ⊏ ε] and ∀n[α(γn) = 0] and α ∈ E1
1 . We thus see that φ reduces E1

1 to
both Share(INF ∩ 2ω) and Share(INF). It follows that these sets, like E1

1 , are
Σ1

1 –complete.

2.5 Strictly analytic subsets of ωω

Definition 10 X ⊆ ωω is strictly analytic or Σ1∗
1 if and only if there exists β such

that Spr(β) and X = EFβ := Ex(Fβ) = {α | ∃γ[⌜α, γ⌝ ∈ Fβ]}.

X ⊆ ωω thus is strictly analytic if it its the projection of a closed and located subset of
ωω ; see Section 1.1.4.

Recall that X ⊆ ωω is located if and only if ∃α[{s | ∃γ ∈ X [s ⊏ γ]} = Dα], ie the
set {s | ∃γ ∈ X [s ⊏ γ]} is a decidable subset of ω , and X ⊆ ωω is semi-located if
and only if ∃α[{s | ∃γ ∈ X [s ⊏ γ]} = Eα], ie the set {s | ∃γ ∈ X [s ⊏ γ]} is an
enumerable subset of ω .

Also recall that, for every infinite sequence X0,X1, . . . of subsets of ωω , Dn(Xn) =
{γ | ∃n[γn ∈ Xn]} and Cn(Xn) = {γ | ∀n[γn ∈ Xn]}; see Section 1.2.5.

The following theorem shows that Σ1∗
1 is a proper subclass of Σ1

1 and behaves less
nicely.

Note that, as a consequence of the first item of the theorem, every strictly analytic subset
of ωω is either empty or inhabited.

Theorem 2.10

(i) For every X ⊆ ωω , X ∈ Σ1∗
1 ↔ (X = ∅ ∨ ∃φ : ωω → ωω[X = φ|ωω]).

(ii) For every X ⊆ ωω , if X ∈ Σ1∗
1 , then X is semi-located.

(iii) For every X ⊆ ωω , if X is inhabited and semi-located, then X ∈ Σ1∗
1 .
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(iv) Not every inhabited and closed subset of ωω is semi-located, ie ¬∀β[∃γ[γ ∈
Fβ] → Fβ is semi-located ].

(v) Every spread is strictly analytic but not every closed subset of ωω is strictly
analytic, ie ∀β[Spr(β) → Fβ ∈ Σ1∗

1 ] but ¬∀β[Fβ ∈ Σ1∗
1 ], ie ¬(Π0

1 ⊆ Σ1∗
1 ).

(vi) Semi-located and closed subsets of ωω are not always located subsets of ωω , ie
¬∀β[Fβ is semi-located → Fβ is located ].

(vii) The closure of an open subset of ωω is not always a closed subset of ωω , ie
¬∀β∃γ[Fγ = Gβ].

(viii) Σ1∗
1 is closed under the operation of (finite) union but Σ1∗

1 is not closed under
the operation of (finite) intersection, because: ¬∀β[{β} ∩ {0} ∈ Σ1∗

1 ] and
¬∀β[{β, 1} ∩ {0, 1} ∈ Σ1∗

1 ].
(ix) Σ1∗

1 is not closed under the operation of countable union, because: ¬∀α[
⋃

n{β |
β = 0 ∧ α(n) ̸= 0} ∈ Σ1∗

1 ].
(x) For every infinite sequence X0,X1,X2, . . . of strictly analytic and inhabited

subsets of ωω , the sets
⋃

n Xn , Dn(Xn) and Cn(Xn) are strictly analytic.
(xi) For every strictly analytic X ⊆ ωω , Ex(X ) is strictly analytic.

Proof (i) First, assume that X ∈ Σ1∗
1 . Find β such that Spr(β) and X = Ex(Fβ).

There are two cases: β(0) ̸= 0 and β(0) = 0. In the first case: X = Fβ = ∅. In the
second case, let ρ : ωω → Fβ be the canonical retraction9 of ωω onto Fβ . Define
φ : ωω → ωω such that ∀α[φ|α = (ρ|α)I] and note that X = φ|ωω .

Conversely, let X ⊆ ωω and φ : ωω → ωω be given such that X = φ|ωω . Define β
in 2ω such that β(⟨ ⟩) = 0 and, for each n > 0, for each s in ωn , β(s) = 0 if and only
if ∀i < n − 1[sII(i) ⊏ sII(i + 1)]] and ∀i < n[sI(i + 1) ⊑ φ|

(
sII(i)

)
]. Note that Spr(β),

Y = Fβ and φ|ωω = Y .

(ii) Assume that X ∈ Σ1∗
1 ; that is, by (i) either X = ∅ or ∃φ : ωω → ωω[X = φ|ωω].

Note that ∅ is semi-located. Now assume that X is inhabited. Find φ : ωω → ωω

such that X = φ|ωω . Note that ∀s[∃γ[s ⊏ φ|γ] ↔ ∃t[s ⊏ φ|t]]. Define δ such
that ∀n[(nI ⊑ φ|nII → δ(n) = nI + 1) ∧ (¬(nI ⊑ φ|nII) → δ(n) = 0)]. Note that
Eδ = {s | ∃γ[s ⊏ φ|γ]} and conclude that X = φ|ωω is semi-located.

(iii) Assume that X ⊆ ωω is inhabited and semi-located. Find δ such that Eδ = {s |
∃γ ∈ X [s ⊏ γ]}. Note that ∃n[δ(n) = ⟨ ⟩+1 = 1] and ∀s ∈ Eδ∃n∃p[δ(n) = s∗⟨p⟩+1].
Define ε such that ε(0) = 0 and, for all s, n, if ∃p[δ(n) = ε(s)∗⟨p⟩+1], then ε(s∗⟨n⟩) =
δ(n)−1, and, if not, then ε(s∗⟨n⟩) = δ(m)−1, where m = µq[∃p[δ(q) = ε(s)∗⟨p⟩+1]].
Now define φ : ωω → ωω such that ∀α∀n[ε(αn) ⊏ φ|α] and note that X = φ|ωω .

9see Section 1.1.5
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(iv) Define φ : ωω → ωω such that ∀α∀s[(φ|α)(s) = 0 ↔
(
s ⊏ 0 ∨ (s ⊏ 1 ∧

0s ⊏ α)
)
]. Note that ∀α∀γ[γ ∈ Fφ|α ↔

(
γ = 0 ∨ (γ = 1 ∧ α = 0)

)
].

Assume that ∀α[Fφ|α is semi-located]. Using AC1,1 , find ψ : ωω → ωω such that
∀α[Eψ|α = {s | ∃γ ∈ Fφ|α[s ⊏ γ]}]. Note that ⟨1⟩ ∈ Eψ|0 . Find p such that
(ψ|0)(p) = ⟨1⟩+ 1. Find q such that ψp(0q) = ⟨1⟩+ 2 and ∀i < q[ψp(0i) = 0]. Note
that ∀α[0q ⊏ α→ ⟨1⟩ ∈ Eψ|α]. Conclude that ∀α[0q ⊏ α→ α = 0], a contradiction.

(v) Let β be given such that Spr(β). Define γ such that ∀s[γ(s) = 0 ↔ β(sI) = 0].
Note that Spr(γ) and Fβ = Ex(Fγ). Conclude that Fβ ∈ Σ1∗

1 .

Assume that Π0
1 ⊆ Σ1∗

1 . Then, according to (ii), ∀β[Fβ is semi-located]. This
conclusion contradicts (iv).

(vi) Assume that ∀β[Fβ is semi-located → Fβ is located]. Let α be given. Define
β such that ∀s[β(s) = 0 ↔

(
length(s) ≥ 1 → α ◦ s(0) ̸= 0

)
]. Note that Fβ =

{γ | α ◦ γ(0) ̸= 0]}. Define δ such that for each n, if either length(nI) ≥ 1 and
α ◦ nI(0) ̸= 0, or nI = 0 = ⟨ ⟩ and α(nII) ̸= 0; then: δ(n) = nI + 1 and, if not, then
δ(n) = 0. Note that Eδ = {s | ∃γ ∈ Fβ[s ⊏ γ]}. Conclude that Fβ is semi-located.
Using the above assumption, conclude that Fβ is located. Find ε such that Eδ = Dε .
Note that if ε(0) = 0, then 0 /∈ Dε = Eδ and ∀n[α(n) = 0] and, if ε(0) ̸= 0, then
0 ∈ Dε = Eδ and ∃n[α(n) ̸= 0]. Conclude that ∀n[α(n) = 0] ∨ ∃n[α(n) ̸= 0]. We
thus see that our assumption implies LPO and is contradictory; see Section 1.1.11.

(vii) Assume that ∀β∃γ[Fγ = Gβ]. Define φ : ωω → ωω such that ∀α∀s[(φ|α)(s) =
0 ↔ (s ⊥ 0 ∧ αs ⊥ 0)]. Note that Gφ|0 = ∅, and, for every α , if α # 0, then
Gφ|α = {δ | δ # 0}. By our assumption, ∀α∃γ[Fγ = Gφ|α]. Using AC1,1 , find
ρ : ωω → ωω such that ∀α[Fρ|α = Gφ|α]. Note that Fρ|0 = ∅, and, for every α , if
α # 0, then Fρ|α = ωω . Assume that we find n such that (ρ|0)(0n) ̸= 0. Determine p
such that ∀α[0p ⊏ α → (ρ|α)(0n) ̸= 0]. Conclude that ∀α[0p ⊏ α → 0 /∈ Fρ|α], a
contradiction. Conclude that ∀n[(ρ|0)(0n) = 0] and 0 ∈ Fρ|0 , a contradiction.

(viii) Assume X0,X1 ⊆ ωω are strictly analytic. It suffices to consider the case that
both X0,X1 are inhabited. Find φ such that ∀i < 2[φi : ωω → ωω ∧ Xi = φi|ωω].
Define ψ : ωω → ωω such that ∀α∀n[ψ|(⟨0⟩ ∗ α) = φ0|α ∧ ψ|(⟨n + 1⟩ ∗ α) = φ1|α]
and note that X0 ∪ X1 = ψ|ωω .

Assume that ∀β[{β} ∩ {0} ∈ Σ1∗
1 ]. Using (i), conclude that ∀β[{β} ∩ {0} =

∅ ∨ ∃γ[γ ∈ {β} ∩ 0}]], and ∀β[β ̸= 0 ∨ β = 0]. Using BCP, find p such that
either: ∀β[0p ⊏ β → β ̸= 0] or ∀β[0p ⊏ β → β = 0]. Both alternatives are false, so
we obtain a contradiction.

Now assume that ∀β[{β, 1} ∩ {0, 1} ∈ Σ1∗
1 ]. According to (ii), for each β , {β, 1} ∩

{0, 1} is semi-located, ie ∃δ[Eδ = {s | ∃γ ∈ {β, 1} ∩ {0, 1}[s ⊏ γ]}]. Using AC1,1 ,
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find φ : ωω → ωω such that, for each β , Eφ|β = {s | ∃γ ∈ {β, 1} ∩ {0, 1}[s ⊏ γ]}].
Note that ⟨0⟩ ∈ Eφ|0 and find p such that (φ|0)(p) = ⟨0⟩ + 1. Find m such that
∀β[0m ⊏ β → (φ|β)(p) = (φ|0)(p)]. Conclude that ∀β[0m ⊏ β → ⟨0⟩ ∈ Eφ|β] and
∀β[0m ⊏ β → 0 ∈ {β, 1} ∩ {0, 1}], ie ∀β[0m ⊏ β → β = 0], a contradiction.

(ix) Assume that ∀α[
⋃

n{β | β = 0 ∧ α(n) ̸= 0} ∈ Σ1∗
1 . Then, according to (i),

∀α[
⋃

n{β | β = 0 ∧ α(n) ̸= 0} = ∅ ∨ ∃γ[γ ∈
⋃

n{β | β = 0 ∧ α(n) ̸= 0}]], and
∀α[∀n[α(n) = 0] ∨ ∃n[α(n) ̸= 0]], ie LPO, a contradiction; see Section 1.1.11.

(x) Let X0,X1, . . . be an infinite sequence of inhabited strictly analytic subsets of
ωω . Using (i) and AC0,1 , find φ such that ∀n[φn : ωω → ωω ∧ Xn = φn|ωω].
Define ψ : ωω → ωω such that, for all n, for all α , ψ|(⟨n⟩ ∗ α) = φn|α and note
that

⋃
n Xn = ψ|ωω is strictly analytic. Define ρ : ωω → ωω such that, for all n, for

all α ,
(
ρ|(⟨n⟩ ∗ α)

)n
= φn|(αn) and, for all i ̸= n,

(
ρ|(⟨n⟩ ∗ α)

)i
= αi and note that

DnXn = ρ|ωω is strictly analytic. Define τ : ωω → ωω such that, for all n, for all α ,
(τ |α)n = φn|(αn) and conclude that CnXn = τ |ωω is strictly analytic.

(xi) Assume X ⊆ ωω is strictly analytic. Then, according to (i), one may decide
that X = ∅ or X is inhabited. Note that Ex(∅) = ∅ is strictly analytic. If X is
inhabited, find φ : ωω → ωω such that X = φ|ωω . Define ψ : ωω → ωω such that
∀α[ψ|α = (φ|α)I] and note that Ex(X ) = ψ|ωω is strictly analytic.

Using Theorem 2.10(x), one may prove that for every σ in HRS , Eσ and Aσ are strictly
analytic. The sets Eσ,Aσ , are the leading sets of the intuitionistic Borel hierarchy; see
Section 1.2.4.

We conclude our discussion of strictly analytic subsets of ωω by observing that Kripke’s
scheme KS, see Section 1.1.10, makes the gap between analytic and strictly analytic
subsets of ωω somewhat smaller.

Theorem 2.11 (Using KS:)
(i) Every inhabited and definite closed subset of ωω is strictly analytic.

(ii) Every inhabited and definite analytic subset of ωω is strictly analytic.

Proof (i) Assume F ⊆ ωω is inhabited, definite and closed. According to Theorem
1.1 in Section 1.1.10, F is semi-located. According to Theorem 2.10(iii), F is strictly
analytic.

(ii) Assume X ⊆ ωω is inhabited, definite and analytic. Find F in Π0
1 such that

X = Ex(F). Note that F is inhabited. We assume that also F is definite. According
to (i), F is strictly analytic. According to Theorem 2.10(xi), also X = Ex(F ) is strictly
analytic.
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John Burgess, in [7], also studies strictly analytic subsets of ωω , or, as he calls them,
using a term of of Brouwer’s and following Gielen–de Swart–Veldman [11], “dressed
spreads”. Avoiding AC1,1 but not restricting application of the Brouwer-Kripke scheme
to definite propositions, he concludes that every inhabited analytic subset of ωω is
strictly analytic. The argument given here for Theorem 2.11(ii) is essentially his.

3 Separation theorems

3.1 Results by Lusin and Novikov

Definition 11 Let X ,Y be subsets of ωω . We define: the pair (X ,Y) is positively
disjoint, notation X # Y , if and only if, for all α in X , for all β in Y , α # β .10

We also define: the pair (X ,Y) is Borel-separable, notation X #Borel Y , if and only if
there exist (positively) Borel sets A,B such that X ⊆ A, Y ⊆ B and A # B .

Lemma 3.1 Let Y,X0,X1,X2, . . . be an infinite sequence of subsets of ωω . If, for
each n, Y #Borel Xn , then Y #Borel

⋃
n Xn .

Proof Assume that for each n, Y #Borel Xn . Find,11 for each n, Borel sets An,Bn

such that Y ⊆ An and Xn ⊆ Bn and An # Bn . Define A :=
⋂

n An and B :=
⋃

n Bn .
Note that A,B are Borel and Y ⊆ A and

⋃
n Xn ⊆ B and A # B . Conclude that

Y #Borel
⋃

n Xn .

A version of the next theorem occurs in Veldman [30, Theorem 18.4.1, page 163]. A
related result is proven in Aczel [1].

Theorem 3.2 (Lusin’s Separation Theorem) Let X ,Y ⊆ ωω be strictly analytic. If
X # Y , then X #Borel Y .

Proof Let X ,Y ⊆ ωω be strictly analytic. Assume that X # Y .

If X = ∅, we define A := ∅ and B := ωω , and are done. If Y = ∅, we define A := ωω

and B := ∅, and are done.
10α ⊥ β ↔ α #β ↔ ∃n[α(n) ̸= β(n)], see Section 1.1.2.
11We are silently applying the Second Axiom of Countable Choice AC0,1 , as Borel sets should

be thought as given by means of their codes, see Section 1.2.4. We do so at other occasions too,
without further warning.
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We thus may assume that X ,Y are inhabited. Find φ,ψ : ωω → ωω such that
X = φ|ωω and Y = ψ|ωω . Define B := {s | φ|s0 ⊥ ψ|s1}. We first prove that B is a
bar in ωω .

Let α be given. Find n such that φ|α0n ⊥ ψ|α1n. Then find m such that φ|α0n ⊑
φ|α0m and ψ|α1n ⊑ ψ|α1m. Find p such that α0m ⊑ (αp)0 and α1m ⊑ (αp)1 and
note that αp ∈ B. We thus see that ∀α∃p[αp ∈ B], ie B is a bar in ωω .

Now define C := {s | φ|(ωω ∩ s0) #Borel ψ|(ωω ∩ s1)}. We first prove that B ⊆ C . Let
s in B be given. Then φ|s0 ⊥ ψ|s1 . Define A := ωω ∩ (φ|s0) and B := ωω ∩ (ψ|s0).
Note that (A,B) is a (positively) disjoint pair of basic open sets and φ|(ωω ∩ s0) ⊆ A
and ψ|(ωω ∩ s1) ⊆ B . Conclude that s ∈ C . We thus see that ∀s ∈ B[s ∈ C], ie B ⊆ C .

Note that C is monotone: for each s, for each n, s0 ⊑ (s ∗ ⟨n⟩)0 and s1 ⊑ (s ∗ ⟨n⟩)1 ,
and, therefore, if s ∈ C , also, s ∗ ⟨n⟩ ∈ C .

We finally prove that C is inductive. Let s be given such that ∀n[s ∗ ⟨n⟩ ∈ C]. We want
to prove: s ∈ C . Consider k := length(s) and distinguish three cases.

Case (a). ¬∃i < 2∃t[k = ⟨i⟩ ∗ t]. Then, for each n, (s ∗ ⟨n⟩)0 = s0 and (s ∗ ⟨n⟩)1 = s1 .
Note that s ∗ ⟨0⟩ ∈ C , and, therefore, also s ∈ C .

Case (b). ∃t[k = ⟨0⟩ ∗ t]. Then, for all n, (s ∗ ⟨n⟩)0 = s0 ∗ ⟨n⟩ and (s ∗ ⟨n⟩)1 = s1 .
Conclude that for all n, φ|(ωω ∩ s0 ∗ ⟨n⟩) #Borel ψ|(ωω ∩ s1). Note that φ|(ωω ∩ s0) =⋃

n φ|(ωω ∩ s0 ∗ ⟨n⟩). Conclude, using Lemma 3.1, φ|(ωω ∩ s0) #Borel ψ|(ωω ∩ s1), ie
s ∈ C .

Case (c). ∃t[k = ⟨1⟩ ∗ t]. Then, for all n, (s ∗ ⟨n⟩)0 = s0 and (s ∗ ⟨n⟩)1 = s1 ∗ ⟨n⟩.
Conclude that for all n, φ|(ωω ∩ s0) #Borel ψ|(ωω ∩ s1 ∗ ⟨n⟩). Note that ψ|(ωω ∩ s1) =⋃

n ψ|(ωω ∩ s1 ∗ ⟨n⟩). Conclude, using Lemma 3.1, φ|(ωω ∩ s0) #Borel ψ|(ωω ∩ s1), ie
s ∈ C .

Using the Principle of Bar Induction BI, see Section 1.1.9, we conclude that ⟨ ⟩ ∈ C ,
ie φ|ωω #Borel ψ|ωω .

Definition 12 Let X0,X1, . . . be an infinite sequence of subsets of ωω . We define: the
infinite sequence X0,X1, . . . positively refuses to have a common point, or is ω–separate,
notation #nXn , if and only if, for every α , if ∀n[αn ∈ Xn], then ∃i∃j[αi ⊥ αj].

We also define: the infinite sequence X0,X1, . . . is ω–Borel separable, notation
#Borel

n Xn , if and only if there exists an infinite sequence B0,B1 . . . of (positively) Borel
sets such that ∀n[Xn ⊆ Bn] and #nBn .
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Lemma 3.3 Let Y0,Y1, . . . and X0,X1, . . . be infinite sequences of subsets of ωω .

If, for each n, the infinite sequence Yn,X0,X1, . . . is ω–Borel separable, then also the
infinite sequence

⋃
n Yn,X0,X1, . . . is ω–Borel-separable.

Proof Assume that for each n, the infinite sequence Yn,X0,X1, . . . is ω–Borel
separable, Find, for each n, an infinite and ω–separate sequence Bn, Cn,0, Cn,1, . . .

of (positively) Borel sets such that Y ⊆ Bn and, for each i, Xi ⊆ Cn,i . Define
B :=

⋃
n Bn and, for each i, Ci :=

⋂
n Cn,i . Note that B is Borel, and for each

i, Ci is Borel and
⋃

n Yn ⊆ B and, for each i, Xi ⊆ Ci and the infinite sequence
B, C0, C1, . . . is ω–separate. Conclude that the infinite sequence

⋃
n Yn,X0,X1, . . . is

ω–Borel-separable.

Theorem 3.4 (Novikov’s Separation Theorem) Let X0,X1, . . . be an infinite sequence
of inhabited strictly analytic subsets of ωω . If #n(Xn), then #Borel

n (Xn).

Proof Let X0,X1, . . . be an infinite sequence of inhabited strictly analytic subsets of
ωω such that #n(Xn). Using AC0,1 , find φ such that ∀n[φn : ωω → ωω ∧ Xn = φn|ωω].
Define B := {s | ∃i∃j[φi|si ⊥ φj|sj]}. We first prove that B is a bar in ωω .

