
Journal of Logic & Analysis 15:2 (2023) 1–68
ISSN 1759-9008

1

Covering entropy for types in tracial W∗–algebras

DAVID JEKEL

Abstract: We study embeddings of tracial W∗–algebras into a ultraproduct of
matrix algebras through an amalgamation of free probabilistic and model-theoretic
techniques. Jung implicitly and Hayes explicitly defined 1–bounded entropy
h through the asymptotic covering numbers of Voiculescu’s microstate spaces,
that is, spaces of matrix tuples (X(N)

1 ,X(N)
2 , . . . ) having approximately the same

∗–moments as the generators (X1,X2, . . . ) of a given tracial W∗–algebra. We study
the analogous covering entropy for microstate spaces defined through formulas
that use suprema and infima, not only ∗–algebra operations and the trace–formulas
which arise in the model theory of tracial W∗–algebras initiated by Farah, Hart,
and Sherman. By relating the new theory with the original 1–bounded entropy, we
show that if M is a separable tracial W∗–algebra with h(N : M) ≥ 0, then there
exists an embedding of M into a matrix ultraproduct Q =

∏
n→U Mn(C) such that

h(N : Q) is arbitrarily close to h(N : M). We deduce that if all embeddings of
M into Q are automorphically equivalent, then M is strongly 1–bounded and in
fact has h(M) ≤ 0.
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1 Introduction

1.1 Overview

The study of W∗–algebras or von Neumann algebras is a deep and challenging subject
with many connections to fields as diverse as ergodic theory, geometric group theory,
random matrix theory, quantum information, and model theory. Our present goal
is to bring together two of these facets—the model theory of tracial W∗–algebras
studied in the work of Farah, Hart, and Sherman [7, 8, 9] and Voiculescu’s free entropy
theory which, roughly speaking, quantifies the amount of matrix approximations for
the generators of W∗–algebra (see eg Voiculescu [32, 33], Ge [12], Jung [25] and
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2 David Jekel

Hayes [16]). On the free entropy side, we will work in the framework of Hayes’
1–bounded entropy h [16] which arose out of the work of Jung [25]; for history and
motivation, refer to Hayes, Jekel, Nelson, and Sinclair [18, §2]. The sibling paper of
this one [23] develops the analog of Voiculescu’s free microstate entropy for the setting
of model-theoretic types.

We adapt the framework of 1–bounded entropy from Jung [25] and Hayes [16] to capture
data about the generators’ model-theoretic type and not only their non-commutative
law. The non-commutative law of a tuple (Xj)j∈N from M = (M, τ ) encodes the joint
moments τ (p(X)) for non-commutative ∗–polynomials p; laws thus describe tracial
von Neumann algebras with chosen generators up to generator-preserving isomorphism.
The type includes the values of more complicated formulas that involve not only the
addition, adjoint, product, and trace operations, but also taking suprema and infima
in auxiliary variables over an operator norm ball in M. For instance, the type would
include the value of the formula

sup
Z∈DM

1

inf
Y∈BM(0,1)

[τ (X1YX2Z)2 + τ (X2
2Y5)]

where DM
1 denotes the closed unit ball with respect to operator norm. The entropy

EntU (µ) of a type µ is defined in terms of the exponential growth rates of the covering
numbers of microstate spaces (spaces of matrix tuples with approximately the same
type as our chosen generators, as in Voiculescu’s work), just like Jung and Hayes’
1–bounded entropy except with types instead of laws. However, we prefer the term
“covering entropy” rather than “1–bounded entropy” as a more intrinsic description of
the definition. The superscript U denotes the fact that we take limits with respect to a
fixed non-principal ultrafilter U on N.

Just as in the original definition of the 1–bounded entropy, a key property of the covering
entropy EntU (µ) is that it is invariant under change of coordinates (see §4.3