Let α be given. Find i, j, n such that φi|αin ⊥ φj|αjn. Then find m such that
φi|αin ⊑ φi|(αim) and φj|αjn ⊑ φj|(αjm). Find p such that αim ⊑ (αp)i and
αjm ⊑ (αp)j and note that αp ∈ B. We thus see that ∀α∃p[αp ∈ B].

Define C := {s | #Borel
n φn|(ωω ∩ sn)}. Note that, for each p, ⟨p⟩ ∈ C if and only if

⟨ ⟩ ∈ C , as, for each p, ⟨p⟩0 = ⟨p⟩1 = ⟨ ⟩; see Section 1.1.1. We prove that B ⊆ C . Let
s in B be given. Find i, j such that φi|si ⊥ φj|sj . Define an infinite sequence B0,B1, . . .

of subsets of ωω such that Bi = ωω ∩φi|si and Bj = ωω ∩φj|sj , and, for all k , if k ̸= i
and k ̸= j, then Bk = ωω . Note that, for all n, Bn is Borel and φn|(ωω ∩ sn) ⊆ Bn .
Also note that #nBn . Conclude s ∈ C . We thus see that ∀s ∈ B[s ∈ C], ie B ⊆ C .

Note that C is monotone as, for all s, t , for all ψ : ωω → ωω , if s ⊑ t , then
ψ|(ωω ∩ t) ⊆ ψ|(ωω ∩ s).

We finally prove that C is inductive. Let s be given such that ∀n[s ∗ ⟨n⟩ ∈ C]. We want
to prove: s ∈ C . Consider k := length(s).

Case (a). k = 0. Then s = ⟨ ⟩ and s ∗ ⟨0⟩ = ⟨0⟩ and s ∗ ⟨0⟩ ∈ C and, therefore, s ∈ C .

Case (b). k ̸= 0. Find i such that k = ⟨i⟩ ∗ t . Note that for each n, (s ∗ ⟨n⟩)i = si ∗ ⟨n⟩,
and, for all j ̸= i. (s ∗ ⟨n⟩)j = sj . Conclude that for each n, the infinite sequence of sets

φ0|(ωω∩ s0), φ1|(ωω∩ s1), . . . φi−1|(ωω∩ si−1), φi|(ωω∩ si ∗⟨n⟩), φi+1|(ωω∩ si+1), . . .

Journal of Logic & Analysis 14:5 (2022)



38 Wim Veldman

is ω–Borel-separable. Note that φi|(ωω ∩ si) =
⋃

n φi|(ωω ∩ si ∗ ⟨n⟩). Conclude, using
Lemma 3.3 that the infinite sequence of sets:

φ0|(ωω ∩ s0), φ1|(ωω ∩ s1), . . . φi−1|(ωω ∩ si−1), φi|(ωω ∩ si), φi+1|(ωω ∩ si+1), . . .

is ω–Borel-separable, ie s ∈ C .

Using the Principle of Bar Induction BI, we conclude that ⟨ ⟩ ∈ C , ie #Borel
n φn|ωω .

3.2 Lusin’s representation Theorem

Definition 13 We define: X ⊆ ωω is regular in Lusin’s sense if and if there exists a
spread F ⊆ ωω and a strongly injective function φ : F ↣ ωω such that φ|F = X .

Theorem 3.5 (One half of Lusin’s Regular Representation Theorem) For all X ⊆ ωω ,
if X is regular in Lusin’s sense, then X is positively Borel.

Proof Let β, φ be given such that Spr(β) and φ : Fβ ↣ ωω . Note that for all s, t ,
if β(s) = β(t) = 0 and s <lex t , then s ⊥ t and φ|(Fβ ∩ s) # φ|(Fβ ∩ t). Using
Theorem 3.2, find for all s, t such that β(s) = β(t) = 0 and s <lex t a positively disjoint
pair (Bs,t,0,Bs,t,1) of Borel sets such that φ|(Fβ ∩ s) ⊆ Bs,t,0 and φ|(Fβ ∩ t) ⊆ Bs,t,1 .
Define, for each s such that β(s) = 0:

Ds :=
⋂

β(t)=0,s<lext

Bs,t,0 ∩
⋂

β(t)=0,t<lexs

Bt,s,1

Note that for all s, if β(s) = 0, then Ds is (positively) Borel and φ|(Fβ ∩ s) ⊆ Ds .
Also note that for all s, t , if β(s) = β(t) = 0 and s <lex t , then Ds # Dt . Note that
∀γ ∈ F∀n[φ|γ ∈ Dγn] and ∀α∀s[

(
β(s) = 0 ∧ α ∈ Ds

)
→ φ|s ⊏ α].

Now define, for each n,

Hn =
⋃

{Ds | β(s) = 0 ∧ s ∈ ωn}

and note that ∀n[φ|Fβ ⊆ Hn]. We thus see that φ|Fβ ⊆
⋂

n Hn and now prove⋂
n Hn ⊆ φ|Fβ .

Assume that α ∈
⋂

n Hn . Find δ such that, for each n, δ(n) ∈ ωn , β
(
δ(n)

)
= 0, and

α ∈ Dδ(n) . Note that for each n, α ∈ Dδ(n) ∩ Dδ(n+1) , so ¬
(
δ(n) ⊥ δ(n + 1)

)
and

δ(n) ⊏ δ(n + 1). Note that for each n, α ∈ Dδ(n) , and therefore φ|
(
δ(n)

)
⊏ α . Find γ

such that ∀n[δ(n) ⊏ γ]. Note that γ ∈ Fβ and φ|γ = α and α ∈ φ|Fβ .

We thus see that φ|Fβ =
⋂

n Hn is (positively) Borel.
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Theorem 3.5 shows that if X ⊆ ωω is regular in Lusin’s sense, then X is (positively)
Borel. The converse, a famous result in classical descriptive set theory, can not be true
intuitionistically, as every X ⊆ ωω that is regular in Lusin’s sense is strictly analytic;
and, as we know from Theorem 2.10(v), it is not even true that every closed X ⊆ ωω is
strictly analytic. The next result shows that the converse of Theorem 3.5 is also not true
for strictly analytic sets.

Theorem 3.6

(i) Let F ⊆ ωω be a spread and let φ : F ↠ D2(A1) = {γ | γ0 = 0 ∨ γ1 = 0}
be surjective. There exist α, γ in F such that α # γ and φ|α = φ|γ = 0.

(ii) D2(A1) = {γ | γ0 = 0 ∨ γ1 = 0} is strictly analytic and not regular in Lusin’s
sense.

(iii) A1 , E1 , A2 are regular in Lusin’s sense and E2 is not.

Proof (i) Define, for both i < 2, Pi := {γ | γi = 0}. Note that D2(A1) = P0 ∪ P1

and P0,P1 are spreads. Assume that Spr(β) and φ : Fβ ↠ D2(A1) = {γ | γ0 =

0 ∨ γ1 = 0} is surjective. Find α in Fβ such that φ|α = 0. Note that ∀γ ∈ Fβ∃i <
2[(φ|γ)i = 0]. Applying Brouwer’s Continuity Principle BCP, find m and i < 2 such
that ∀γ ∈ Fβ ∩ αm[(φ|γ)i = 0]. Again applying BCP, find n, s such that s ∈ ωm and
β(s) = 0 and ∀δ ∈ P1−i ∩ 0n∃γ ∈ Fβ ∩ s[φ|γ = δ].

Now distinguish two cases.

Case (a). s ⊏ α .

Define δ in P1−i ∩ 0n such that δi # 0. Find γ in Fβ ∩ s such that φ|γ = δ . Conclude
that αm ⊏ γ and δi = (φ|γ)i = 0, a contradiction. Conclude that Case (a) can not
occur.

Case (b). s ⊥ α .

Now find γ in Fβ ∩ s such that φ|γ = 0 and note that α # γ and φ|α = φ|γ = 0.

(ii) As we saw in (i), D2(A1) = P0 ∪ P1 and P0,P1 are spreads. Conclude, using
Theorem 2.10(v) and (viii), that D2(A1) is strictly analytic. It also follows from (i) that
D2(A1) is not regular in Lusin’s sense.

(iii) Note A1 is a spread, and every spread is regular in Lusin’s sense, for obvious
reasons.

Define φ : ωω → ωω such that ∀α[φ|α = 0α(0) ∗ ⟨α(1) + 1⟩ ∗α ◦ S ◦ S] and note that
φ : ωω ↣ ωω and φ|ωω = E1 , so E1 is regular in Lusin’s sense. Define ψ : ωω → ωω
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such that ∀α∀n[(ψ|α)n = φ|(αn)] and note that ψ : ωω ↣ ωω and ψ|ωω = A2 , so
A2 is regular in Lusin’s sense. Assume that F ⊆ ωω is a spread, and φ : F ↠ E2 is
surjective.

Slightly adapting the argument given in (i), the reader may find α, γ in F such that
α # γ and φ|α = φ|γ = 0. Conclude that E2 is not regular in Lusin’s sense.

Theorem 3.6 shows that it is not so easy, for a strictly analytic (positively) Borel set,
to be regular in Lusin’s sense. The set E2!, to be discussed in the next section, see
Theorem 6.4, is an example of a set that is positively Borel and strictly analytic and also
regular in Lusin’s sense, but, like the set D2(A1), fails to be co-analytic. It is not true,
therefore, that positively Borel sets regular in Lusin’s sense must be co-analytic.

Lusin would perhaps have been disappointed that there is no satisfying intuitionistic
counterpart to the other half of Lusin’s Theorem. He once observed that his representation
theorem may help one to believe, in spite of possible qualms about generalized inductive
definitions, that, after all, the collection of all positively Borel subsets of ωω is a
well-defined set, see Lusin [17, pages 38–39] and Suslin [26].

4 Co-analytic sets

4.1 The class Π1
1

Some relevant definitions may be found in Section 1.2.6.

Definition 14 X ⊆ ωω is co-analytic or Π1
1 if and only if there exists β such that

X = UGβ := Un(Gβ) = {α | ∀γ[⌜α, γ⌝ ∈ Gβ]}.

X ⊆ ωω thus is co-analytic if X is the co-projection of an open subset of ωω .

The next theorem shows that the class Π1
1 behaves not so nicely as the class Σ1

1 . The
class Π1

1 is closed under the operation of countable intersection but not under the
operation of finite union. Most (positively) Borel subsets of ωω are not co-analytic.
Fortunately, every set reducing to a co-analytic set is itself co-analytic. The class Π1

1 is
also closed under co-projection.

Theorem 4.1
(i) UP1

1 := {α | αII ∈ UGαI} is Π1
1 –universal.

(ii) A1
1 := {α | ∀γ∃n[α(γn) ̸= 0]} is Π1

1 –complete.
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(iii) For every infinite sequence X0,X1, . . . in Π1
1 ,
⋂

n Xn ∈ Π1
1 , ie ∀β∃γ[

⋂
n UGβn =

UGγ].
(iv) D2(A1) /∈ Π1

1 .
(v) Π0

2 ⊆ Π1
1 and Σ0

2 ⊈ Π1
1 .

(vi) For all X ⊆ ωω , if X ∈ Π1
1 , then Un(X ) ∈ Π1

1 , ie ∀β∃γ[Un(UGβ) = UGγ].
(vii) For all X ,Y ⊆ ωω , if X ⪯ Y ∈ Π1

1 , then X ∈ Π1
1 , ie ∀β∀φ : ωω → ωω∃γ[{α |

φ|α ∈ UGβ} = UGγ].

Proof (i) For each α , α ∈ UP1
1 ↔ αII ∈ UGαI ↔ ∀γ[⌜αII, γ⌝ ∈ GαI ] ↔

∀γ∃n[αI(⌜αII, γ⌝n) ̸= 0]. Define β such that, for all n, for all a, c in ωn , β(⌜a, c⌝)) ̸= 0
if and only if, for some m < n, ⌜aII, c⌝m < n and aI(⌜aII, c⌝m) ̸= 0. Then, for each
α , α ∈ UGβ if and only if ∀γ[⌜α, γ⌝ ∈ Gβ] if and only if ∀γ∃n[β(⌜α, γ⌝n) ̸= 0] if
and only if ∀γ∃n[αI(⌜αII, γ⌝n) ̸= 0] if and only if αII ∈ UGαI if and only if α ∈ UP1

1 .
Conclude that UP1

1 = UGβ ∈ Π1
1 .

Also: for each ε, UGε = UP1
1 ↾ ε. Conclude that UP1

1 is Π1
1 –universal.

(ii) For each α , α ∈ A1
1 ↔ ∀γ∃n[α(γn) ̸= 0]. Define G := {α | ∃n[αI(αIIn) ̸= 0]}

and note A1
1 = Un(G). Define β such that ∀a[β(a) ̸= 0 ↔ ∃n[aIIn < length(aI) ∧

aI(aIIn) ̸= 0]] and note that G = Gβ . We thus see that E1
1 ∈ Π1

1 .

Let ε be given. Note that ∀α[α ∈ UGε ↔ ∀γ∃n[ε(⌜α, γ⌝n) ̸= 0]]. Define φ : ωω →
ωω such that ∀α∀k∀c ∈ ωk[(φ|α)(c) = ε(⌜αk, c⌝)]. Note that φ reduces UGε to A1

1 .
Conclude that A1

1 is Π1
1 –complete.

(iii) Let X0,X1, . . . be an infinite sequence of co-analytic subsets of ωω . Using AC0,1 ,
find β such that ∀n[Xn = UGβn]. Define V0 := {α | ∃m[βαII (0)(⌜αI, αII ◦ S⌝m) ̸= 0]}.
Then: V0 ∈ Σ0

1 and, for all α , α ∈
⋂

n Xn ↔ ∀n∀γ[⌜α, γ⌝ ∈ Gβn] ↔ α ∈ Un(V0).
Conclude that

⋂
n Xn ∈ Π1

1 .

(iv) Use (ii) and Theorem 1.5(iv).

(v) Assume that G ∈ Σ0
1 . Define V := {α | αI ∈ G}. Then V ∈ Σ0

1 and
G = Un(V) ∈ Π1

1 . Conclude that Σ0
1 ⊆ Π1

1 and, using (iii), Π0
2 ⊆ Π1

1 . Note that
D2(A1) ∈ Σ0

2 and conclude that, using (iv), ¬(Σ0
2 ⊆ Π1

1).

(vi) Let β be given. Note that for every α , α ∈ Un(UGβ) ↔ ∀γ[⌜α, γ⌝ ∈ UGβ] ↔
∀γ∀δ[⌜⌜α, γ⌝, δ⌝ ∈ Gβ] ↔ ∀γ[⌜⌜α, γI⌝, γII⌝ ∈ Gβ].

Define Z := {⌜α, γ⌝ | ∃n[β(⌜⌜α, γI⌝, γII⌝n) ̸= 0]} and note that Z ∈ Σ0
1 and

Un(UGβ) = Un(Z) ∈ Π1
1 .

(vii) Assume that X ∈ Π1
1 and φ : ωω → ωω and define: Y := {α | φ|α ∈ X}.

Find G in Σ0
1 such that X = Un(G). Then, for every α , α ∈ Y ↔ φ|α ∈ X ↔
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∀β[⌜φ|α, β⌝ ∈ G]. Define V := {α | ⌜φ|αI, αII⌝ ∈ G}. Conclude that V ∈ Σ0
1 and

Y = Un(V) ∈ Π1
1 .

4.2 The set WF

Definition 15 We define WF := {α | ∀β ∈ (Tα)ω∃n[β(n) <KB β(n + 1)]}.

WF is the set of all α such that the tree Tα := {s | ∀t ⊏ s[α(t) = 0]} is well-founded
with respect to the Kleene-Brouwer-ordering <KB ; see Definition 3 in Section 2.2.

The following theorem is a counterpart to Theorem 2.2. Note that Theorem 2.2 is the
statement that E1

1 does not coincide with IF . Note that both (E1
1 ,A1

1) and (IF ,WF )
are complementary (Σ1

1,Π
1
1)–pairs; see Section 1.2.6.

Theorem 4.2 WF = A1
1 .

Proof We first prove that WF is a subset of A1
1 .

Assume that α ∈ WF . Let γ be given. Define β such that β(0) = ⟨ ⟩ and, for each
n, if γ(n + 1) ∈ Tα , then β(n + 1) = γ(n + 1), and, if not, then β(n + 1) = β(n).
Note ∀n[β(n) ∈ Tα] and find n such that β(n) ≤KB β(n + 1). Conclude that
β(n + 1) ̸= γ(n + 1) and ∃i ≤ n[α(γi) ̸= 0]. We thus see that ∀γ∃i[α(γi) ̸= 0], ie
α ∈ A1

1 . Conclude that WF ⊆ A1
1 .

We now prove that A1
1 is a subset of WF . This proof is more difficult and we have to

use the principle of Bar Induction BI; see Section 1.1.9.

Assume that α ∈ A1
1 . Define B := ω \ Tα = {s | ∃t ⊏ s[α(t) ̸= 0]} and note that B

is a bar in ωω . Define C := {s | ∀β ∈ (Tα)ω[∀i[s ⊑ β(i)] → ∃j[β(j) ≤KB β(j + 1)]]}
and note that B ⊆ C , as, for each s in B, for each u such that s ⊑ u, u /∈ Tα . Also
note that C is monotone, ie ∀s∀m[s ∈ C → s ∗ ⟨m⟩ ∈ C].

We now will prove that C is inductive. Let s be given such that ∀m[s ∗ ⟨m⟩ ∈ C].
We want to prove that s ∈ C . Define, for each m, P(m) := ∀β ∈ (Tα)ω[

(
∀i[s ⊑

β(i)] ∧ s ∗ ⟨m⟩ ⊑ β(0)
)
→ ∃j[β(j) ≤KB β(j + 1)]]. Before proving ‘s ∈ C’, we first

prove the auxiliary statement ∀m[P(m)]. We use induction. Let m be given such that
∀k < m[P(k)]. Let β in (Tα)ω be given such that ∀i[s ⊑ β(i)] and s ∗ ⟨m⟩ ⊑ β(0).
We intend to prove ∃j[β(j) ≤KB β(j + 1)]. Define β∗ such that β∗(0) = β(0) and, for
each n, if ∀i ≤ n + 1[s ∗ ⟨m⟩ ⊑ β(i)], then β∗(n + 1) = β(n + 1); and, if not, then
β∗(n + 1) = β∗(n). Note that ∀n[s ∗ ⟨m⟩ ⊑ β∗(n)] and s ∗ ⟨m⟩ ∈ C , and find j such
that β∗(j) ≤KB β

∗(j + 1).
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If β∗(j) = β(j) and β∗(j+ 1) = β(j+ 1), conclude that β(j) ≤KB β(j+ 1); we are done.
If not, define i0 := µi[¬

(
s ∗ ⟨m⟩ ⊑ β(i)

)
] and distinguish two cases.

Case (a). β(i0) = s. Note that i0 > 0 and β(i0 − 1) ≤KB β(i0); we are done.

Case (b). s ⊏ β(i0). Find k such that s ∗ ⟨k⟩ ⊑ β(i0). Note that k ̸= m and distinguish
two cases.

Case (b1). m < k . Note that i0 > 0 and β(0) <KB β(i0) and ∃j < i0[β(j) <KB β(j+1)];
we are done.

Case (b2). k < m. Define β† such that ∀n[β†(n) = β(i0+n)]. Note that s∗⟨k⟩ ⊑ β†(0)
and apply P(k). Find l such that β†(l) ≤KB β

†(l + 1) and, therefore β(i0 + l) ≤KB

β(i0 + l + 1); again, we are done.

We conclude that P(m). This completes the proof of the auxiliary statement ∀m[P(m)].

We now are ready to prove that s ∈ C . Let β in (Tα)ω be given such that ∀i[s ⊑ β(i)].
Consider β(0) and β(1). Either we find m such that either s ∗ ⟨m⟩ ⊏ β(0)] or
s ∗ ⟨m⟩ ⊑ β(1), and, considering β or β ◦ S and using P(m), we conclude that
∃j[β(j) ≤KB β(j + 1)]; or β(0) = β(1) = s and β(0) ≤KB β(1). Conclude that
∀β ∈ (Tα)ω[∀i[s ⊑ β(i)] → ∃j[β(j) ≤KB β(j + 1)]], ie s ∈ C .

Using BI, we conclude that ⟨ ⟩ ∈ C , ie ∀β ∈ (Tα)ω∃j[β(j) ≤KB β(j+ 1)], ie α ∈ WF .
We thus see that A1

1 ⊆ WF and A1
1 = WF .

The statement A1
1 = WF is, in the formal context of Basic Intuitionistic Mathematics

BIM, an equivalent of OI(2ω), the Principle of Open induction on Cantor space 2ω ,
see Veldman [37].

4.3 Sink∗(FIN ) and Sink∗(ALMOST ∗FIN )

Definition 16 We define: FIN := {α | ∃m∀n > m[α(n) = 0]}.

FIN is the set of all α such that Dα := {n | α(n) ̸= 0} is a finite subset of ω .

For items (i) and (iii) of the next theorem, see also Veldman [33, Theorem 3.3.(iii) and
(v)].

Theorem 4.3
(i) D2(A1) ⪯̸ FIN .

(ii) FIN is Σ0
2 but not Σ0

2 –complete.
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(iii) D2(A1) is not Π1
1 .

(iv) FIN is not Π1
1 .

Proof (i) Assume that φ : ωω → ωω reduces D2(A1) = {α | α0 = 0 ∨ α1 = 0}
to FIN . We prove that φ maps the closure D2(A1) of D2(A1) into FIN and thus
obtain a contradiction. Let α in D2(A1) be given. Define α0, α1 such that ∀i <
2[(αi)i = 0 ∧ ∀j[¬∃n[j = ⟨i⟩ ∗ n] → αi(j) = α(j)]]. Note that ∀i < 2[αi ∈ D2(A1)]
and ¬(α # α0 ∧ α # α1). Find m0,m1 such that ∀i < 2∀n > mi[(φ|αi)(n) = 0].
Define m = max(m0,m1). Suppose n > m and (φ|α)(n) ̸= 0. Then α # α0 and
α # α1 , a contradiction. Conclude that ∀n > m[(φ|α)(n) = 0] and φ|α ∈ FIN and,
therefore, α ∈ D2(A1). We thus see that D2(A1) ⊆ D2(A1) and, according to Theorem
1.3 in Section 1.2.5, obtain a contradiction. Conclude that D2(A1) ⪯̸ FIN .

(ii) FIN =
⋃

m{α | ∀n > m[α(n) = 0]} clearly is Σ0
2 , but, as D2(A1) is Σ0

2 and,
according to (i), D2(A1) ⪯̸ FIN , FIN is not Σ0

2 –complete.

(iii) See Theorem 1.5(iv).

(iv) Assume that φ : ωω → ωω reduces FIN to A1
1 . Define T := {α ∈ 2ω |

∀m∀n[α(m) = α(n) = 1 → m = n]}. T is the set of all infinite binary sequences
that assume the value 1 at most one time. Note that T is a spread, and 0 ∈ T , and
∀α ∈ T [α # 0 → α ∈ FIN )], and T ⊆ Perhaps(FIN ). Assume that T ⊆ FIN ,
ie ∀α ∈ T ∃m∀n > m[α(n) = 0]. Applying Brouwer’s Continuity Principle BCP (see
Section 1.1.6) find p,m such that ∀α ∈ T [0p ⊏ α → ∀n > m[α(n) = 0]]. We now
have a contradiction: define q := max(m + 1, p) and consider α := 0q ∗ ⟨1⟩ ∗ 0.

Conclude that ¬(T ⊆ FIN ) and FIN is not perhapsive, and that FIN does not
reduce to A1

1 and is not Π1
1 ; see Theorem1.5.

Definition 17 We define ALMOST ∗FIN := {α | ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0]}.

ALMOST ∗FIN is the set of all α such that Dα is an almost-finite subset of ω .

Lemma 4.4 ALMOST ∗FIN is Π1
1 .

Proof We shall prove that, for each α:

∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0] if and only if ∀ζ∃n[α ◦ ζ(n) = 0] ∨ ζ(n + 1) ≤ ζ(n)]

The desired conclusion then follows easily.
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Let τ be the canonical retraction12 of ωω onto the spread [ω]ω . The function τ satisfies
the conditions: ∀ζ ∈ [ω]ω[τ |ζ = ζ] and ∀ζ[ζ # τ |ζ → ∃n[ζ(n + 1) ≤ ζ(n)]].

Let α be given. First assume ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0]. Let ζ be given. Find n such
that α ◦ (τ |ζ)(n) = 0. Either (τ |ζ)(n) = ζ(n) and α ◦ ζ(n) = 0; or, (τ |ζ)(n) ̸= ζ(n)
and ∃i ≤ n[ζ(i + 1) ≤ ζ(i)]. We thus see that ∀ζ∃n[α ◦ ζ(n) = 0 ∨ ζ(n + 1) ≤ ζ(n)].

Now assume that ∀ζ∃n[α ◦ ζ(n) = 0 ∨ ζ(n + 1) ≤ ζ(n)]. Let ζ in [ω]ω be given.
Find n such that α ◦ ζ(n) = 0 ∨ ζ(n + 1) ≤ ζ(n). Conclude that α ◦ ζ(n) = 0. We
thus see that ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0].

The set ALMOST ∗FIN has been studied in Veldman [33, Section 3]. It has been
shown there that ALMOST ∗FIN is not (positively) Borel, see [33, Section 0.9.2(ii)
and Theorem 3.17(iii)]. In particular, FIN is proper subset13of ALMOST ∗FIN .
It has also been shown in [33] that ALMOST ∗FIN is the best Π1

1 –approximation
of FIN , ie, for every Z in Π1

1 , if FIN ⊆ Z , then ALMOST ∗FIN ⊆ Z , see
[33, Theorem 3.21(v)]. As one might expect, ALMOST ∗FIN is not Π1

1 –complete,
see [33, Theorem 3.24(iii)].

In the following definition we introduce a new word for a well-known concept.

Definition 18 For all X ,Y ⊆ ωω , we define: X sinks into Y if and only if X ⊆ Y .
For each X ⊆ ωω , we define Sink(X ) := {β | Fβ ⊆ X} and Sink∗(X ) := {β ∈
Sink(X ) | Spr(β)}.

Sink(X ) is the set of the codes of all closed subsets of ωω that sink into (ie, are a subset
of) X and Sink∗(X ) is the set of the codes of all spreads, ie all closed and located
subsets of ωω , that sink into (ie are a subset of) X .

We now want to treat some results that, together, are a counterpart14 to Theorem 2.9.
The moral of the story is that, in order to obtain a satisfying such counterpart, one
should work with ALMOST ∗FIN rather than with FIN .

Recall that for all X ,Y ⊆ ωω : X ∼ Y (X , Y reduce to each other / are Wadge–
equivalent), if and only if both X ⪯ Y and Y ⪯ X .

Theorem 4.5
12see Section 1.1.5
13For all X ,Y ⊆ ωω , X is a proper subset of Y if and only if X ⊆ Y and not Y ⊆ X , ie

the assumption ‘Y ⊆ X ’ leads to a contradiction.
14Note that, from a classical point of view, the sets Share(INF ), Sink(FIN ), for instance,

are each other’s complement.
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(i) Sink∗(FIN ∩ 2ω) ∼ FIN .
(ii) Sink∗(FIN ∩ 2ω) ⪯̸ A1

1 and Sink∗(FIN ) ⪯̸ A1
1 .

(iii) A1
1 ⪯ Sink∗(FIN ).

(iv) A1
1 ⪯ Sink∗(ALMOST ∗FIN ∩ 2ω) ⪯ Sink∗(ALMOST ∗FIN ).

(v) Sink∗(ALMOST ∗FIN ) ⪯ A1
1 .

(vi) Sink∗(ALMOST ∗FIN ) and Sink∗(ALMOST ∗FIN ∩ 2ω) are Π1
1 – com-

plete.

Proof (i) Assume that Spr(β) and Fβ ⊆ FIN ∩ 2ω . Conclude that ∀s[β(s) =

0 → s ∈ Bin] and Fan(β) and ∀γ ∈ Fβ∃m∀n > m[γ(n) = 0]. Applying the First
Axiom of Continuous Choice AC1,0 , see Section 1.1.3, find φ : Fβ → ω such that
∀γ ∈ Fβ∀n > φ(γ)[γ(n) = 0]. Applying the Fan Theorem FT, see Section 1.1.7,
find p such that ∀γ ∈ Fβ[φ(γ) ≤ p]. Note that ∀n > p∀s ∈ Binn+1[β(s) = 0 →
s(n) = 0]. Conclude that for each β , β ∈ Sink∗(FIN ∩ 2ω) if and only if Spr(β)
and ∀s[β(s) = 0 → s ∈ Bin] and ∃p∀n > p∀s ∈ Binn+1[β(s) = 0 → s(n) = 0]].
Define ψ : ωω → ωω such that, for all β , for all n, (ψ|β)(n) = 0 if and only if
∀s ≤ n[β(s) = 0 → s ∈ Bin] and ∀s ∈ Binn+1[β(s) = 0 → s(n) = 0]. Note that ψ
reduces Sink∗(FIN ∩2ω) to FIN . Define ρ : ωω → ωω such that, for all α , for all s,
(ρ|α)(s) = 0 if and only if s ∈ Bin and ∀i < length(s)[s(i) = 1 ↔ α(i) ̸= 0]. Note that
ρ reduces FIN to Sink∗(FIN ∩ 2ω). Conclude that Sink∗(FIN ∩ 2ω) ∼ FIN .

(ii) Use (i) and Theorem 4.3(iv) and conclude that Sink∗(FIN ∩ 2ω) ⪯̸ A1
1 . Define

φ : ωω → ωω such that, for all β , for all s, (φ|β)(s) = 0 if and only if (s ∈
Bin ∧ β(s) = 0) ∨ ∃t ≤ s[t /∈ Bin ∧ β(t) = 0]. Note that φ reduces Sink∗(FIN∩2ω)
to Sink∗(FIN ). Conclude that Sink∗(FIN ) ⪯̸ A1

1 .

(iii) Define φ : ωω → ωω such that, for all α , for all s, (φ|α)(s) = 0 if and only if
∃t ∈ Tα∃n[s = (S ◦ t) ∗ 0n].15 Note that for all α , Spr(φ|α) and ∀γ ∈ Fφ|α∀n[γ(n) =
0 → γ(n + 1) = 0]. We now prove that φ reduces A1

1 to Sink∗(FIN ).

First assume that α ∈ A1
1 . Also assume that γ ∈ Fφ|α . Find ε such that, for each

n, if γ(n) > 0, then ε(n) + 1 = γ(n), and, if γ(n) = 0, then ε(n) = 0. Find m such
that α(εm) ̸= 0. Then: ε(m + 1) /∈ Tα and γ(m + 1) ̸= S ◦ ε(m + 1). Find k ≤ m
such that γ(k) = 0 and note that ∀n > k[γ(n) = 0] and γ ∈ FIN . We thus see that
∀γ ∈ Fφ|α[γ ∈ FIN ]. Conclude that Fφ|α ⊆ FIN and φ|α ∈ Sink∗(FIN ).

Now assume that φ|α ∈ Sink∗(FIN ). Then ∀γ ∈ Fφ|α∃m∀n > m[γ(n) = 0]. Let ε
be given. Define γ such that, for each n, if ε(n + 1) ∈ Tα , then γ(n) = ε(n) + 1, and,
if not, then γ(n) = 0. Note that γ ∈ Fφ|α and find m such that γ(m) = 0. Conclude

15Recall: length(S ◦ t) = length(t) and ∀i < length(t)[(S ◦ t)(i) = t(i) + 1].
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that ε(m + 1) /∈ Tα and ∃i ≤ m + 1[α(εi) ̸= 0]. We thus see that ∀ε∃i[α(εi) ̸= 0], ie
α ∈ A1

1 . We thus see that ∀α[α ∈ A1
1 ↔ φ|α ∈ Sink∗(FIN )], ie φ reduces A1

1 to
Sink∗(FIN ).

(iv) Define δ such that δ(0) = 0 and, for all s, for all n, δ(s ∗ ⟨n⟩) = δ(s) ∗ 0n ∗ ⟨1⟩.
Define φ : ωω → ωω such that for all α , for all s, (φ|α)(s) = 0 if and only if
∃t ∈ Tα∃n[s = δ(t) ∗ 0n]. Note that for all α , Spr(φ|α) and Fφ|α ⊆ 2ω . We prove
that φ reduces A1

1 to Sink∗(ALMOST ∗FIN ∩ 2ω).

Assume that α ∈ A1
1 . Also assume that γ ∈ Fφ|α and ζ ∈ [ω]ω . Define γ′

such that ∀n[γ′ ◦ ζ(n) = 1] and ∀n[∀i[n ̸= ζ(i)] → γ′(n) = γ(n)]. Define ε such
that ε(0) = µp[γ′(p) = 1] and ∀n[ε(n + 1) = µp > ε(n)[γ′(p) = 1]]. Note that
ε ∈ [ω]ω and, for all n, δ(εn) ⊏ γ′ . Find n such that α(εn) ̸= 0. Note that
ε(n + 1) /∈ Tα and (φ|α)

(
δ(ε(n + 1))

)
̸= 0. Find m such that γ′m = δ(ε(n + 1)).

Note that (φ|α)(γ′m) ̸= 0 = (φ|α)(γm) and conclude that γ′m ̸= γm. Find i < m
such that γ′(i) ̸= γ(i). Determine j < m such that i = ζ(j) and conclude that
γ ◦ ζ(j) = 0. We thus see that ∀γ ∈ Fφ|α∀ζ ∈ [ω]ω∃j[γ ◦ ζ(j) = 0]. Conclude that
Fφ|α ⊆ ALMOST ∗FIN and φ|α ∈ Sink∗(ALMOST ∗FIN ∩ 2ω).

Now assume that φ|α ∈ Sink∗(ALMOST ∗FIN ∩ 2ω). Let γ be given. Find β

in 2ω such that ∀n[δ(γn) ⊏ β]. Define ζ such that ζ(0) = γ(0) and ∀n[ζ(n + 1) =
ζ(n) + γ(n + 1) + 1]. Note ζ ∈ [ω]ω and ∀n[β ◦ ζ(n) = 1]. Define β∗ such that,
for each n, if β(n + 1) ∈ Tφ|α , then β∗(n) = β(n), and if not, then β∗(n) = 0.
Note that β∗ ∈ Fφ|α ⊆ ALMOST ∗FIN and find n such that β∗ ◦ ζ(n) = 0.
Define p := ζ(n) + 1 and conclude that βp ̸= β∗p and βp /∈ Tφ|α . Find m such
that βp ⊑ δ(γm) and note that γm /∈ Tα and ∃i ≤ m[α(γi) ̸= 0]. We thus see that
∀γ∃i[α(γi) ̸= 0] , ie α ∈ A1

1 .

Conclude that for each α , α ∈ A1
1 if and only if φ|α ∈ Sink∗(ALMOST ∗FIN ∩2ω),

ie φ reduces A1
1 to Sink∗(ALMOST ∗FIN ∩ 2ω).

Finally, define ψ : ωω → ωω such that, for all β , for all s, (ψ|β)(s) = 0 if and only
if either β(s) = 0 ∧ s ∈ Bin or ∃t ⊑ s[β(t) = 0 ∧ s /∈ Bin]. Note that ψ reduces
Sink∗(ALMOST ∗FIN ∩ 2ω) to Sink∗(ALMOST ∗FIN ).

(v) We first prove a preliminary observation. For all β such that Spr(β), ∀α ∈ Fβ∀ζ ∈
[ω]ω∃n[α◦ζ(n) = 0] if and only if ∀α∀ζ∃n[α◦ζ(n) = 0 ∨ ζ(n+1) ≤ ζ(n) ∨ β(αn) ̸=
0]. The argument is a small extension of the argument given for Lemma 4.4.

Let β be given such that Spr(β).

First assume ∀α ∈ Fβ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0]. Let ρ, τ be the canonical
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retractions16 of ωω onto the spreads Fβ and [ω]ω , respectively. Let α, ζ be given.
Find n such that

(
(ρ|α) ◦ (τ |ζ)

)
(n) = 0. There are three cases to consider. Case (a).

τ |ζ(n + 1) ̸= ζ(n + 1). Then ∃i[ζ(i + 1) ≤ ζ(i)]. Case (b). τ |ζ(n + 1) = ζ(n + 1) and
ρ|α(ζ(n)+1) ̸= α(ζ(n)+1). Then ∃i[β(αi) ̸= 0]. Case (c). τ |ζ(n+1) = ζ(n+1) and
ρ|α(ζ(n) + 1) = α(ζ(n) + 1). Then α ◦ ζ(n) = 0. Conclude that ∀α∀ζ∃n[α ◦ ζ(n) =
0 ∨ ζ(n + 1) ≤ ζ(n) ∨ β(αn) ̸= 0].

Now assume ∀α∀ζ∃n[α ◦ ζ(n) = 0 ∨ ζ(n+ 1) ≤ ζ(n) ∨ β(αn) ̸= 0]. Let α be given
in Fβ and ζ in [ω]ω . Find n such that α ◦ ζ(n) = 0 ∨ ζ(n + 1) ≤ ζ(n) ∨ β(αn) ̸= 0
and conclude that α ◦ ζ(n) = 0. We thus see that ∀α ∈ Fβ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) = 0].

Now observe: {β | Spr(β} belongs to Π0
2 . Using our preliminary observation and also

Theorem 4.1, conclude that Sink∗(ALMOST ∗FIN ) = {β | Spr(β) ∧ ∀α∀ζ∃n[α ◦
ζ(n) = 0 ∨ ζ(n + 1) ≤ ζ(n) ∨ β(αn) ̸= 0]} belongs to Π1

1 .

(vi) Use (iv) and (v).

Theorem 4.5(i) seems to contradict classical results: its proof uses the strongly
nonclassical axiom AC1,0 . Theorem 4.5(iv) is a counterpart to Theorem 2.9. Both
Theorem 4.5(vi) and Theorem 2.9 resemble a classical result due to Hurewicz that
plays a key role in the sketch of the proof of a theorem by Solovay and Kaufman
in Kechris–Louveau [15]. The Solovay–Kaufman Theorem states that the set of the
codes of closed sets of uniqueness and the set of the codes of closed sets of extended
uniqueness are Π1

1 –complete. Note that we obtained the more ‘classical’ results of
Theorem 4.5 by replacing FIN by ALMOST ∗FIN .

4.4 Exactly one path

Definition 19 E1
1 ! := {α | ∃γ[∀n[α(γn) = 0] ∧ ∀δ[δ # γ → ∃n[α(δn) ̸= 0]]}

E1
1 ! is the set of all α admitting exactly one path. In Kechris [14, pages 125–127],

there is a fascinating argument, due to Kechris, showing that, in classical descriptive
set theory, E1

1 ! is Π1
1 –complete. We will see that this result does not go through in our

intuitionistic context.

Definition 20 D2!(A1) := {α | ∃i < 2[αi = 0 ∧ α1−i # 0]}, and E2! := {α |
∃n[αn = 0 ∧ ∀m ̸= n[αn # 0]]}.

16See Section 1.1.5
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Note that D2!(A1) is Σ0
2 and E2! is Σ0

3 .

We will see that the set E2! is an example of a subset of ωω that is positively Borel and
regular in Lusin’s sense,17 see Theorem 4.6, but not Π1

1 , see Theorem 4.8.

Theorem 4.6
(i) D2!(A1) ⪯ E2! and E2! ⪯ E1

1 !
(ii) A2 ⪯ E2! and A1

1 ⪯ E1
1 !

(iii) D2!(A1) ⪯ A2

(iv) D2(A1) ⪯̸ E2!
(v) E2! is regular in Lusin’s sense.

Proof (i) Define φ : ωω → ωω such that ∀α
[
∀i < 2[(φ|α)i = αi] ∧ ∀i ≥ 2[(φ|α)i =

1]
]

and note that φ reduces D2!(A1) to E2!. Define ψ : ωω → ωω such that
∀α∀s[(ψ|α)(s) = 0 ↔ ∃n[s ⊏ n ∧ αns ⊏ 0]] and note that ψ reduces E2! to E1

1 !.

(ii) Define φ : ωω → ωω such that ∀α[(φ|α)0 = 0 ∧ ∀i[(φ|α)i+1 = αi] and note that
φ reduces A2 to E2!. Define ψ : ωω → ωω such that, for all α , ∀n[(ψ|α)(0n) = 0]
and ∀m∀n∀t[(ψ|α)(0n ∗ ⟨m + 1⟩ ∗ t) = α(t)]] and note that ψ reduces A1

1 to E1
1 !.

(iii) Define φ : ωω → ωω such that, for all α , for all n, (φ|α)0(n) = max
(
α0(n), α1(n)

)
,

and, for all i, (φ|α)i+1(n) ̸= 0 if and only if either α0i ⊏ 0 or α1i ⊏ 0. Note that φ
reduces D2!(A1) to A2 .

(iv) Assume that ψ : ωω → ωω maps D2(A1) into E1
1 !. We shall prove that ψ also

maps the closure D2(A1) of D2(A1) into E1
1 ! and thus does not reduce D2(A1) to E1

1 !.

First, as in the proof of Theorem 3.6, define, for both i < 2, Pi := {β | βi = 0}.
Note that P0,P1 are spreads and D2(A1) = P0 ∪ P1 . Assume that α ∈ D2(A1). We
are going to prove: ψ|α ∈ E1

1 !. The following notion is useful. We define, for all
s, s is fine for α if and only if ∃m∀β ∈ D2(A1)[αm ⊏ β → ∃γ ∈ Fψ|β[s ⊏ γ]].
We will prove that for each p there exists exactly one s such that length(s) = p
and s is fine for α . Define α0, α1 such that, for both i < 2, (αi)i = 0 and
∀j[¬∃n[j = ⟨i, n⟩] → αi(j) = α(j)]. Define α01 such that (α01)0 = (α01)1 = 0 and
∀j[¬∃i < 2∃n[j = ⟨i, n⟩] → α01(j) = α(j)]. Note that if α # α0 , then α = α1 ∈ P1 ,
and, if α # α1 , then α = α0 ∈ P0 , and, if α # α01 , then either α # α0 or α # α1 , and,
therefore α ∈ P0 ∪ P1 = D2(A1). Note that α01 ∈ P0 ∩ P1 .

Let p be given. Note that ∀i < 2∀β ∈ Pi∃s[length(s) = p ∧ ∃γ ∈ Fψ|β[s ⊏ γ]].
Using Brouwer’s Continuity Principle BCP, see Section 1.1.6, find s0, s1,m0,m1 such

17See Definition 13.
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that length(s0) = length(s1) = p and ∀i < 2∀β ∈ Pi ∩ α01mi∃γ ∈ Fψ|β[si ⊏ γ].
Assume s0 ⊥ s1 . Then ∃γ ∈ Fψ|α01∃δ ∈ Fψ|α01[s0 ⊏ γ ∧ s1 ⊏ δ] and this contradicts
ψ|α01 ∈ E1

1 !. Conclude that s0 = s1 . Define s := s0 and m := max(m0,m1), and note
that if αm = α01m, then s is fine for α . Now assume that αm ̸= α01m. Find k < 2
such that α = αk and note (αm)1−k ⊥ 0. Find s2,m2 such that length(s2) = p and
m < m2 and ∀β ∈ Pk ∩ αm2∃γ ∈ Fψ|β[s2 ⊏ γ]. As (αm2)1−k ⊥ 0, conclude that
∀i < 2∀β ∈ Pi ∩ αm2∃γ ∈ Fψ|β[s2 ⊏ γ], and s2 is fine for α . Clearly then, for each
p, one may find s such that length(s) = p and s is fine for α .

Suppose s, t are given such that both s, t are fine for α . Find m such that ∀β ∈
D2(A1)[αm ⊏ α→ (∃γ ∈ Fφ|β[s ⊏ γ] ∧ ∃γ ∈ Fφ|β[t ⊏ γ])]. Find k < 2 such that
αm ⊏ αk . Note that αk ∈ D2(A1) and φ|αk ∈ E1

1 ! and conclude that s ⊑ t ∨ t ⊑ s.
We thus see that if both s, t are fine for α , then s ⊑ t ∨ t ⊑ s. We thus may define δ
such that, for each p, δp is fine for α . Conclude that δ ∈ Fψ|α , and ψ|α ∈ E1

1 , ie ψ|α
admits a path. We still have to prove that ψ|α admits exactly one path. Let η be given
such that δ # η . Note that ψ|α0 ∈ E1

1 ! and find λ in Fψ|α0 . Using the co-transitivity
of the relation #, distinguish two cases.

Case (a): η # λ. Find n such that (ψ|α0)(ηn) ̸= 0. Either (ψ|α)(ηn) = (ψ|α0)(ηn) ̸= 0,
or α # α0 and α = α1 and ∃m[(ψ|α)(ηm) ̸= 0].

Case (b): δ # λ. Then α # α0 and α = α1 and ∃m[(ψ|α)(ηm) ̸= 0]. We thus see that
∀η[η # δ → ∃p[(ψ|α)(ηp) ̸= 0]], and ψ|α ∈ E1

1 !.

Conclude that ∀α ∈ D2(A1)[ψ|α ∈ E1
1 !]. Now assume that ψ reduces D2(A1) to E1

1 !.
Conclude that ∀α ∈ D2(A1)[α ∈ D2(A1)]. According to Theorem 1.3 (see Section
1.2.5) we have a contradiction.

(v) Define φ : ωω → ωω such that, for all α , (φ|α)α(0) = 0 and ∀n < α(0)[(φ|α)n =

0α0(2n) ∗ ⟨α0(2n + 1) + 1⟩ ∗ αn+1] and ∀n > α(0)[(φ|α)n = 0α0(2n − 2) ∗ ⟨α0(2n −
1) + 1⟩ ∗ αn]. Then φ : ωω ↣ ωω and φ|ωω = E2!. Conclude that E2! is regular in
Lusin’s sense.

According to Theorem 4.6(iv), D2(A1) ⪯̸ E2!, and, therefore, also E2 ⪯̸ E2!. This is
an intuitionistic phenomenon, as, in classical descriptive theory, E2 ⪯ E2!. One may
understand this classical fact by replacing E2, E2! by sets that, from a constructive point
of view, are extensions of them, although, classically, they would be judged to be the
same. Theorem 4.7 will make this clear.

Definition 21 ALMOST –E2 := {α | α # A2} = {α | ∀γ∃n[αn
(
γ(n)

)
= 0]}, and

ALMOST –E2! := ALMOST –E2∩{α | ∀m∀n[m ̸= n → ∃p[αm(p) ̸= 0 ∨ αn(p) ̸=
0]}.
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ALMOST –E2 and ALMOST –E2! may be called Π1
1 –approximations to E2 and

E2!, respectively.

Theorem 4.7 ALMOST –E2 ⪯ ALMOST –E2!.

Proof Define ψ,φ : ωω → ωω such that, for each α , (ψ|α)(0) = 0 and (φ|α)0 =

α0 = α(ψ|α)(0) , and, for each n,

(1) if α(ψ|α)(n)(n + 1) ⊏ 0 then (ψ|α)(n + 1) = (ψ|α)(n) and (φ|α)n+1 = 1, and

(2) if α(ψ|α)(n)(n + 1) ⊥ 0 then (ψ|α)(n + 1) = (ψ|α)(n) + 1 and (φ|α)n+1 =

α(ψ|α)(n+1) .

The idea behind these definitions is the following. φ will be the function reducing
ALMOST –E2 to ALMOST –E2!, and ψ will be an auxiliary function. Given α ,
we check its subsequences, α0, α1, . . . one by one. At stage 0, we start with studying
α0 and we define (ψ|α)(0) = 0 and (φ|α)0 = α0 . At every stage n+1, if (ψ|α)(n) = k ,
we consider αk , and we distinguish two cases. Case 1. We discover that αk # 0, (as
αk(n + 1) ⊥ 0). We now decide to study αk+1 at the next stage n + 1, so we define
(ψ|α)(n + 1) = k + 1. We also define (φ|α)n+1 = αk+1 . Case 2. We do not yet see
that αk # 0 (as αk(n + 1) ⊏ 0). We decide to continue our study of αk at stage n + 1,
so we define (ψ|α)(n + 1) = k . We also define (φ|α)n+1 = 1.

Note that for each α , for all k , if ∀i < k[αi # 0], then there exists j such that
(ψ|α)(j) = k . If j0 is the least such j and αk = 0, then (φ|α)j0 = 0 and, for
all i ̸= j0 , one has (φ|α)i # 0. Also note that for all n,m, if n < m, then either
(ψ|α)(n) < (ψ|α)(m) and (φ|α)n # 0; or, (ψ|α)(n) = (ψ|α)(m) and (φ|α)m = 1 # 0.
Also note that for each n, (φ|α)n = 1 or (φ|α)n = α(ψ|α)(n) .

We now prove that φ reduces ALMOST –E2 to ALMOST –E2!. Assume that
α ∈ ALMOST –E2 . Let γ be given. We want to find m such that (φ|α)m

(
γ(m)

)
= 0.

Define δ such that δ(0) := 0 and, for each n, if ∀i ≤ n[(φ|α)δ(i) ◦ γ ◦ δ(i) ̸= 0] then
δ(n + 1) := µj[(ψ|α)(j) = n + 1]; and, if not, then δ(n + 1) := δ(n). Note that for
each n, if ∀i < n[(φ|α)δ(i) ◦ γ ◦ δ(i) ̸= 0], then ∀i ≤ n[(φ|α)δ(i) = αi]]. Define
n := µk[αk ◦ γ ◦ δ(k) = 0]. Conclude that (φ|α)δ(n) = αn and (φ|α)δ(n) ◦ γ ◦ δ(n) = 0
and ∃m[(φ|α)m ◦ γ(m) = 0]. We thus see that ∀γ∃m[(φ|α)m ◦ γ(m) = 0], ie
φ|α ∈ ALMOST –E2 . As we observed already: for all m, n, if m ̸= n, then either
(φ|α)m # 0 or (φ|α)n # 0. Conclude that φ|α ∈ ALMOST –E2!.

Now assume that φ|α ∈ ALMOST –E2!. Let γ be given. We want to find m such
that αm

(
γ(m)

)
= 0. Define δ such that, for each n, δ(n) = γ

(
(ψ|α)(n)

)
. Find n

such that (φ|α)n ◦ δ(n) = 0. Note that (φ|α)n # 1 and (φ|α)n = α(ψ|α)(n) . Define
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m := (ψ|α)(n) and note that αm(γ(m)) = α(ψ|α)(n)(γ
(
ψ|α)(n)

)
= (φ|α)n

(
δ(n)

)
= 0.

We thus see that ∀γ∃n[αn ◦ γ(n) = 0], ie α ∈ ALMOST –E2 .

The following definition has been given already in Section 1.2.7.

Definition 22 For every X ⊆ ωω , we define Perhaps(X ) = {α | ∃β ∈ X [α # β →
α ∈ X ]}. X ⊆ ωω is called perhapsive if and only if Perhaps(X ) = X .

Theorem 4.8

(i) A1
1 is perhapsive.

(ii) E2! is not perhapsive.
(iii) E2! and E1

1 ! are not Π1
1 .

Proof (i) See Theorem 1.5(iv).

(ii) Let X be the set of all α such that α(0) = 0 and, for all n, if n = µp[α0(p) ̸= 0],
then αn+1 = 0 and, if n ̸= µp[α0(p) ̸= 0], then αn+1 = 1. We shall prove that
X is a subset of Perhaps(E2!) but not of E2! itself. It then follows that E2! is not
perhapsive. Define ζ such that ζ(0) = 0 and ζ0 = 0 and ∀n[ζn+1 = 1]. Note that
ζ ∈ X ∩ E2!. Assume that α ∈ X and α # ζ . Find i, n such that αi(n) ̸= ζ i(n). Either
i = 0 and α0(n) ̸= 0; or i > 0, αi(n) ̸= ζ i(n) = 1 and α0(i − 1) ̸= 0. In both cases,
α0 # 0 and α ∈ E2!. We thus see that ∀α ∈ X [α # ζ → α ∈ E2!] and conclude that
X ⊆ Perhaps(E2!).

Assume that X ⊆ E2!. Note that X is a spread containing ζ . Using BCP, find
m, n such that ∀α ∈ X [ζm ⊏ α → αn = 0]. In particular: ζn = 0, and n = 0.
But ∃α ∈ X [ζm ⊏ α ∧ α0 # 0], a contradiction. Conclude that X ⊈ E2! while
X ⊆ Perhaps(E2!), so Perhaps(E2!) ⊈ E2! and E2! is not perhapsive.

(iii) Use (i), (ii), and Theorems 1.5(i), 4.1(ii) and 4.6(i).

5 A1
1 and E1

1

In this section, we study the sets A1
1 = BAR := {α | ∀γ∃n[α(γn) ̸= 0]} and

E1
1 = PAT H := {α | ∃γ∀n[α(γn) = 0]}. We have seen that A1

1 is Π1
1 –complete and

that E1
1 is Σ1

1 –complete, see Theorems 4.1(ii) and 2.1(ii).
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5.1 A1
1 positively fails to be strictly analytic

The following definitions have been given already in Section 1.1.2.

Definition 23 For each α , Tα := {s | ∀t ⊏ s[α(t) = 0]}.

For all α, β , for all γ , we define: γ : α ≤∗ β ↔
(
∀s[s ∈ Tα → γ(s) ∈ Tβ] ∧ ∀s∀t[s ⊏

t → γ(s) ⊏ γ(t)]
)

, and γ : α <∗ β ↔
(
∀s[s ∈ Tα → γ(s) ∈ Tβ] ∧ ∀s∀t[s ⊏ t →

γ(s) ⊏ γ(t)] ∧ γ(⟨ ⟩) ̸= ⟨ ⟩
)

.

For all α, β , we define: α <∗ β ↔ ∃γ[γ : α <∗ β], and α ≤∗ β ↔ ∃γ[γ : α ≤∗ β].

Tα is called the tree determined by α . Note that ∀α[0 = ⟨ ⟩ ∈ Tα].

α ≤∗ β if and only if there exists a ⊏–preserving embedding of Tα into Tβ .

α <∗ β if and only if there exists n in ω and a ⊏–preserving embedding of Tα into
{s ∈ Tβ | ⟨n⟩ ⊑ s}.

Lemma 5.1
(i) For all α, β, γ , α ≤∗ α and (α ≤∗ β ∧ β ≤∗ γ) → α ≤∗ γ and α <∗ β →

α ≤∗ β and (α <∗ β ∧ β ≤∗ γ) → α <∗ γ and (α ≤∗ β ∧ β <∗ γ) → α <∗

γ .
(ii) ∀α ∈ A1

1∀β ∈ A1
1[α <∗ β → α # β].

Proof (i) Note that for all α, β, γ, δ, ε, if δ : α ≤∗ β and ε : β ≤∗ γ , then
ε ◦ δ : α ≤∗ γ . Conclude that if α ≤∗ β and β ≤∗ γ , then α ≤∗ γ .

The proofs of the other statements are also straightforward.

(ii) Let α, β in A1
1 be given such that α <∗ β . Find γ such that ∀s ∈ Tα[γ(s) ∈ Tβ]

and ∀s∀t[s ⊏ t → γ(s) ⊏ γ(t)] and γ(⟨ ⟩) ̸= ⟨ ⟩. Define ε such that ε(0) = ⟨ ⟩ and, for
each n, ε(n+1) = γ ◦ε(n). Note that for all n, ε(n) ⊏ ε(n+1), and, if ε(n) ∈ Tα , then
ε(n + 1) ∈ Tβ . Find δ such that ∀n[ε(n) ⊏ δ] and note that ∃n[δn /∈ Tα]. Conclude
that ∃m[ε(m) /∈ Tα] and define p := µm[ε(m) /∈ Tα]. Note that p > 0 and find q such
that p = q + 1. Conclude that ε(q) ∈ Tα and ε(p) ∈ Tβ \ Tα and α # β .

The next Theorem, Theorem 5.2, shows that A1
1 positively fails to be strictly analytic

or Σ1∗
1 in the following sense: given a (continuous) function from ωω into A1

1 one may
construct an element of A1

1 that does not occur in the range of φ.

Theorem 5.2
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(i) Cantor’s diagonal argument: ∀φ : ωω → A1
1∃α ∈ A1

1∀β[α # φ|β].
(ii) The Boundedness Theorem: ∀φ : ωω → A1

1∃α ∈ A1
1∀β[φ|β ≤∗ α].

Proof (i) Assume that φ : ωω → A1
1 . We claim that there exists α : ωω → ω such

that ∀β[α(β) = (φ|β)(β) + 1].

We first give an informal description of such an α . Given β , find p := µn[(φ|β)(βn) ̸=
0]. Now ensure that, for some q, q = µn[α(βn) ̸= 0] and α(βq) = (φ|β)(βp) + 1. A
precise definition of such an α is the following. Define α such that for each c, if there
is no b ⊑ c such that b < length(φ|c) and (φ|c)(b) ̸= 0, then α(c) = 0, and, if there is,
then α(c) = (φ|c)(b0) + 1, where b0 is the least such b. Note that α ∈ A1

1 and, for
each β , α # φ|β as α(β) ̸= (φ|β)(β).

(ii). Assume that φ : ωω → A1
1 . Note that ∀β∀δ∃n[(φ|β)(δn) ̸= 0], and

∀β∀δ∃n∃m[φδn(βm) > 0 ∧ ∀i < m[φδn(βi) = 0]]. Define α such that ∀s[α(s) ̸=
0 ↔ ∃t ⊑ sI∃u ⊑ sII[φt(u) > 0 ∧ ∀v ⊏ u[φt(v) = 0]]]. Note that α ∈ A1

1 . Let
β be given. Define ε such that ∀d∀n[n = length(d) → ε(d) = ⌜βn, d⌝]. Note that
ε : φ|β ≤∗ α . We thus see that ∀β[φ|β ≤∗ α].

Using Lemma 5.1, one may obtain Theorem 5.2(i) from Theorem 5.2(ii), as follows.
Assume α ∈ A1

1 and ∀β[φ|β ≤∗ α]. Note18: S∗(α) ∈ A1
1 and ∀β[φ|β <∗ S∗(α)] and

thus, according to Theorem 5.2(i), ∀β[φ|β # S∗(α)].

5.2 E1
1 positively fails to be Π1

1

The next Theorem, Theorem 5.3, should prepare the reader for Theorem 5.4. The
proof of Theorem 5.3 is elementary in the sense that no use is made of intuitionistic
principles like Brouwer’s Continuity Principle BCP or the Fan Theorem FT. The proof
of Theorem 5.3(i) has been given in Veldman [35, Section 5.4]. Theorem 5.3(iii) is a
rather weak statement if one compares it to the result of the Borel Hierarchy Theorem,
Theorem 1.2 in Section 1.2.4. One should compare Theorem 5.3(iii) to Theorem 5.5(i).

Theorem 5.3
(i) E2 positively fails to be Π0

2 : if a continuous function maps E2 into A2 , it also
maps some element of A2 into A2 :

∀φ : ωω → ωω[∀α ∈ E2[φ|α ∈ A2] → ∃α ∈ A2[φ|α ∈ A2]]
18For each α , S∗(α) is the element β of ωω such that β(0) = 0 and ∀n[βn = α]; see Section

1.1.8. If α ∈ A1
1 , then also S∗(α) ∈ A1

1 . S∗(α) is called the successor of α .
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(ii) If E2 is contained in a set X that is a countable intersection of open sets, also
some element of A2 is in X : ∀β[E2 ⊆ F2

β → ∃α[α ∈ A2 ∩ F2
β]].

(iii) The assumption that A2 is a countable union of spreads leads to a contradiction:
¬∃β[∀n[Spr(βn)] ∧ A2 =

⋃
n Fβn].

Proof (i) Assume φ : ωω → ωω and ∀α ∈ E2[φ|α ∈ A2]. Now define α such that,
for all n, for all m, αn(m) ̸= 0 if and only if (φ|αm)n ⊥ 0. Note that for all n, αn # 0
if and only if (φ|α)n # 0.

We now prove that for all n, both αn and (φ|α)n are in E1 . Let n be given. Define
αn such that (αn)n = 0 and ∀j[¬∃t[j = ⟨n⟩ ∗ t] → αn(j) = α(j)]. Note that αn ∈ E2 ,
φ|αn ∈ A2 , and (φ|αn)n ⊥ 0. Find t ⊏ αn such that (φ|t)n ⊥ 0 and distinguish two
cases. Either t ⊏ α and (φ|α)n # 0 and also αn # 0; or, t ⊥ α , αn ⊥ α , αn # 0, and
also (φ|α)n # 0. We thus see that for all n, αn # 0 and (φ|α)n # 0, ie α ∈ A2 and
φ|α ∈ A2 .

(ii) Let β given such that E2 ⊆ F2
β . Find φ : ωω → ωω reducing F2

β to A2 . Note that
∀α ∈ E2[φ|α ∈ A2]. Applying (i), find α in A2 such that φ|α ∈ A2 , so α ∈ A2 ∩F2

β .

(iii) Let β be given such that ∀n[Spr(βn)] and A2 = G2
β =

⋃
n Fβn . Find ρ such that,

for each n, ρn : ωω → Fβn is the canonical retraction of ωω onto Fβn . Assume that
α ∈ E2 . Note that ∀δ ∈ A2[α # δ] and ∀n∀δ ∈ Fβn[α # δ] and ∀n[α # ρn|α] and
∀n∃m[βn(αm) ̸= 0] and ∀n[α ∈ Gβn] and α ∈ F2

β . We thus see that ∀α ∈ E2[α ∈ F2
β],

ie E2 ⊆ F2
β . Applying (ii), we find α ∈ A2 ∩F2

β = G2
β ∩F2

β = ∅, a contradiction.

The proof of the next theorem, Theorem 5.4, is also elementary.

Theorem 5.4

(i) E1
1 positively fails to be Π1

1 : If a continuous function from ωω to ωω maps
E1

1 into A1
1 , it also maps some element of A1

1 into A1
1 : ∀φ : ωω → ωω[∀α ∈

E1
1 [φ|α ∈ A1

1] → ∃α ∈ A1
1[φ|α ∈ A1

1]].
(ii) If E1

1 is contained in a Π1
1 set X , also some element of A1

1 is in X : ∀β[E1
1 ⊆

UGβ → ∃α[α ∈ A1
1 ∩ UGβ]].

Proof (i) Assume φ : ωω → ωω and ∀α ∈ E1
1 [φ|α ∈ A1

1]. Now define α such
that, for all t , α(t) ̸= 0 if and only if ∃s ⊑ t[(φ|αt)(s) ̸= 0]. Note that for all γ ,
∃n[α(γn) ̸= 0] if and only if ∃n[(φ|α)(γn) ̸= 0].

We now prove: for all γ , ∃n[α(γn) ̸= 0] and ∃n[(φ|α)(γn) ̸= 0].
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Let γ be given. Define αγ such that ∀n[α(γn) = 0] and ∀t[t ⊥ γ → αγ(t) = α(t)].
Note that αγ ∈ E1

1 and φ|αγ ∈ A1
1 . Find m such that (φ|αγ)(γm) ̸= 0. Find t ⊏ αγ

such that (φ|t)(γm) ̸= 0 and distinguish two cases. Either t ⊏ α , (φ|α)(γm) ̸= 0, and
∃n ≤ m[α(γn) ̸= 0]; or, t ⊥ α , α ⊥ αγ , ∃n[α(γn) ̸= 0], and ∃n[(φ|α)(γn) ̸= 0].

We thus see that for all γ , ∃n[α(γn) ̸= 0] and ∃n[(φ|α)(γn) ̸= 0], ie α ∈ A1
1 and

φ|α ∈ A1
1 .

(ii) Let β given such that E1
1 ⊆ UGβ . Find φ : ωω → ωω reducing UGβ to A1

1 .
Note that ∀α ∈ E1

1 [φ|α ∈ A1
1]. Applying (i), find α in A1

1 such that φ|α ∈ A1
1 , so

α ∈ A1
1 ∩ UGβ .

5.3 May one prove: ‘A1
1 is not analytic’?

The following theorem should be compared to Veldman [35, Theorem 5.2(iv)].

Theorem 5.5

(i) If A2 is a countable union of closed sets, there exists α not in either A2 or E2 :
A2 ⪯ E2 → ∃α[α /∈ E2 ∧ α /∈ A2].

(ii) If A1
1 is analytic, there exists α not in either A1

1 or E1
1 : A1

1 ⪯ E1
1 → ∃α[α /∈

E1
1 ∧ α /∈ A1

1].

Proof (i) Let φ : ωω → ωω be given. Define α such that, for all n, for all m,
αn(m) ̸= 0 if and only if (φ|αm)n ⊥ 0. Note that for all n, ∃m[αn(m) ̸= 0] if and only
if ∃m[(φ|α)n(m) ̸= 0], so αn ∈ E1 if and only if (φ|α)n ∈ E1 and αn ∈ A1 if and only
if (φ|α)n ∈ A1 . Conclude that α ∈ E2 if and only if φ|α ∈ E2 and α ∈ A2 if and only
if φ|α ∈ A2 .

Now assume, in addition, that φ reduces A2 to E2 . If α ∈ A2 , then both φ|α ∈ E2 and
φ|α ∈ A2 , a contradiction. If α ∈ E2 , then both φ|α ∈ E2 and α ∈ A2 , a contradiction.
We thus see that α /∈ A2 and α /∈ E2 .

(ii) Let φ : ωω → ωω be given. Define α such that, for all t , α(t) ̸= 0 if and
only if ∃s ⊑ t[(φ|αt)(s) ̸= 0]. Note that for each γ , ∃n[α(γn) ̸= 0] if and only if
∃n[(φ|α)(γn) ̸= 0]. Conclude that α ∈ E1

1 if and only if φ|α ∈ E1
1 and α ∈ A1

1 if and
only if φ|α ∈ A1

1 .

Now assume, in addition, that φ reduces A1
1 to E1

1 . If α ∈ A1
1 , then both φ|α ∈ E1

1
and φ|α ∈ A1

1 , a contradiction. If α ∈ E1
1 , then both φ|α ∈ E1

1 and α ∈ A1
1 , a

contradiction. We thus see that α /∈ A1
1 and α /∈ E1

1 .
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Markov’s Principle MP, in our view a dubious assumption (see Section 1.1.11), proves,
for all α ,

α /∈ E2 → ¬∃n∀m[αn(m) = 0] → ∀n¬¬∃m[αn(m) ̸= 0]

→ ∀n∃m[αn(m) ̸= 0] → α ∈ A2

and thus, together with Theorem 5.5(i), A2 ⪯̸ E2 .

MP also proves, for all α ,

α /∈ E1
1 → ¬∃γ∀n[α(γn) = 0] → ∀γ¬¬∃n[α(γn) ̸= 0]

→ ∀γ∃n[α(γn) ̸= 0] → α ∈ A1
1

and thus, together with Theorem 5.5(ii), A1
1 ⪯̸ E1

1 .

Intuitionistically, one obtains the conclusion A2 ⪯̸ E2 as a corollary of a stronger
statement proven from Brouwer’s Continuity Principle BCP; see Theorem 1.2 in
Section 1.2.4. No such argument seems to be available for the conclusion A1

1 ⪯̸ E1
1 .

One may prove A1
1 ⪯̸ E1

1 , avoiding MP but using KS; see Section 1.1.10. One may
argue that A1

1 is definite, and therefore, if analytic, also strictly analytic; see Theorem
2.11 in Section 2.5. We have seen that A1

1 is not strictly analytic; see Theorem 5.2.

5.4 E1
1 and A1

1 positively fail to be (positively) Borel

In classical descriptive set theory, the following statement holds:

A continuous function φ : ωω → ωω reducing X ⊆ ωω to E1
1 reduces

ωω \ X to A1
1 .

So, if one has seen that every Borel X ⊆ ωω is Σ1
1 and reduces to E1

1 , one may conclude
that every Borel X ⊆ ωω reduces to A1

1 and is Π1
1 . In our constructive context, this

conclusion is wrong, see Theorems 2.1(iv) and Theorem 4.1(iv).

The following subtle Lemma 5.6 replaces the just mentioned statement.

Lemma 5.6 For every complementary pair (X ,Y) of positively Borel sets there exists
φ : ωω → ωω reducing X to E1

1 and mapping Y into A1
1 .

Proof We use induction on the class of complementary pairs of Borel sets and
distinguish three cases.

Case 1. Let β be given such that X = Gβ = {α | ∃n[β(αn) ̸= 0]} and Y = Fβ =

{α | ∀n[β(αn) = 0]}. Define φ : ωω → ωω such that ∀α[(φ|α)(0) = 0 ∧ ∀s >
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0[(φ|α)(s) = 0 ↔ β
(
α(s(0))

)
̸= 0]]. Note that φ simultaneously reduces X to E1

1 and
Y to A1

1 , because for each α:

α ∈ Gβ ↔ ∃n[β(αn) ̸= 0] ↔ ∃γ[β(αγ(0)) ̸= 0] ↔ ∃γ[(φ|α)(⟨γ(0)⟩) = 0]

↔ ∃γ∀n[(φ|α)(γn) = 0] ↔ φ|α ∈ E1
1

α ∈ Fβ ↔ ∀n[β(αn) = 0] ↔ ∀γ[β(αγ(0)) = 0] ↔ ∀γ[(φ|α)(⟨γ(0)⟩) ̸= 0]and

↔ ∀γ∃n[(φ|α)(γn) ̸= 0] ↔ φ|α ∈ A1
1

Case 2. Let β be given such that X = Fβ and Y = Gβ . Define φ : ωω → ωω such
that ∀α∀s[(φ|α)(s) = 0 ↔ ∀j ≤ s[β(αj) = 0]]. Note that φ simultaneously reduces X
to E1

1 and Y to A1
1 , because, for each α:

α ∈ Fβ ↔ ∀n[β(αn) = 0] ↔ ∀s[(φ|α)(s) = 0] ↔ ∀γ∀n[(φ|α)(γn) = 0]

↔ ∃γ∀n[(φ|α)(γn) = 0] ↔ φ|α ∈ E1
1

α ∈ Gβ ↔ ∃n[β(αn) ̸= 0] ↔ ∃s∀t ≥ s[(φ|α)(t) ̸= 0]and

↔ ∀γ∃n[(φ|α)(γn) ̸= 0] ↔ φ|α ∈ A1
1

Case 3. Let (X0,Y0), (X1,Y1), . . . be an infinite sequence of complementary pairs of
(positively) Borel sets and let φ be given such that, for each n, φn : ωω → ωω reduces
Xn to E1

1 and maps Yn into A1
1 .

Case 3a. Define X =
⋃

n Xn and Y :=
⋂

n Yn . Define ψ : ωω → ωω such that
∀α[(ψ|α)(0) = 0 ∧ ∀n∀s[(ψ|α)(⟨n⟩ ∗ s) = (φn|α)(s)]]. Note that ψ reduces X to E1

1
and maps Y into A1

1 , because: for each α ,

α ∈ X ↔ ∃n[α ∈ Xn] ↔ ∃n[φn|α ∈ E1
1 ] ↔ ∃n∃γ∀m[(φn|α)(γm) = 0]

↔ ∃γ∀m[(ψ|α)(γm) = 0] ↔ ψ|α ∈ E1
1

α ∈ Y ↔ ∀n[α ∈ Yn] → ∀n[φn|α ∈ A1
1] ↔ ∀n∀γ∃m[(φn|α)(γm) ̸= 0]and

↔ ∀γ∃m[(ψ|α)(γm) ̸= 0]

so α ∈ Y → ψ|α ∈ A1
1

Case 3b. Define X =
⋂

n Xn and Y :=
⋃

n Yn . Define ψ : ωω → ωω such that
∀α∀s[(ψ|α)(s) = 0 ↔ ∀n ≤ s∀t ⊑ sn[(φn|α)(t) = 0]]. Note that ψ reduces X to E1

1
and maps Y into A1

1 , because, for each α:
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α ∈ X ↔ ∀n[α ∈ Xn] ↔ ∀n[φn|α ∈ E1
1 ] ↔ ∀n∃γ∀m[(φn|α)(γm) = 0]

↔ 19∃γ∀n∀m[(φn|α)(γnm) = 0] ↔ ∃γ∀m[(ψ|α)(γm) = 0] ↔ ψ|α ∈ E1
1

α ∈ Y ↔ ∃n[α ∈ Yn] → ∃n[φn|α ∈ A1
1] ↔ ∃n∀γ∃m[(φn|α)(γm) ̸= 0]

and

→ 20∀γ∃n∃m[(φn|α)(γnm) ̸= 0] ↔ ∀γ∃m[(ψ|α)(γm) ̸= 0] ↔ ψ|α ∈ A1
1

so α ∈ Y → ψ|α ∈ A1
1 .

Theorem 5.7 (E1
1 and A1

1 positively fail to be (positively) Borel)
(i) For every σ in HRS , for every φ : ωω → ωω , if φ|E1

1 ⊆ Eσ , then ∃α ∈
A1

1[φ|α ∈ Eσ].
(ii) For every X in Borel, if E1

1 ⊆ X , then ∃α ∈ A1
1[α ∈ X ].

(iii) For every σ in HRS , for every φ : ωω → ωω , if φ|A1
1 ⊆ Eσ , then ∃α ∈

E1
1 [φ|α ∈ Eσ].

(iv) For every X in Borel, if A1
1 ⊆ X , then ∃α ∈ E1

1 [α ∈ X ].

Proof (i) Let σ, φ be given such that σ ∈ HRS and φ : ωω → ωω and φ|E1
1 ⊆ Eσ .

Using Lemma 5.6, find ψ : ωω → ωω reducing Aσ to E1
1 and mapping Eσ into A1

1 .
Note that φ ⋆ ψ21 maps Aσ into Eσ . Applying the Borel Hierarchy Theorem, Theorem
1.2, find β in Eσ such that (φ ⋆ ψ)|β ∈ Eσ . Define α := ψ|β and note that α ∈ A1

1
and φ|α ∈ Eσ .

(ii) Let X in Borel be given such that E1
1 ⊆ X . Find σ in HRS and φ : ωω → ωω

reducing X to Eσ . Note φ|E1
1 ⊆ Eσ . Applying (i), find α in A1

1 such that φ|α ∈ Eσ
and, therefore, α ∈ X .

(iii) Let σ, φ be given such that σ ∈ HRS and φ : ωω → ωω and φ|A1
1 ⊆ Eσ . Using

Lemma 5.6, find ψ : ωω → ωω reducing Eσ to E1
1 and mapping Aσ into A1

1 . Note that
φ ⋆ ψ maps Aσ into Eσ . Applying the Borel Hierarchy Theorem, Theorem 1.2, find β
in Eσ such that (φ ⋆ ψ)|β ∈ Eσ . Define α := ψ|β and note that α ∈ E1

1 and φ|α ∈ Eσ .

(iv) Let X in Borel be given such that A1
1 ⊆ X . Find σ in HRS and φ : ωω → ωω

reducing X to Eσ . Note φ|A1
1 ⊆ Eσ . Applying (iii), find α in E1

1 such that φ|α ∈ Eσ
and, therefore, α ∈ X .

19We are applying the Second Axiom of Countable Choice, AC0,1: ∀m∃γ[mRγ] →
∃γ∀m[mRγm], see Section 1.1.3.

20The contraposition of AC0,1: ∀γ∃m[mRγm] → ∃m∀γ[mRγ], is not constructively valid,
and, therefore, we have here a single arrow only.

21For all φ,ψ : ωω → ωω , also φ ∗ ψ : ωω → ωω and, for all α , φ ∗ ψ|α = φ|(ψ|α), see
Section 1.1.5.
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5.5 Other results showing that E1
1 and A1

1 are not (positively) Borel

MONPAT H := {α | ∃γ ∈ Fα∀n[γ(n) ≤ γ(n + 1) ≤ 1]} is what might be called a
simple Σ1

1 set, as, from a classical point of view, MONPAT H is Π0
1 . The assumption

that MONPAT H is (positively) Borel leads to a contradiction, see Veldman [33,
Theorem 2.23(vi)]. It follows that E1

1 is not positively Borel, but the statement of
Theorem 5.7(ii) is a stronger conclusion.

As we mentioned in Section 4.3, ALMOST ∗FIN := {α | ∀ζ ∈ [ω]ω∃n[α ◦ ζ(n) =
0]} is Π1

1 but not (positively) Borel. ALMOST ∗FIN might be called a simple Π1
1

set, as, from a classical point of view, ALMOST ∗FIN is Σ0
2 . It follows that also A1

1
is not (positively) Borel, but the statement of Theorem 5.7(iv) is a stronger conclusion.

As one might expect, the results about MONPAT H and ALMOST ∗FIN strongly
use Brouwer’s Continuity Principle BCP.

5.6 One half of Souslin’s Theorem

Theorem 5.8

(i) For every σ in ST P , {α | α ≤∗ σ} ∈ Borel.
(ii) Every X ⊆ ωω that is both strictly analytic and co-analytic is (positively) Borel:

Σ1∗
1 ∩Π1

1 ⊆ Borel.

Proof (i) Note that ∀α[α ≤∗ 1∗ ↔ α(0) ̸= 0]. Also note that for all σ ̸= 1∗ in ST P ,
∀α[α ≤∗ σ ↔ ∀m∃n[αm ≤∗ σn]]. Now use induction on ST P .

(ii) Assume that X ∈ Σ1∗
1 ∩Π1

1 . If X = ∅, clearly X ∈ Borel. Assume X is inhabited.
Find φ : ωω → ωω such that X = φ|ωω . Find ψ : ωω → ωω reducing X to A1

1 .
Using Theorem 5.2(ii), find β in A1

1 such that ∀α[(ψ ⋆ φ)(α) ≤∗ β]. Note that Dβ is a
bar in ωω . Using Brouwer’s Thesis on bars in ωω BT, see Section 1.1.9, find a stump
σ such that Dβ ∩ Tσ is bar in ωω . Conclude that ∀α[α ≤∗ β → α ≤∗ σ]. Conclude,
using (i): X = {γ | ψ|γ ≤∗ σ} ∈ Borel.

Theorem 5.8(ii) is of limited application as every Π1
1 subset of ωω is perhapsive, see

Theorems 4.8(i) and 1.5(i) , and “most” positively Borel sets are not. Therefore, there
are not “many” positively Borel sets that are both co-analytic and strictly analytic. The
converse of Theorem 5.8(ii), although classically a well-known fact, is far from true.
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6 Countable and almost-countable spreads

6.1 Countable spreads

Countable closed subsets of the set of the real numbers were among the first objects
studied by Cantor. One might say that this study led him to discover set theory.

In our constructive context we study located and closed subsets of ωω , ie spreads, and
ask ourselves what could be a useful notion of countability.

Definition 24 For each δ , we define Enδ = {δn | n ∈ ω}. We also define:

COUNT := {β | Spr(β) ∧ ∃δ[Fβ ⊆ Enδ]}

Enδ is called the subset of ωω enumerated by δ , see Section 1.1.2.

If β ∈ COUNT , we call Fβ an (at most) countable spread.

Definition 25 X ⊆ ωω is called discrete if and only if ∀α ∈ X∀β ∈ X [α # β ∨ α =

β].

Recall that FIN is the set of all α such that ∃n∀m ≥ n[α(m) = 0], ie Dα := {m |
α(m) ̸= 0} is a finite subset of ω .

Like Theorem 2.8, the following Theorem 6.1 should be compared to a classical result
due to W. Hurewicz, see Kechris [14, Theorem 27.5].

Theorem 6.1

(i) For every spread F ⊆ ωω : F is (at most) countable if and only if F is discrete:
∀β[β ∈ COUNT ↔ (Spr(β) ∧ ∀γ0 ∈ Fβ∀γ1 ∈ Fβ[γ0 # γ1 ∨ γ0 = γ1])].

(ii) FIN ⪯ COUNT .
(iii) A1

1 ⪯ COUNT .
(iv) COUNT is not the co-projection of a closed subset of ωω but it is the co-

projection of a (positively) Borel subset of ωω : COUNT is not Π1
1 but

COUNT is Π1+
1 .

Proof (i) Assume β ∈ COUNT , ie Spr(β) and Fβ is (at most) countable. Note
that if β(0) ̸= 0 then Fβ = ∅ is discrete. Assume that β(0) = 0 and find δ such
that Fβ ⊆ Enδ . Then ∀γ ∈ Fβ∃n[γ = δn]. Let γ0, γ1 in Fβ be given. Using
Brouwer’s Continuity Principle BCP (see Section 1.1.6), find n0,m0, n1,m1 such that
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∀i < 2∀γ ∈ Fβ[γimi ⊏ γ → γ = δni]. Note that if γ0m0 ⊥ γ1m1 , then γ0 # γ1 , and,
if not, then γ0 = δn0 = γ1 . We thus see that ∀γ0 ∈ Fβ∀γ1 ∈ Fβ[γ0 # γ1 ∨ γ0 = γ1],
ie Fβ is discrete.

Now assume Spr(β) and Fβ is discrete. We may assume that β(0) = 0, ie Fβ is
inhabited. Define ε such that, for all s, ε(s) = 0 if and only if β(sI) = β(sII) = 0.
Note that Spr(ε) and for all γ , γ ∈ Fε if and only if both γI and γII are in Fβ .
Conclude that ∀γ ∈ Fε[γI # γII ∨ γI = γII]. Using the First Axiom of Continuous
Choice AC1,0 (see Section 1.1.6) find φ : Fε → ω such that ∀γ ∈ Fε[

(
φ(γ) = 0 →

γI # γII
)

∧
(
φ(γ) > 0 → γI = γII

)
]. Note that ∀γ ∈ Fβ[φ(⌜γ, γ⌝) > 0] and, for

all n, if β(n) = 0 and φ|⌜n, n⌝ ⊥ ⟨0⟩, then there exists exactly one γ ∈ Fβ such that
n ⊏ γ . Find δ such that, for each n, if β(n) = 0 and φ|⌜n, n⌝ ⊥ ⟨0⟩, then n ⊏ δn and
δn ∈ Fβ , and note that Fβ ⊆ Enδ . We thus see that Fβ is (at most) countable.

(ii) Define φ : ωω → ωω such that ∀α∀s[(φ|α)(s) = 0 ↔ ∃m∃k[s = αm ∗ 0k]]. We
shall prove that φ reduces FIN to COUNT . Note that for every α , Spr(φ|α) and
α ∈ Fφ|α .

First, let α in FIN be given. Find m such that ∀n ≥ m[α(n) = 0]. Note that
∀γ[γ ∈ Fφ|α ↔ ∃k ≤ m[γ = αk ∗ 0]]. Define δ such that ∀k ≤ m[δk = αk ∗ 0].
Note that Fφ|α ⊆ Enδ and φ|α ∈ COUNT . Clearly, for every α , if α ∈ FIN , then
φ|α ∈ COUNT .

Now let α be given such that φ|α ∈ COUNT . According to (i): Fφ|α is discrete.
Note that α ∈ Fφ|α . Using Brouwer’s Continuity Principle BCP, see Section 1.1.6,
find m such that ∀γ ∈ Fφ|α[αm ⊏ γ → α = γ]. Conclude that ∀n ≥ m[α(n) = 0]
and α ∈ FIN . Clearly, for every α , if φ|α ∈ COUNT , then α ∈ FIN .

We thus see that φ reduces FIN to COUNT .

(iii) Recall that we defined, for each α , Tα = {t | ∀u ⊏ t[α(u) = 0]}. Define φ : ωω →
ωω such that, for all α , for all s, (φ|α)(s) = 0 if and only if ∃t ∈ Tα∃k[s = t ∗ 0k].
We shall prove that φ reduces A1

1 to COUNT . Note that ∀α[Spr(φ|α)].

First, assume that α ∈ A1
1 . Let γ0, γ1 in Fφ|α be given. Find n0 := µn[α(γ0n) ̸= 0]

and n1 := µn[α(γ1n) ̸= 0]. Note that γ0n0 ∈ Tα and γ0(n0+1) /∈ Tα and γ0 = γ0n0∗0.
Similarly, γ1 = γ1n1 ∗ 0. If γ0n0 ⊥ γ1n1 , then γ0 # γ1 and, if not, then γ0 = γ1 . We
thus see that ∀γ0 ∈ Fφ|α∀γ1 ∈ Fφ|α[γ0 # γ1 ∨ γ0 = γ1], ie Fφ|α is discrete. Using (i),
conclude that φ|α ∈ COUNT . Clearly, for each α , if α ∈ A1

1 , then φ|α ∈ COUNT .

Now let α be given such that φ|α ∈ COUNT . Let γ be given. Define γ∗ such
that, for each n, if γ(n + 1) ∈ Tα , then γ∗(n) = γ(n); and, if not, then γ∗(n) = 0.
Note that γ∗ ∈ Fφ|α . According to (i), Fφ|α is discrete. Using Brouwer’s Continuity
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Principle BCP, find n such that ∀δ ∈ Fφ|α[γ∗n ⊏ δ → γ∗ = δ]. Suppose that
∀m ≤ n[α(γ∗m) = 0]. Then ∀p[γ∗n ∗ ⟨p⟩ ∈ Tα and (φ|α)(γ∗n ∗ ⟨p⟩) = 0].
Conclude that ∃m ≤ n[α(γ∗m) ̸= 0], and ∃m ≤ n[α(γm) ̸= 0]. We thus see that
∀γ∃m[α(γm) ̸= 0], ie α ∈ A1

1 . Clearly, for each α , if φ|α ∈ COUNT , then α ∈ A1
1 .

We thus see that φ reduces A1
1 to COUNT .

(iv) As FIN reduces to COUNT , see (ii), and FIN is not Π1
1 , see Theorem 4.3(iii),

also COUNT is not Π1
1 .

Note, considering the proof of (i): for all β , β ∈ COUNT if and only if Spr(β) and Fβ
is discrete, ie ∀γ ∈ Fβ∃n∀s∀t[(β(s) = β(t) = 0 ∧ γn ⊑ s ∧ γn ⊑ t) → (s ⊑ t ∨ t ⊑
s)]. Conclude, using the last observation of Section 1.1.5, that for all β , β ∈ COUNT
if and only if Spr(β) and ∀γ∃n∀s∀t[(β(s) = β(t) = 0 ∧ γn ⊑ s ∧ γn ⊑ t) → (s ⊑
t ∨ t ⊑ s)]. Let X be the set of all β such that Spr(βI) and either ∃n[βI(βIIn) ̸= 0] or
∃n∀s∀t[(βI(s) = βI(t) = 0 ∧ βIIn ⊑ s ∧ βIIn ⊑ t) → (s ⊑ t ∨ t ⊑ s)] and note that
X ∈ Π0

3 and COUNT = Un(X ) and COUNT is Π1+
1 .

6.2 Almost-countable spreads

One might feel that the notion of a countable spread as introduced in Section 6.1 is
perhaps too strong. We therefore introduce a weaker notion.

Note that for each δ , for each γ , if ∀n[γ # δn], one may define α such that, for each n,
α(n) = µ(p)[γp ⊥ δn]. Conclude that ∀n[γ # δn] if and only if ∃α∀n[γα(n) ⊥ δn].
One may consider α such that ∀n[γα(n) ⊥ δn] as evidence for the fact that ∀n[γ # δn].

Definition 26 For all γ, δ , we define: γ almost belongs to Enδ = {δn | n ∈ ω} if and
only if ∀α∃n[γα(n) ⊏ δn].

So γ almost belongs to Enδ if every attempt to give evidence that γ is apart from every
element of Enδ fails in finitely many steps.

Lemma 6.2

(i) For all γ, δ, ε, if Enδ ⊆ Enε and γ almost belongs to Enδ , then γ almost belongs
to Enε .

(ii) For all γ, δ, ε, if Enδ = Enε , then γ almost belongs to Enδ if and only if γ
almost belongs to Enε .
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Proof (i) Let δ, ε be given such that Enδ ⊆ Enε . Let γ be given such that
∀α∃n[γα(n) ⊏ δn]. Using the First Axiom of Countable Choice AC0,0 , see Sec-
tion 1.1.3, find ζ such that ∀n[δn = εζ(n)]. Let α be given. Find n such that
γα ◦ ζ(n) ⊏ δn = εζ(n) and conclude that ∃m[γα(m) ⊏ εm]. Conclude that
∀α∃n[γα(n) ⊏ εn].

(ii) immediately follows from (i).

Define δ such that ∀n[δn = n ∗ 0] and note that FIN = {δn | n ∈ ω} = Enδ . Recall
that ALMOST ∗FIN = {γ | ∀ζ ∈ [ω]ω∃n[γ ◦ ζ(n) = 0]}; see Definition 17.

Lemma 6.3 For each γ , γ ∈ ALMOST ∗FIN if and only if γ almost belongs to
FIN .

Proof Let γ in ALMOST ∗FIN be given. We want to prove that γ almost belongs
to FIN = {n ∗ 0 | n ∈ ω} . Let α be given. We want to prove: ∃n[γα(n) ⊏
n ∗ 0]. To this end, we define ζ in [ω]ω , step by step. If γα(0) ⊥ 0, define
ζ(0) = µi < α(m)[γ(i) ̸= 0]; and, if not, define ζ(0) = 0. Now assume p > 0 and we
defined ζ(0), ζ(1), . . . , ζ(p − 1). Define m := γ

(
ζ(p − 1) + 1

)
. If γα(m) ⊥ m ∗ 0,

ie γα(γ
(
ζ(p − 1) + 1

)
) ⊥ γ

(
ζ(p − 1) + 1

)
∗ 0, define ζ(p) = µi < α(m)[i >

ζ(p − 1) ∧ γ(i) ̸= 0], and, if not, define ζ(p) = ζ(p − 1) + 1. Now find n such that
γ ◦ ζ(n) = 0 and conclude that for some p ≤ n we must have seen γα(m) ⊏ m ∗ 0,
where m = γ

(
ζ(p − 1) + 1

)
. We thus see that γ almost belongs to FIN .

Conversely, let γ be given such that γ almost belongs to FIN , ie ∀α∃n[γα(n) ⊏ n∗0].
Assume that ζ ∈ [ω]ω . Find η in [ω]ω such that ∀n[ζ ◦ η(n) > length(n)]. Define
α such that, for each n, α(n) = ζ ◦ η(n) + 1. Find n such that γα(n) ⊏ n ∗ 0 and
conclude that γ ◦ ζ ◦ η(n) = 0. We thus see that ∀ζ ∈ [ω]ω∃n[γ ◦ ζ(n) = 0], ie
γ ∈ ALMOST ∗FIN .

Definition 27 For each δ , we let ALMOST ∗(Enδ) be the set of all γ that almost
belong to Enδ , ie such that ∀α∃n[γα(n) ⊏ δn]. We also define:

ALMOST ∗COUNT := {β | Spr(β) ∧ ∃δ[Fβ ⊆ ALMOST ∗(Enδ)]}

If β ∈ ALMOST ∗COUNT , we call Fβ an almost-countable spread.

Lemma 6.4 For each β , if Fβ is an inhabited almost-countable spread, then there
exists ε in (Fβ)ω such that Fβ ⊆ ALMOST ∗(Enε).
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Proof Let β, δ be given such that Spr(β) and β(0) = 0 and Fβ ⊆ ALMOST ∗(Enδ).
Let ρ be the retraction of ωω onto Fβ . Define ε such that ∀n[εn = ρ|δn] and note that
∀n[εn ∈ Fβ]. We now prove: Fβ ⊆ ALMOST ∗(Enε). Assume γ ∈ Fβ and let α
be given. Find n such that γα(n) ⊏ δn . Conclude that β

(
γα(n)

)
= 0 and γα(n) ⊏ εn .

We thus see that Fβ ⊆ ALMOST ∗(Enε).

Lemma 6.5 If F ,H are inhabited spreads and F maps onto H and F is almost-
countable, also H is almost-countable.

Proof Let β0 and β1 be spread-laws such that β0(0) = β1(0) = 0 andFβ0 is almost-
countable. Assume φ : Fβ0 → Fβ1 is surjective. Using Lemma 6.4, find δ in (Fβ0)ω

such that Fβ0 ⊆ ALMOST ∗(Enδ). Define ε such that ∀n[εn = φ|δn]. Assume
that ζ ∈ Fβ1 and find γ in Fβ0 such that φ|γ = ζ . Let α be given. Find η

such that ∀n[εnα(n) ⊑ φ|δnη(n)]. Find n such that γη(n) ⊏ δn and conclude that
ζα(n) = φ|γα(n) ⊏ φ|δn = εn . We thus see that ∀ζ ∈ Fβ1∀α∃n[ζα(n) ⊏ εn], ie
Fβ1 ⊆ ALMOST ∗(Enε) and Fβ1 is almost-countable.

Theorem 6.6
(i) For each β such that Spr(β), Fβ is a countable spread if and only if Fβ embeds

into FIN .
(ii) For each β such that Spr(β), if Fβ is an almost-countable spread, then Fβ

embeds into ALMOST ∗FIN .

Proof (i) Assume that Spr(β) and Fβ is an inhabited countable spread. Find δ in
(Fβ)ω such that Fβ = Enδ , ie ∀γ ∈ Fβ∃n[γ = δn]. Using the First Axiom of
Continuous Choice AC1,0 , see Section 1.1.6, find φ : Fβ → ω such that ∀γ ∈ Fβ[γ =

δφ(γ)]. Define ψ : Fβ → ωω such that ∀γ ∈ Fβ[ψ|γ = 1φ(γ) ∗ 0] and note that
ψ : Fβ ↣ FIN .

Conversely, assume that Spr(β) and Fβ embeds into FIN . Find φ such that
φ : Fβ ↣ FIN . Note that FIN is discrete, ie for all δ0, δ1 in FIN , either δ0 = δ1

or δ0 # δ1 . Conclude that for all γ0, γ1 in Fβ , either φ|γ0 = φ|γ1 or φ|γ0 # φ|γ1 , and,
therefore, either γ0 = γ1 or γ0 # γ1 , ie Fβ is discrete. Using Theorem 6.1(i), conclude
that Fβ is a countable spread.

(ii) Assume that Spr(β) and Fβ is an inhabited almost-countable spread. Using Lemma
6.4, find δ in (Fβ)ω such that Fβ = ALMOST ∗(Enδ).

We first prove the following observation: for all s such that β(s) = 0 there exists n
such that s ⊏ δn . Let s be given such that β(s) = 0. Find γ in Fβ such that s ⊏ γ .
Then find n such that γlength(s) ⊏ δn and conclude that s ⊏ δn .
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Now define φ : Fβ → ωω such that, for all γ in Fβ , for all n, if µp[γn ⊏ δp] <
µp[γ(n + 1) ⊏ δp]], then (φ|γ)(n) = µp[γ(n + 1) ⊏ δp]; and, if µp[γn ⊏ δp] =

µp[γ(n + 1) ⊏ δp]], then (φ|γ)(n) = 0. We prove that φ is a strongly injective
function from Fβ into ωω . Let γ0, γ1 in Fβ be given such that γ0 # γ1 . Find n
such that γ0n ̸= γ1n. Note that µp[γ0n ⊏ δp] ̸= µp[γ1n ⊏ δp]. Conclude that
∃i ≤ n[(φ|γ0)(i) ̸= (φ|γ1)(i)] and φ|γ0 # φ|γ1 .

We prove that φ maps Fβ into ALMOST ∗FIN . Let γ in Fβ be given and consider
φ|γ . Let ζ in [ω]ω be given. Find n such that γ

(
ζ(n) + 1

)
⊏ δn . Assume that

∀i ≤ n[(φ|γ)
(
ζ(i)

)
≠ 0]. Conclude that ∀i < n[0 < (φ|γ)

(
ζ(i)

)
< (φ|γ)

(
ζ(i + 1)

)
],

and (φ|γ)(ζ(n)
)
≥ n + 1. Conclude that µp[γ

(
ζ(n) + 1

)
⊏ δp] ≥ n + 1 and also that

γ
(
ζ(n) + 1

)
⊏ δn . This is a contradiction. Conclude that ∃i ≤ n[(φ|γ)

(
ζ(i)

)
= 0].

Clearly, ∀ζ ∈ [ω]ω∃i[(φ|γ)
(
ζ(i)

)
= 0], ie φ|γ ∈ ALMOST ∗FIN .

For the converse of Theorem 6.6(ii), see Corollary 6.14.

6.3 Cantor–Bendixson sets

Definition 28 Let ε, β be given. We define ν = CB(ε, β) in 2ω as follows. For each
s, ν(s) = 0 if and only if either s ⊏ ε or there exist m, n, t such that s = εm ∗ ⟨n⟩ ∗ t
and ε(m) ̸= n and βJ(m,n)(t) = 0.

Lemma 6.7 Let ε, β be given.

(i) If, for all n, Spr(βn), then Spr
(
CB(ε, β)

)
.

(ii) If, for all n, βn∈ALMOST ∗COUNT , then CB(ε, β)∈ALMOST ∗COUNT .

Proof (i) The proof is straightforward and left to the reader. If, for all n, Spr(βn), and
ν = CB(ε, β), we call ε the spine of the spread Fν .

(ii) Assume that for all n, βn ∈ ALMOST ∗COUNT . Using the Second Axiom
of Countable Choice AC0,1 , see Section 1.1.3, find δ such that, for all n, Fβn ⊆
ALMOST ∗(Enδn). Define η such that η0 = ε and, for all m, n, p, if ε(m) ̸= n, then
ηJ(J(m,n),p)+1 = εm ∗ ⟨n⟩ ∗ δJ(m,n),p .

Define ν := CB(ε, β). We prove that Fν is a subset of ALMOST ∗(Enη). Assume
that γ ∈ Fν . Let α be given. We want to prove: ∃n[γα(n) ⊏ ηn]. If γα(0) ⊏ ηo = ε,
we are done. Now assume that γα(0) ⊥ η0 = ε. Define m := µp[γ(p) ̸= ε(p)]
and n := γ(m). Define k := J(m, n) and s := εm ∗ ⟨n⟩. Note that s ⊏ γ and find
µ such that γ = s ∗ µ. Note that µ ∈ Fβk . Find p such that µ

(
α(J(k, p) + 1)

)
⊏
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δk,p . Conclude that γα
(
J(k, p) + 1

)
⊏ s ∗ µα(

(
J(k, p) + 1

)
⊏ s ∗ δk,p = ηJ(k,p)+1 .

Conclude that ∀α∃n[γα(n) ⊏ ηn], ie γ ∈ ALMOST ∗(Enη). We thus see that
Fν ⊆ ALMOST ∗(Enη) and ν = CB(ε, β) ∈ ALMOST ∗COUNT .

Definition 29 We introduce a subset CB of ωω by means of the following inductive
definition.

(i) For all β , if Spr(β) and β(0) ̸= 0 (so Fβ = ∅) then β ∈ CB .
(ii) For all ε, for all β , if, for all n, βn ∈ CB , then CB(ε, β) ∈ CB .

(iii) All members of CB are given by (i), (ii).

The following theorem may be compared to Cantor’s result [8, Theorem C] in [9, page
220], and to a related intuitionistic result: Veldman [38, Theorems 9.1 and 9.2].

Theorem 6.8 ALMOST ∗COUNT = CB .

Proof Using Lemma 6.7 and induction, we conclude that CB⊆ALMOST ∗COUNT .

We now prove that ALMOST ∗COUNT is a subset of CB .

Let β in ALMOST ∗COUNT be given. One may assume that β(0) = 0. Using
Lemma 6.4, find δ in (Fβ)ω such that Fβ ⊆ ALMOST ∗(Enδ). Now define β+

in 2ω such that, for all c, β+(c) = 0 if and only if ∀i < length(c)[β
(
c(i)

)
=

0] ∧
(
i + 1 < length(c) → c(i) ⊏ c(i + 1)

)
]. Note that Spr(β+). Define B := {c |

∃i < length(c)[c(i) ⊏ δi]}. We now prove: B is a bar in Fβ+ . Let γ in Fβ+ be given.
Find ζ in Fβ such that ∀n[γ(n) ⊏ ζ]. Find α such that ∀n[γ(n) = ζα(n)]. Find n
such that ζα(n) ⊏ δn and, therefore: γ(n) ⊏ δn and γ(n + 1) ∈ B. We thus see that
BarFβ+

(B). We define: ˜⟨ ⟩ = ⟨ ⟩, and, for each n > 0, for each c in ωn , c̃ := c(n − 1).
Define C :=

⋃
n{c ∈ ωn | β+(c) = 0 ∧

(
∀i < n[c(i) ⊥ δi] → c̃β ∈ CB]

)
}. Note that

B ⊆ C and C is monotone in {s | β+(s) = 0}. Let c, n be given such that c ∈ ωn and
β+(c) = 0 and ∀t[β+(c ∗ ⟨t⟩) = 0 → c ∗ ⟨t⟩ ∈ C]. Assume that ∀i < n[c(i) ⊥ δi].
Note that for all t , if c̃ ⊏ t and β(t) = 0 and t ⊥ δn , then c ∗ ⟨t⟩ ∈ C and tβ ∈ CB .
Find ε such that c̃ ∗ ε ∈ Fβ , and, if c̃ ⊏ δn , then δn = c̃ ∗ ε. Define ν := c̃β and note
that ε ∈ Fν and, for all s, if ν(s) = 0 and ε ⊥ s, then sν ∈ CB . In particular, for all
m, n, s, if s = εm ∗ ⟨n⟩ and ε(m) ̸= n, then sν ∈ CB . Conclude that ν = c̃β ∈ CB ,
and c ∈ C . We thus see that C is inductive in {s | β+(s) = 0}. Using the Principle of
Bar Induction BI, see Section 1.1.9, we conclude that ⟨ ⟩ ∈ C , ie β ∈ CB .

We thus see that ALMOST ∗COUNT ⊆ CB .
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6.4 Reducible spreads

Definition 30 For each σ in ST P , we define the collection REDσ of codes of
σ–reducible spreads, as follows, by induction.

(i) RED1∗ = RED1 := {1}.
(ii) For every σ ̸= 1∗ in ST P , REDσ is the set of all β in 2ω such that Spr(β) and,

for some ε in Fβ :

∀m∀n
[(
ε(n) ̸= m ∧ β(εn ∗ ⟨m⟩) = 0

)
→ ∃p[εn∗⟨m⟩β ∈ REDσp]

]
We also define RED :=

⋃
σ∈ST P REDσ .

If β ∈ REDσ , then Fβ is called a σ–reducible spread. If β ∈ RED , then Fβ is called
a reducible spread.

The notion of a reducible spread goes back to Cantor. We here introduce this notion
without bringing up the operation of taking the derivative of a given X ⊆ ωω . Cantor
defined a closed set to be reducible if one, by repeating the operation of taking the
derivative, if needed transfinitely many times, ends up with the empty set.

Note that, for all σ in ST P , for all β such that Spr(β), Fβ is σ–reducible if and only
if s ∗ Fβ is σ–reducible. Also note that, for all β0, β1 such that ∀i < 2[Spr(βi)] and
Fβ0 ⊆ Fβ1 , for all σ in ST P , if Fβ1 is σ–reducible, then Fβ0 is σ–reducible.

Theorem 6.9 CB = RED .

Proof We first prove that CB ⊆ RED , using induction on CB .

(1) For all β , if Spr(β) and β(0) ̸= 0, then Fβ = ∅ and β ∈ RED1∗ .

(2) Let β, ε be given such that Spr(β) and ε ∈ Fβ and ∀n∃σ ∈ ST P[βn ∈ REDσ].
Using AC0,1 , find τ in ST P such that τ (0) = 0 and ∀n[βn ∈ REDτ n]. Conclude that
CB(ε, β) ∈ REDτ .

(3) Using induction on CB , conclude that CB ⊆
⋃
σ∈ST P REDσ .

We now prove that RED ⊆ CB , using induction on ST P .

(1) For all σ in ST P , for all β , if σ(0) ̸= 0 and β ∈ REDσ , then Fβ = ∅ and
β ∈ CB .

(2) Let σ in ST P be given such that σ(0) = 0 and ∀n[REDσn ⊆ CB].

Let β in REDσ be given. Find ε in Fβ such that ∀s[(β(s) = 0 ∧ s ⊥ ε) → ∃n[sβ ∈
REDσn]]. Conclude ∀s[(β(s) = 0 ∧ s ⊥ ε) → sβ ∈ CB], and β ∈ CB . Define γ
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such that, for all m, n, if ε(m) ̸= n, then γJ(m,n) = εm∗⟨n⟩β and, if ε(m) = n, then
γJ(m,n) = 1. Note that for all n, γn ∈ CB and β = CB(ε, γ) ∈ CB .

We thus see that REDσ ⊆ CB .

(3) Using induction on ST P , we conclude that ∀σ ∈ ST P[REDσ ⊆ CB].

6.5 Perhapsσ–countable spread

In this section we will see that there are many notions of countability for spreads
in between the notion of a countable spread, see Section 6.1, and the notion of an
almost-countable spread, see Section 6.2.

Definition 31 For each inhabited X ⊆ ωω , for each σ in ST P , we define P(σ,X ) ⊆
ωω , the σ–th perhapsive extension of X , as follows, by induction. For every σ in
ST P ,

(i) if σ(0) ̸= 0 then P(σ,X ) = X ; and
(ii) if σ(0) = 0, then P(σ,X ) = {α | ∃β ∈ X [α # β → ∃n[α ∈ P(σn,X )]]}.

In Veldman [36, Theorem 3.19], one may find the straightforward proof that, for all
inhabited X ,Y ⊆ ωω , for all σ, τ in ST P , if X ⊆ Y and σ ≤ τ , then P(σ,X ) ⊆
P(τ,Y).

Definition 32 Let β, σ be given such that Spr(β) and σ ∈ ST P . The spread Fβ is
called perhapsσ–countable if and only if ∃δ[Fβ ⊆ P(σ,Enδ)].

The proof of the third item of the next theorem, Theorem 6.10, resembles the proof of
‘ALMOST ∗COUNT ⊆ CB ’; see Theorem 6.8.

Theorem 6.10

(i) ∀δ[ALMOST ∗(Enδ) =
⋃
σ∈ST P P(σ,Enδ)]]

(ii) ALMOST ∗FIN =
⋃
σ∈ST P P(σ,FIN )

(iii) For all β, δ, φ, if Spr(β) and φ : Fβ → ALMOST ∗(Enδ), then ∃σ ∈
ST P[φ : Fβ → P(σ,Enδ)]

(iv) For all β, φ, if Spr(β) and φ : Fβ → ALMOST ∗(FIN ), then ∃σ ∈
ST P[φ : Fβ → P(σ,FIN )]

(v) ∀β ∈ CB∃σ ∈ ST P∃φ[φ : Fβ ↣ P(σ,FIN )]
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Proof (i) Let δ be given. We first prove
⋃
σ∈ST P P(σ,Enδ) ⊆ ALMOST ∗(Enδ),

using induction on ST P . First note that P(1∗,Enδ) = Enδ ⊆ ALMOST ∗(Enδ). Now
let σ in ST P be given such that σ ̸= 1∗ and ∀n[P(σn,Enδ) ⊆ ALMOST ∗(Enδ)].
Assume that γ ∈ P(σ,Enδ). Find n such that γ # δn → ∃m[γ ∈ P(σm,Enδ)]. Let α
be given and distinguish two cases. Case (a): γα(n) ⊏ δn . Case (b): γα(n) ⊥ δn .
Find m such that γ ∈ P(σm,Enδ). Conclude that γ ∈ ALMOST ∗(Enδ) and
∃p[γα(p) ⊏ δp]. We thus see, in both cases, that ∃p[γα(p) ⊏ δp]. Conclude that
∀γ ∈ P(σ,Enδ)∀α∃p[γαp ⊏ δp], ie P(σ,Enδ) ⊆ ALMOST ∗(Enδ). Using induction
on ST P , conclude that

⋃
σ∈ST P P(σ,Enδ) ⊆ ALMOST ∗(Enδ).

We now prove: ALMOST ∗(Enδ) ⊆
⋃
σ∈ST P P(σ,Enδ). Let γ in ALMOST ∗(Enδ)

be given. Define B :=
⋃

p{a ∈ ωp | ∃i < p[γa(i) ⊏ δi]} and note that B is a bar in ωω.
Define C :=

⋃
p{a ∈ ωp | ∀i < p[γa(i) ⊥ δi] → ∃σ ∈ ST P[γ ∈ P(σ,Enδ)]}. Note

that B ⊆ C and C is monotone. We now prove that C is inductive. Let a be given such
that ∀n[a ∗ ⟨n⟩ ∈ C]. Define p := length(a). Assume ∀i < p[γa(i) ⊥ δi]. Using the
Second Axiom of Countable Choice AC0,1 , see Section 1.1.3, find τ in ST P such that
∀b[γb ⊥ δp → γ ∈ P(τ b,Enδ)]. Conclude that if γ ⊥ δp , then ∃b[γ ∈ P(τ b,Enδ)], ie
γ ∈ P(τ,Enδ). We thus see that if ∀i < length(a)[γa(i) ⊥ δi], then ∃τ [γ ∈ P(τ,Enδ)],
ie a ∈ C . Conclude that C is inductive. Using the Principle of Bar Induction BI (see
Section 1.1.9) we find that ⟨ ⟩ ∈ C , ie ∃τ [γ ∈ P(τ,Enδ)].

We thus see that ALMOST ∗(Enδ) ⊆
⋃
σ∈ST P P(σ,Enδ).

(ii) This follows from (i) and Lemma 6.3.

(iii) Let β, δ, φ be given such that Spr(β) and φ : Fβ → ALMOST (Enδ). Note
that ∀γ ∈ Fβ∀α∃n[φ|γα(n) ⊏ δn]. Define β+ such that, for each c, β+(c) = 0 if
and only if ∀i[i + 1 < length(c) → c(i) ⊏ c(i + 1)] and ∀i < length(c)[β(cI(i)) =

0 ∧ length
(
φ|cI(i)) ≥ cII(i)])]. Note that Spr(β+). Define B :=

⋃
p{c ∈ ωp | ∃i <

p[φ|cI(i)cII(i) ⊏ δi]}. We now prove that B is a bar in Fβ+ . Let γ in Fβ+ be given.
Find ζ in Fβ such that ∀n[γI(n) ⊏ ζ]. Find n such that ζγII(n) ⊏ δn and, therefore:
γ(n + 1) ∈ B. Conclude that BarFβ+

(B).

For each c such that β+(c) = 0 we define c̃ as follows. 0̃ = 0 and, for each c, for all n,
if n = length(c) > 0, then c̃ := cI(n− 1). Let C be the set of all c such that β+(c) = 0
and, if ∀i < length(c)[φ|cI(i)cII(i) ⊥ δi], then ∃σ ∈ ST P[φ : Fβ ∩ c̃ → P(σ,Enδ)].
Note that B ⊆ C and C is monotone in {s | β+(s) = 0}. We now prove that C is
inductive in {s | β+(s) = 0}. Let c be given such that β+(c) = 0 and ∀t[β+(c ∗ ⟨t⟩) =
0 → c ∗ ⟨t⟩ ∈ C]. Find n := length(c). Assume that ∀i < n[φ|cI(i)cII(i) ⊥ δi].
Note that ∀t[(β+(c ∗ ⟨t⟩) = 0 ∧ φ|tItII(n) ⊥ δn) → ∃σ ∈ ST P[φ : Fβ ∩ tI(n) →
P(σ,Enδ)]]. Using the Second Axiom of Countable Choice AC0,1 , see Section 1.1.3,
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find τ in ST P such that, for all t , if β+(c ∗ ⟨t⟩) = 0 and φ|tItII(n) ⊥ δn , then
φ : Fβ ∩ tI(n) → P(τ t,Enδ). Clearly, ∀γ ∈ Fβ ∩ c̃[φ|γ # δn → ∃t[φ|γ ∈ P(τ t,Enδ)]]
and φ : Fβ ∩ c̃ → P(τ,Enδ). We thus see that C is inductive in {s | β+(s) = 0}.

Using the Principle of Bar Induction BI (see Section 1.1.9) we conclude that ⟨ ⟩ ∈ C ,
ie ∃σ ∈ ST P[φ : Fβ → P(σ,Enδ)].

(iv) This is an immediate consequence of (iii), as ∃δ[FIN = Enδ].

(v) This follows from (iii) and Theorem 6.6(ii).

6.6 Special and very special Cantor–Bendixson sets

Definition 33 We define a function σ 7→ cbσ from ST P to ωω , as follows.

(i) cb1∗ = 1
(ii) For all σ ̸= 1∗ in ST P , cbσ satisfies ∀m[cbσ(0m) = 0] and ∀m∀n∀s[cbσ(0m ∗

⟨n + 1⟩ ∗ s) = cbσn(s)].

Note that if σ ̸= 1∗ , then cbσ = CB(0, β), where, for all m, n, βJ(m,n+1) = cbσn .

We also define a function σ 7→ cb♢σ from ST P to ωω , as follows.

(i) cb♢1∗ = 1
(ii) For all σ ̸= 1∗ in ST P , cb♢σ satisfies ∀m[cb♢σ(0m) = 0], ∀m∀s[cb♢σ(0m ∗ ⟨1⟩ ∗

s) = cb♢
σL(m)(s)] and ∀m∀n∀s[cb♢σ(0m ∗ ⟨n + 2⟩ ∗ s) = 1].

Note that if σ ̸= 1∗ , then cb♢σ = CB(0, β), where, for all m, βJ(m,1) = cb♢
σL(m) and, for

all m, n, βJ(m,n+2) = 1.

Note that for each σ in ST P , cbσ is a spread-law and cb♢σ is a fan-law and F♢
cbσ ⊆ 2ω .

Note that for each σ in ST P , for each n, Fcbσ embeds into Fcbσ ∩ 0n, and Fcb♢σ
embeds into F♢

cbσ ∩ 0n.

The sets Fcbσ , where σ ∈ ST P , are called special Cantor–Bendixson sets. The sets
F♢

cbσ , where σ ∈ ST P , are called very special Cantor–Bendixson sets. The latter sets
occur in Veldman [33] and [36].

Lemma 6.11

(i) For all σ in ST P , Fcbσ and Fcb♢σ
are subsets of ALMOST ∗FIN .

(ii) For all σ in ST P , Fcbσ embeds into Fcb♢σ
.
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Proof We use induction on ST P . Note that Fcb1∗ = Fcb♢1∗
= ∅ ⊆ ALMOST ∗FIN .

Let σ ̸= 1∗ be given such that, for each n, Fcbσn and Fcb♢
σn

are subsets of
ALMOST ∗FIN . Note that, for each α in Fcbσ , if α # 0, then there ex-
ist m, n, β such that α = 0m ∗ ⟨n + 1⟩ ∗ β , β ∈ ALMOST ∗FIN , and α ∈
ALMOST ∗FIN . Conclude that Fcbσ ⊆ ALMOST ∗FIN . For similar reasons,
Fcb♢σ

⊆ ALMOST ∗FIN .

(ii) We use induction on ST P . First note that Fcb1∗ = Fcb♢1∗
= ∅; so, for σ = 1∗

the statement is trivial. Let σ ̸= 1∗ in ST P be given such that, for all n, Fcbσn

embeds into Fcb♢
σn

. Using AC0,1 , find φ such that, for all n, φn embeds Fcbσn into
Fcb♢

σn
. Define ψ : Fcbσ → ωω such that ψ|0 = 0 and for all m, n, for all α in Fcbσn ,

ψ|0m ∗ ⟨n + 1⟩ ∗ α = 0J(n,m) ∗ ⟨1⟩ ∗ φn|α . Then ψ embeds Fcbσ into Fcb♢σ
.

The proof of the following lemma does not use the Fan Theorem.

Lemma 6.12 (The Fan Theorem for very special Cantor–Bendixson sets) For every
σ in ST P , for every B ⊆ ω , every bar in Fcb♢σ

has a finite subbar.

Proof We use induction on ST P . Assume σ ∈ ST P . If σ = 1∗ , there is nothing
to prove. So assume σ ̸= 1∗ and, for each n, every bar in Fcb♢

σn
has a finite subbar.

Now assume B ⊆ ω is a bar in Fcb♢σ
. Find n such that 0n ∈ B. Using the induction

hypothesis, find finite subsets B0,B1, . . . ,Bn−1 of B such that, for each i < n, Bi is bar
in Fcb♢σ

∩ 0i ∗ ⟨1⟩. Note that the finite set {0n} ∪
⋃

i<n Bi is bar in Fcbσ .

The next theorem shows that every Cantor–Bendixson set is, in a certain sense,
equinumerous to a special Cantor–Bendixson set.

Theorem 6.13 For every Cantor–Bendixson set F there exists a special Cantor–
Bendixson set H such that H maps onto F and F embeds into H:

∀β ∈ CB∃σ ∈ ST P
[
∃φ[φ : Fcbσ ↠ Fβ] ∧ ∃ψ[ψ : Fβ ↣ Fcbσ ]

]
Proof We use induction on CB . If β(0) ̸= 0, so Fβ = ∅, one may take σ = 1∗ ,
as also Fcbσ = ∅. Now let β, ε be given such that Spr(β) and ε ∈ Fβ and, for all
m, n, s, if ε(n) ̸= m and s = εn ∗ ⟨m⟩, then there exist σ in ST P such that Fcbσ maps
onto Fsβ and Fsβ embeds into Fcbσ . Using the Second Axiom of Countable Choice
AC0,1 , see Section 1.1.3, find τ, φ, ψ such that 1∗ ̸= τ ∈ ST P and, for all m, n, s, if
ε(m) ̸= n and s = εm ∗ ⟨n⟩, then φs : Fcbτs ↠ Fsβ and ψs : Fsβ ↣ Fcbτs . Define
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C := {s | β(s) = 0 ∧ ∃m∃n[s = εm ∗ ⟨n⟩ ∧ ε(m) ̸= n]}. Define ρ : Fcbτ → ωω such
that ρ|0 = ε and, for all s, if s ∈ C , then, for all γ in Fcbτs , ρ|(0s∗⟨s+1⟩∗γ) = s∗φs|γ
and, for each δ in Fcbτ , if there is no s in C such that 0s ∗ ⟨s + 1⟩ ⊏ δ , then ρ|δ = ε.
Clearly, ρ maps Fcbτ onto Fβ . Define χ : Fβ → ωω such that χ|ε = 0 and, for all
s in C , for all γ ∈ Fsβ , χ|(s ∗ γ) = 0s ∗ ⟨s + 1⟩ ∗ ψs|γ . Clearly, χ embeds Fβ into
Fcbτ .

The following corollary proves the converse of Theorem 6.6(ii).

Corollary 6.14 Every almost-countable spread embeds into ALMOST ∗FIN .

Proof Use Theorem 6.13 and Lemma 6.11(i).

The next result, Theorem 6.15, gives a refinement of Theorem 6.13: every finitary
Cantor–Bendixson set is, what one might call, equinumerous to a very special Cantor–
Bendixson set.

Theorem 6.15 For every Cantor–Bendixson set F that is a fan there exists a very
special Cantor–Bendixson set H such that H maps onto F and F embeds into H:

∀β ∈ CB
[
Fan(β) → ∃σ ∈ ST P[∃φ[φ : Fcb♢σ

↠ Fβ] ∧ ∃ψ[ψ : Fβ ↣ Fcb♢σ
]
]

Proof We use induction on CB . If β(0) ̸= 0, take σ = 1∗ , and note that Fβ =

Fcb1∗ = ∅. Now let β, ε be given such that Fan(β) and ε ∈ Fβ and for all m, n, s, if
ε(m) ̸= n and s = εm ∗ ⟨n⟩, then there exist σ in ST P such that F♢

cbσ maps onto Fsβ

and Fsβ embeds into F♢
cbσ .

Using the Second Axiom of Countable Choice AC0,1 , see Section 1.1.3, find τ, φ, ψ
such that 1∗ ̸= τ ∈ ST P and, for all m, n, s, if ε(m) ̸= n and s = εm ∗ ⟨n⟩, then
φs : Fcbτs ↠ F♢

sβ and ψs : Fsβ ↣ F♢
cbτs . Define C := {s | β(s) = 0 ∧ ∃m∃n[s =

εm ∗ ⟨n⟩ ∧ ε(m) ̸= n]}. Note that Fan(β), and thus: ∀m∃p∀s ≥ p[s ∈ C →
length(s) ≥ m]. Using the First Axiom of Countable Choice AC0,0 , see Section 1.1.3,
find ζ such that ∀m∀s ≥ ζ(m)[s ∈ C → length(s) ≥ m]. Define ρ : F♢

cbτ → ωω such
that ρ|0 = ε and, for all s in C , for all γ ∈ F♢

cbτn , ρ|(0J(s, 0) ∗ ⟨1⟩ ∗ γ) = s ∗ φs|γ
and, for all δ in Fcbτ , if there is no s in C such that 0J(s, 0) ∗ ⟨1⟩ ⊏ δ , then ρ|δ = ε.
Note that ρ is well-defined and ∀m∀γ ∈ Fcbτ [0J

(
ζ(m), 0

)
⊏ γ → εm ⊏ ρ|γ]. Clearly,

ρ : Fcbτ ↠ Fβ .

Define χ : Fβ → ωω such that χ|ε = 0 and, for all s in C , for all γ in Fsβ ,
χ|(s ∗ γ) = 0J(s, 0) ∗ ⟨1⟩ ∗ ψs|γ . Clearly, χ : Fβ ↣ Fcbτ .

Journal of Logic & Analysis 14:5 (2022)



74 Wim Veldman

Corollary 6.16 Let β be given such that Spr(β).

Fβ is almost-countable if and only if ∃σ ∈ ST P∃φ[φ : Fcbσ ↠ Fβ].

Proof Use Theorems 6.8 and 6.13 and Lemma 6.5.

The second item of the following Theorem seems to be of some interest in itself. It is
an extension of Theorem 2.7(iii).

Theorem 6.17
(i) For all β , if ∀i < 2[Spr(βi)] and ∃φ[φ : Fβ0 ↠ Fβ1], then ∃ψ[ψ : Fβ1 ↣

Fβ0].
(ii) For all β , if Spr(β0) and Fan(β1) and ∃ψ[ψ : Fβ1 ↣ Fβ0], then ∃φ[φ : Fβ0 ↠

Fβ1].

Proof (i) Let β, φ be given such that φ : Fβ0 ↠ Fβ1 , and, therefore ∀γ ∈ Fβ1∃α ∈
Fβ0[φ|α = γ]. Using the Second Axiom of Continuous Choice AC1,1 , see Section 1.1.6,
find ψ : Fβ1 → Fβ0 such that ∀γ ∈ Fβ1[φ|(ψ|γ) = γ]. We prove that ψ is strongly
injective. Let γ, δ in Fβ1 be given such that γ # δ . Find n such that γn ⊥ δ . Find
m such that ∀α ∈ Fβ0[ψ|γm = αm → φ|(ψ|γ)n = φ|αn]. Consider α := ψ|δ and
conclude that ψ|γm ̸= ψ|δm. We thus see that ∀γ ∈ Fβ1∀δ ∈ Fβ1[γ # δ → ψ|γ # ψ|δ],
ie ψ : Fβ1 ↣ Fβ0 .

(ii) Let β, ψ be given such that Spr(β0) and Fan(β1) and ψ : Fβ1 ↣ Fβ0 .

We first define δ such that ∀s[δ(s) = 0 ↔ ∃α ∈ Fβ1[s ⊏ ψ|α]]. Let s be given. Note
∀α ∈ Fβ1∃m[s ⊏ ψ|αm ∨ s ⊥ ψ|αm]. Using the Fan Theorem FT, see Section 1.1.7,
find m such that ∀α ∈ Fβ1[s ⊏ ψ|αm ∨ s ⊥ ψ|αm], ie ∀t ∈ ωm[β1(t) = 0 → s ⊏
ψ|t ∨ s ⊥ ψ|t]. Define δ(s) := 0 if ∃t ∈ ωm[β1(t) = 0 ∧ s ⊏ ψ|t] and δ(s) := 1 if
∀t ∈ ωm[β1(t) = 0 → s ⊥ ψ|t]. Conclude that ∀s[δ(s) = 0 ↔ ∃α ∈ Fβ1[s ⊏ ψ|α]].
Note that Spr(δ). Also note, using FT again: for each m, the set {ψ|αm | α ∈ Fβ1} is
finite. Conclude that Fan(δ).

We now construct τ : Fδ → Fβ1 such that ∀ε ∈ Fδ[ψ|(τ |ε) = ε]. Let ε in Fδ
be given. We claim that for all s, t if β1(s) = β1(t) = 0 and s ⊥ t , then there
exists n such that either ∀α ∈ Fβ1 ∩ s[ψ|αn ⊥ εn] or ∀α ∈ Fβ1 ∩ t[ψ|αn ⊥ εn].
We prove this claim as follows. Let s, t be given such that β1(s) = β1(t) = 0
and s ⊥ t . Note that ∀α ∈ Fβ1 ∩ s∀γ ∈ Fβ1 ∩ t[ψ|α ⊥ ψ|γ]. Conclude that
∀α ∈ Fβ1 ∩ s∀γ ∈ Fβ1 ∩ t∃n[ψ|αn ⊥ εn ∨ ψ|γn ⊥ εn]. Using the Fan Theorem
FT, find n such that n ≥ length(s) and n ≥ length(t) and ∀α ∈ Fβ1 ∩ s∀γ ∈
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Fβ1 ∩ t[ψ|αn ⊥ εn ∨ ψ|γn ⊥ εn]. Define A := {u ∈ ωn | β1(u) = 0 ∧ s ⊑ u} and
B := {u ∈ ωn | β1(u) = 0 ∧ t ⊑ u}. Note that ∀u ∈ A∀v ∈ B[ψ|u ⊥ εn ∨ ψ|v ⊥ εn].
Note that A,B are finite sets. Conclude, using Lemma 2.6, either ∀u ∈ A[ψ|u ⊥ εn] or
∀v ∈ B[ψ|v ⊥ εn], ie either ∀α ∈ Fβ1 ∩ s[ψ|αn ⊥ εn] or ∀α ∈ Fβ1 ∩ t[ψ|αn ⊥ εn].

Using the above fact repeatedly and keeping in mind that {k | β1(⟨k⟩) = 0} is a finite
set, conclude that ∃k∃n[β1(⟨k⟩) = 0 ∧ ∀α ∈ Fβ1[α(0) ̸= k → ψ|αn ⊥ εn]].

We now define the promised τ , inductively, first specifying τ 0 , then τ 1 , and so on. We
start with τ 0 . Let s be given and define n := length(s). Find out if there exists k such
that β1(⟨k⟩) = 0 and ∀j[

(
j ̸= k ∧ β1(a ∗ ⟨j⟩) = 0

)
→ ∀α ∈ Fβ1 ∩ a ∗ ⟨j⟩[ψ|αn ⊥ s]].

If so, find such k and define τm+1(s) = k + 1, and, if not, define τm+1(s) = 0.
Assume that m > 0 is given and τ 0, τ 1, . . . τm−1 have been defined. We define τm as
follows. Let s be given. If δ(s) ̸= 0 or ∃i < m¬∃j < length(s)[τ i(sj) > 0], define
τm+1(s) = 0. Assume δ(s) = 0 and ∀i < m∃j < length(s)[τ i(sj) > 0]. Find a such
that length(a) = m and ∀i < m∃j < length(s)[τ i(sj) = a(i) + 1]. (One might say that
a := τ |sm, although this is a little previous, as τ is still under construction.) Note
that {k | β1(a ∗ ⟨k⟩) = 0} is a finite set. Define n := length(s). Again using the
claim we proved a moment ago, find out if there exists k such that β1(a ∗ ⟨k⟩) = 0
and ∀j[

(
j ̸= k ∧ β1(a ∗ ⟨j⟩) = 0

)
→ ∀α ∈ Fβ1 ∩ a ∗ ⟨j⟩[ψ|αn ⊥ s]]. If so, find such

k and define τm+1(s) = k + 1; if not, define τm+1(s) = 0. Note that τ : Fδ → ωω

and ∀ε ∈ Fδ[τ |ε ∈ Fβ1 ∧ ∀α ∈ Fβ1[α ⊥ (τ |ε) → ψ|α ⊥ ε]]. In particular:
∀α ∈ Fβ1[α ⊥

(
τ |(ψ|α)

)
→ ψ|α ⊥ ψ|α]. Conclude that ∀α ∈ Fβ1[τ |(ψ|α) = α]

and τ : Fδ ↠ Fβ1 .

Assume that ε ∈ Fδ and ψ|(τ |ε) ⊥ ε. Find m such that ψ|(τ |εm) ⊥ ε. Note
that ∀α ∈ Fβ1[(τ |εm) ⊏ α → ψ|α ⊥ ε]. Conclude ∀α ∈ Fβ1[ψ|α ⊥ ε] and
∀α ∈ Fβ1∃n[ψ|αn ⊥ εn]. Using FT again, find n such that ∀α ∈ Fβ1[ψ|αn ⊥ εn],
and we have to conclude that δ(εn) ̸= 0 and ε /∈ Fδ , a contradiction. Conclude that
∀ε ∈ Fδ[ψ|(τ |ε) = ε].

Let ρ : ωω → Fδ be the canonical retraction of ωω onto Fδ . Define φ : Fβ0 → Fβ1

such that ∀γ ∈ Fβ0[φ|γ = τ |(ρ|γ)]. Note that ∀α ∈ Fβ1[φ|(ψ|α) = α] and
φ : Fβ0 ↠ Fβ1 .

Corollary 6.18 Let β be given such that Fan(β). Fβ is almost-countable if and only
if ∃σ ∈ ST P∃φ[φ : Fβ ↣ Fcbσ ].

Proof Every almost-countable spread Fβ embeds into some Fcbσ , see Theorem 6.13.
Conversely, if Fan(β) and Fβ embeds into some Fcbσ , then, according to Theorem
6.17, ∃ψ[ψ : Fcbσ ↠ Fβ], and, according to Lemma 6.5, Fβ is almost-countable.
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6.6.1 A comment

G. Ronzitti, on page 63 of her Ph.D. dissertation [24] and in the last definition
of her paper [25], suggested22 to call a spread Fβ countable if and only if ∃σ ∈
ST P∃φ[φ : Fcb♢σ

↠ Fβ]. Unfortunately, following this suggestion, one would have
to call the set {n | n ∈ ω} a not-countable set. Corollary 6.16 shows the suggestion
makes sense if one uses the non-compact Cantor–Bendixson sets given by the function
σ 7→ cbσ . The suggestion is also a good suggestion if one restricts oneself to fans,
rather than spreads, see Theorem 6.15 and Lemma 6.5.

6.7 The Cantor–Bendixson Hierarchy

Lemma 6.19 For all σ in ST P , for all δ , if Fcbσ embeds into Enδ , then σ ≤ S∗(1∗).

Proof Let σ, δ be given such that σ ∈ ST P and Fcbσ embeds into Enδ . Then,
according to Theorem 6.1(i), ∀γ0 ∈ Fcbσ∀γ1 ∈ Fcbσ [γ0 = γ1 ∨ γ0 # γ1]. Using
BCP, find m such that ∀γ ∈ Fcbσ [0m ⊏ γ → 0 = γ]. Conclude that ∀n[Fcbσn = ∅]
and ∀n[σn ≤ 1∗] and σ ≤ S∗(1∗).

Theorem 6.20 (The Cantor–Bendixson Hierarchy Theorem)

(i) For all σ, τ in ST P , if Fcbσ is τ –reducible, ie cbσ ∈ REDτ ,23 then σ ≤ τ .
(ii) For all σ, τ in ST P , for all δ , if Fcbσ embeds into P(τ,Enδ), then σ ≤ S∗(τ ).

(iii) For all σ, τ in ST P , if Fcbσ embeds into P(τ,FIN ), then σ ≤ S∗(τ ).
(iv) For all σ, τ in ST P , for all δ in (Fcbσ )ω , if Fcbσ ⊆ P(τ,Enδ), then σ ≤ S∗(τ ).

Proof (i) We use induction on ST P . First, note that, for each σ in ST P , Fcbσ is
1∗–reducible if and only if Fcbσ = ∅ if and only if σ = 1∗ if and only if σ ≤ 1∗ . Next,
assume that we are given τ ̸= 1∗ in ST P such that, for each n, for each σ in ST P , if
Fcbσ is τ n –reducible, then σ ≤ τ n .

Assume that we are given σ such that Fcbσ is τ –reducible. Find ε in Fcbσ , such that
for all m, n, if ε(m) ̸= n and β(εm ∗ ⟨n⟩) = 0, then, for some p, FcbΣ ∩ εm ∗ ⟨n⟩ is
τ p –reducible. Let p be given. Consider s := ⟨p + 1⟩ and t := ⟨0, p + 1⟩ and note that
either s ⊥ ε or t ⊥ ε. Find m such that either Fcbσ ∩ ⟨p + 1⟩ = ⟨p + 1⟩ ∗ Fcbσp is
τm –reducible, or Fcbσ ∩ ⟨0, p + 1⟩ = ⟨0, p + 1⟩ ∗ Fcbσp is τm –reducible. Conclude
that Fcbσp is τm –reducible and σp ≤ τm . Conclude that ∀p∃m[σp ≤ τm] and σ ≤ τ .

22We describe her suggestion in the language of this paper.
23See Definition 30.
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(ii) We use induction on ST P . By Lemma 6.19, for each σ in ST P , for each
δ , if Fcbσ embeds into P(1∗,Enδ) = Enδ , then σ ≤ S∗(1∗). Next, assume that
we are given τ ̸= 1∗ in ST P such that, for each n, for each σ in ST P , for
each δ , if Fcbσ embeds into P(τ n,Enδ), then σ ≤ S∗(τ n). Further assume that
we are given σ, δ such that σ ∈ ST P and Fcbσ embeds into P(τ,Enδ). Find φ

embedding Fcbσ into P(τ,Enδ). Note that ∀γ ∈ Fcbσ∃p[φ|γ # δp → ∃n[φ|γ ∈
P(τ n,Enδ)]]. Using Brouwer’s Continuity Principle BCP, see Section 1.1.6, find m, p
such that ∀γ ∈ Fcbσ [(0m ⊏ γ ∧ φ|γ # δp) → ∃n[φ|γ ∈ P(τ n,Enδ)]]. Consider
γ0 := 0m ∗ ⟨p + 1⟩ ∗ 0 and γ1 := 0(m + 1) ∗ ⟨p + 1⟩ ∗ 0. Note φ|γ0 # φ|γ1

and find i < 2 such that φ|γi # δp . Find j, n such that φ|γij ⊥ δpn. Note that
∀γ ∈ Fcbσ ∩ γij∃i[φ|γ ∈ P(τ i,Enδ)]. Using BCP again, find k, l such that k > j and
∀γ ∈ Fcbσ [γik ⊏ γ → φ|γ ∈ P(τ l,Enδ)]. Note that Fcbσp embeds into Fcbσ ∩ γik and
φ embeds Fcbσ ∩ γik into P(τ l,Enδ). Conclude that Fcbσp embeds into P(τ l,Enδ),
and σp ≤ S∗(τ l). Conclude that ∀p∃l[σp ≤ S∗(τ l) ≤ τ = (S∗(τ )l] and σ ≤ S∗(τ ).

(iii) Note that ∃δ[FIN = Enδ] and apply (ii).

(iv) This is an immediate consequence of (ii).

7 The second level and the collapse of the projective hierarchy

7.1 The classes Σ1
2 and Π1

2

Some relevant definitions may be found in Section 1.2.6.

Definition 34 X ⊆ ωω is Σ1
2 if and only if there exists β such that:

X = EUGβ := Ex
(
Un(Gβ)

)
= {α | ∃δ∀γ[⌜⌜α, γ⌝, δ⌝ ∈ Gβ]}

X ⊆ ωω is Π1
2 if and only if there exists β such that:

X = UEFβ := Un
(
Ex(Fβ)

)
= {α | ∀δ∃γ[⌜⌜α, γ⌝, δ⌝ ∈ Fβ]}

Let β, ε, ζ be given such that ε ∈ EUGβ and ζ ∈ UEFβ . Find δ such that
∀γ∃n[β(⌜⌜ε, γ⌝, δ⌝n) ̸= 0]. Find γ such that ∀n[β(⌜⌜ζ, γ⌝, δ⌝n) = 0]. Find n
such that β(⌜⌜ε, γ⌝, δ⌝n) ̸= 0] and conclude that εn ̸= ζn and ε # ζ .

We thus see that, for each β , EUGβ # UEFβ .

The next theorem shows some properties of the classes Σ1
2 and Π1

2 . Note that we do
not prove that the class Π1

2 is closed under the operation of countable union or even
under the operation of finite union.
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Theorem 7.1

(i) US1
2 := {α | αII ∈ EUGαI} is Σ1

2 –universal and UP1
2 := {α | αII ∈ UEGαI}

is Π1
2 –universal

(ii) E1
2 := {α | ∃δ∀γ∃n[α(⌜γ, δ⌝n) ̸= 0]} is Σ1

2 –complete and A1
2 := {α |

∀δ∃γ∀n[α(⌜γ, δ⌝n) = 0]} is Π1
2 –complete

(iii) Σ1
2 is closed under the operations of countable union and countable intersection

and Π1
2 is closed under the operation of countable intersection:

∀β∃ε∃ζ
[⋃

m

EUGβm = EUGε ∧
⋂
m

UEFβm = UEFε ∧
⋂
m

EUGβm = EUGζ
]

(iv) For all X ⊆ ωω , if X ∈ Σ1
2 , then Ex(X ) ∈ Σ1

2 , and, if X ∈ Π1
2 , then

Un(X ) ∈ Π1
2 :

∀β∃η[Ex(EUGβ) = EUGη ∧ Un(UEFβ) = UEFη]

(v) For all X ,Y ⊆ ωω such that X ⪯ Y , if Y ∈ Σ1
2 , then X ∈ Σ1

2 , and, if Y ∈ Π1
2 ,

then X ∈ Π1
2 :

∀β∀φ : ωω → ωω∃γ[
{α | φ|α ∈ EUGβ} = EUGγ ∧ {α | φ|α ∈ UEFβ} = UEFγ

]
(vi) Σ1

1 ∪Π1
1 ⊆ Σ1

2 ∩Π1
2

Proof (i) Note that for each α , α ∈ US1
2 ↔ αII ∈ EUGαI ↔ ∃δ[⌜αII, δ⌝ ∈

UGαI ] ↔ ∃δ∀γ[⌜⌜αII, δ⌝, γ⌝ ∈ GαI ] ↔ ∃δ∀γ∃n[αI(⌜⌜αII, δ⌝, γ⌝n) ̸= 0]. Define β
such that, for all a, c, d , if length(a) = length(d) = length(c) then β(⌜⌜a, d⌝, c⌝) =
aI(⌜⌜aII, d⌝, c⌝). Note that for all α , α ∈ US1

2 ↔ ∃δ∀γ∃n[β(⌜⌜α, δ⌝, γ⌝n) ̸= 0] ↔
α ∈ EUGβ . Conclude that US1

2 ∈ Σ1
2 . Also note that for each ε, EUGε = US1

2 ↾ ε
We thus see that US1

2 is Σ1
2 –universal.

Similarly, for each α , α ∈ UP1
2 ↔ ∀δ∃γ∀n[αI(⌜⌜αII, δ⌝, γ⌝n) = 0]]. Define β as

above and conclude that UP1
2 = UEFβ ∈ Π1

2 . Note that for each ε, UEFε = UP1
2 ↾ ε.

We thus see that UP1
2 is Π1

2 –universal.

(ii) Define β such that, for all a, c, d , β(a, c, d) ̸= 0 if and only if length(a) =

length(c) = length(d) > 0 and ∃i < length(a)[a(⌜ci, di⌝) ̸= 0]. Note that for
each α , ∃δ∀γ∃n[α(⌜γn, δn⌝) ̸= 0] if and only if ∃δ∀γ∃n[β(⌜γ, δ⌝n) ̸= 0], and
∀δ∃γ∀n[α(⌜γn, δn⌝) = 0] if and only if ∀δ∃γ∀n[β(⌜γ, δ⌝n) = 0]. Conclude that
E1

2 = EUGβ ∈ Σ1
2 and A1

2 = UEFβ ∈ Π1
2 .
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Let ε be given. Define φ : ωω → ωω such that, for all α , for all c, d , if length(c) =
length(d) then (φ|α)(⌜c, d⌝) = ε(⌜αn, c⌝, d⌝)]. Note that for all α ,

∃γ∀δ∃n[ε(⌜α, γ⌝, δ⌝n) ̸= 0]

∃γ∀δ∃n[(φ|α)(⌜γn, δn⌝) ̸= 0]if and only if

ie α ∈ EUGε if and only if φ|α ∈ E1
2 , and ∀γ∃δ∀n[ε(⌜α, γ⌝, δ⌝n) = 0] if and only if

∀γ∃δ∀n[(φ|α)(⌜γn, δn⌝) = 0]; ie α ∈ UEFε if and only if φ|α ∈ A1
2 . We thus see

that φ reduces the pair (EUGε,UEFε) to the pair (E1
2 ,A1

2).

We may conclude that E1
2 is Σ1

2 –complete and that A1
2 is Π1

2 –complete.

(iii) Let β be given. For each α , α ∈
⋃

m UEGβm if and only if ∃m∃δ∀γ∃n
[βm(⌜⌜α, γ⌝, δ⌝n) ̸= 0]. Define ε such that, for all m, a, c, d , ε(⌜⌜a, c⌝, ⟨m⟩ ∗ d⌝) =
βm(⌜⌜a, c⌝, d⌝)], and β(⌜⌜0, 0⌝, 0⌝) = 0. Note that, for each m, for all α , γ ,
δ , ⌜⌜α, γ⌝, ⟨m⟩ ∗ δ⌝ ∈ Gε if and only if ⌜⌜α, γ⌝, δ⌝ ∈ Gβm . Therefore, for each α ,
α ∈ EUGε if and only if ∃m[α ∈ EUGβm] and EUGε =

⋃
m EUGβm . Also note that, for

each m, for all α, γ, δ , ⌜⌜α, γ⌝, ⟨m⟩∗δ⌝ ∈ Fε if and only if ⌜⌜α, γ⌝, δ⌝ ∈ Fβm . There-
fore, for each α , α ∈ UEFε if and only if ∀m[α ∈ UEFβm], ie UEFε =

⋂
m UEFβm .

Also, for each α , α ∈
⋂

m UEGβm if and only if ∀m∃δ∀γ∃n[βm(⌜⌜⌜α, γ⌝, δ⌝n) ̸= 0].
Then, by AC0,1 , α ∈

⋂
m UEGβm if and only if ∃δ∀m∀γ∃n[βm(⌜⌜α, γ⌝, δm⌝n) ̸= 0]

if and only if ∃δ∀γ∃n[βγ(0)(⌜⌜α, γ ◦ S⌝, δγ(0)⌝n) ̸= 0]. Define ζ such that, for
all a, c, d , ζ(⌜⌜a, c⌝, d⌝) ̸= 0 if and only if length(a) = length(c) = length(d) >
0 and ∃i ≤ length(a)[βc(0)(⌜⌜ai, c ◦ Si⌝, dc(0)i⌝) ̸= 0]. Note that, for all α, δ ,
∀γ∃n[βγ(0)(⌜⌜α, γ ◦ S⌝, δγ(0)⌝n) ̸= 0] if and only if ∀γ∃n[⌜⌜α, γ⌝, δ⌝ ∈ Gζ]. Con-
clude that for all α , α ∈

⋂
m UEGβm if and only if α ∈ UEGζ , ie EUGζ =

⋂
m EUGβm .

(iv) Let β be given. Note that for all α ,

α ∈Ex(EUGβ) if and only if ∃ε∃δ∀γ∃n[β(⌜⌜⌜α, γ⌝, δ⌝, ε⌝n) ̸= 0

α ∈Un(UEFβ) if and only if ∀ε∀δ∃γ∀n[β(⌜⌜⌜α, γ⌝, δ⌝, ε⌝n) = 0]and

Define η such that, for all a, c, d , if length(a) = length(c) = length(d), then
η(⌜⌜a, c⌝, d⌝) = β(⌜⌜⌜a, c⌝, dI⌝, dII)]. One easily verifies that Ex(EUGβ) = EUGη
and Un(UEFβ) = UEFη .

(v) Let β, φ be given such that φ : ωω → ωω . Note that, for each α , φ|α ∈
EUGβ if and only if ∃δ∀γ∃n[⌜⌜φ|α, γ⌝, δ⌝n) ̸= 0] and φ|α ∈ UEFβ if and only
if ∀δ∃γ∀n[⌜⌜φ|α, γ⌝, δ⌝n) = 0]. Define ε such that for all a, c, d if length(a) =

length(c) = length(d), then ε(⌜⌜a, c⌝, d⌝) ̸= 0 if and only if ∃i[length(φ|a) ≥
i ∧ β(⌜⌜φ|ai, ci⌝, di⌝) ̸= 0].

Then {α | φ|α ∈ UEGβ} = UEGε and {α | φ|α ∈ EUFβ} = EUFε .
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7.2 The collapse of the projective hierarchy

Theorem 7.2
(i) For all X ⊆ ωω , if X ∈ Σ1

2 , then Un(X ) ∈ Σ1
2 : ∀β∃ε[Un(EUGβ) = EUGε].

(ii) Π1
2 ⊆ Σ1

2 , and for all X ⊆ ωω , if X is (positively) projective, then X ∈ Σ1
2 .

Proof (i) Let β be given. Using AC1,1 ,24 note that for all α , α ∈ Un(EUGβ) if and
only if ∀ε∃δ∀γ∃n[β(⌜⌜⌜α, γ⌝, δ⌝, ε⌝n) ̸= 0] if and only if ∃φ[φ ∈ A1

1 ∧ φ(0) =
0 ∧ ∀ε∀γ∃n[β(⌜⌜⌜α, γ⌝, φ|ε⌝, ε⌝n) ̸= 0]] if and only if ∃φ[φ ∈ A1

1 ∧ φ(0) =

0 ∧ ∀ε∀γ∃n∃m[length(φ|εm) ≥ n ∧ β(⌜⌜⌜αn, γn⌝, (φ|εm)n⌝, εn⌝) ̸= 0]].

Using Theorem 7.1, we conclude that Un(EUGβ) ∈ Σ1
2 .

(ii) This follows from (i).

Theorem 7.2 shows that, in intuitionistic mathematics, Σ1
2 is the class of all positively

projective sets. Many difficult questions remain, for instance, if Π1
2 is a proper subclass

of Σ1
2 and if the class Π1

2 is closed under the operation of disjunction. We were unable
to answer these questions.

Note that the projection of a positively Borel set is analytic. It is not true however, that
the co-projection of a positively Borel set is always co-analytic, for the simple reason
that some positively Borel sets, like D2(A1),25 are not co-analytic.

Lemma 7.3 ∀φ : ωω → ωω∃α[(α ∈ E1
2 ↔ φ|α ∈ E1

2 ) ∧ (α ∈ A1
2 ↔ φ|α ∈ A1

2)].

Proof Let φ : ωω → ωω be given. Define α such that for all p, c, d , if length(c) =
length(d) and p = ⌜c, d⌝, then α(p) ̸= 0 if and only if, for some m ≤ length(c),
⌜cm, dm⌝ < length(φ|αp) and (φ|αp)(⌜cm, dm⌝) ̸= 0]. Note that, for all γ, δ ,
∃m[α(⌜γ, δ⌝m) ̸= 0] if and only if ∃m[(φ|α)(⌜γ, δ⌝m) ̸= 0]. Conclude that
∃γ∀δ∃n[α(⌜γ, δ⌝n) ̸= 0] ↔ ∃γ∀δ∃n[(ϕ|α)(⌜γ, δ⌝n) ̸= 0], ie α ∈ E1

2 ↔ φ|α ∈
E1

2 , and also that ∀γ∃δ∀n[α(⌜γ, δ⌝n) = 0] ↔ ∀γ∃δ∀n[(φ|α)(⌜γ, δ⌝n) = 0], ie
α ∈ A1

2 ↔ φ|α ∈ A1
2 .

Note that the classical mathematician would conclude, from Lemma 7.3, that A1
2 ⪯̸ E1

2
and E1

2 ⪯̸ A1
2 .

24For AC1,1 see Section 1.1.6. Note that φ : ωω → ωω if and only if φ(0) = 0 and, for each
n , φn : ωω → ω . Note that φ : ωω → ωω if and only if only if φ ∈ A1

1 and φ(0) = 0, see also
Section 1.1.5.

25See Theorem 4.1(iv).
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Theorem 7.4
(i) ∃α[α /∈ E1

2 ∧ α /∈ A1
2]

(ii) ∃γ[γ /∈ US1
2 ∧ γ /∈ UP1

2]

Proof (i) Using Theorems 7.2(i) and 7.1(ii), find φ : ωω → ωω reducing A1
2 to E1

2 .
Applying Lemma 7.3, find α such that α ∈ E1

2 ↔ φ|α ∈ E1
2 and α ∈ A1

2 ↔ φ|α ∈ A1
2 .

Assume that α ∈ E1
2 . Conclude that φ|α ∈ A1

2 and α ∈ A1
2 . This is a contradiction, as

A1
2 # E1

2 . Conclude that α /∈ E1
2 and φ|α /∈ E1

2 and α /∈ A1
2 .

(ii) Define DP1
2 := {α | ⌜α, α⌝ ∈ UP1

2}. According to Theorem 7.2(i), DP1
2 ∈ Σ1

2 .
Using Theorem 7.1(iii), find β such that DP1

2 = US1
2↾β . Note that for every α ,

⌜α, α⌝ ∈ UP1
2 ↔ α ∈ DP1

2 ↔ ⌜β, α⌝ ∈ US1
2 . Define γ := ⌜β, β⌝, and note that

γ /∈ US1
2 and γ /∈ UP1

2 , as US1
2 # UP1

2 .

Theorem 7.4 has some noteworthy consequences. Assume that α /∈ E1
2 ∪ A1

2 . Then:

(i) ¬∃δ∀γ∃n[α(⌜γn, δn⌝) ̸= 0,
(ii) ¬∀δ∃γ∀n[α(⌜γn, δn⌝) = 0], and

(iii) ∀δ∀γ∀n[⌜α(γn, δn⌝) = 0 ∨ α(⌜γn, δn⌝) ̸= 0].

Theorem 7.4 thus shows that, in intuitionistic mathematics it is possible that statements

(i) ¬∃x∀y∃z[P(x, y, z)],
(ii) ¬∀x∃y∀z[¬P(x, y, z)], and

(iii) ∀x∀y∀z[P(x, y, z) ∨ ¬P(x, y, z)]

are simultaneously true. The example depends on AC1,1 . Another example, depending
only on BCP, has been given in Veldman [35, Section 5.5]:

(i) ¬∃α∀n∃m[α(n) = 0 ∧ α(m) ̸= 0],
(ii) ¬∀α∃n∀m[α(n) ̸= 0 ∨ α(m) = 0], and

(iii) ∀α∀n∀m[
(
α(n) = 0 ∧ α(m) ̸= 0

)
∨

(
α(n) ̸= 0 ∨ α(m) = 0

)
].

7.3 A parallel: the collapse of the (positive) arithmetical hierarchy

It has been observed by J.R. Moschovakis that, in the context of intuitionistic arithmetic,
Church’s Thesis CT causes the collapse of the (positively) arithmetical hierarchy, just as
AC1,1 causes the collapse of the (positively) projective hierarchy; see J.R. Moschovakis
[18] and [20]. It seems useful to explain this.

Let T ⊆ ω3 be Kleene’s T –predicate. T is a (Kalmár–)elementary subset of ω3 and,
for all e, n, z, T(e, n, z) stands for: ‘z is the code of a successful computation according
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to the algorithm coded by e at the argument n’. Let U be the elementary function
from ω to ω extracting from each successful computation z its outcome U(z). Every e
determines a partial function φe from ω to ω by:

∀n[φe(n) ≃ U(µz[T(e, n, z])]

For each e, We := {n | ∃z[T(e, n, z)]} is the domain of the partial function φe .

For every X ⊆ ω , we define the projection Ex0(X) := {m | ∃n[⟨m, n⟩ ∈ X]} and the
co-projection Un0(X) := {m | ∀n[⟨m, n⟩ ∈ X]}.

One defines Σ0
1 := {We | e ∈ ω} and Π0

1 := {ω \ We | e ∈ ω}, and, for each m > 0,
Σ0

m+1 := {Ex0(X) | X ∈ Π0
m} and Π0

m+1 := {Un0(X) | X ∈ Σ0
m}.

One may prove: ∀m > 0[Σ0
m ∪Π0

m ⊆ Σ0
m+1 ∩Π0

m+1].

Using the following strong form of Church’s Thesis

CT : for every R ⊆ ω × ω, ∀m∃n[mRn] → ∃e∀m∃z[T(e,m, z) ∧ mRU(z)]

one may prove that, for every X in Σ0
3 , also Un0(X) ∈ Σ0

3 , as follows.

Assume X ∈ Σ0
3 . Find e such that X = Ex0

(
Un0(We)

)
. Consider:

Y = Un0(X) = {m | ∀q[⟨m, q⟩ ∈ X]} = {m | ∀q∃n∀p∃z[T(e, ⟨m, p, n, q⟩, z)]}
= {m | ∃f∀q∀p∃u∃z[T(f , q, u) ∧ T(e, ⟨m, p,U(u), q⟩, z)]} ∈ Σ0

3

One may conclude that Π0
3 ⊆ Σ0

3 and
⋃

m Σ0
m ⊆ Σ0

3 .

Find f such that {e | ∀p∃n∀z[¬T(e, ⟨e, n, p⟩, z)]} = {m | ∃p∀n∃z[T(f , ⟨m, n, p⟩, z)]},
and note that ∀p∃n∀z[¬T(f , ⟨f , n, p⟩, z)] ↔ ∃p∀n∃z[T(f , ⟨f , n, p⟩, z)]; therefore:

¬∀p∃n∀z[¬T(f , ⟨f , p, n⟩, z)] and ¬∃p∀n∃z[T(f , ⟨f , p, n⟩, z)]

Again, we see that three statements of the form

(i) ¬∃x∀y∃z[P(x, y, z)],
(ii) ¬∀x∃y∀z[¬P(x, y, z)], and

(iii) ∀x∀y∀z[P(x, y, z) ∨ ¬P(x, y, z)]

may be true simultaneously.
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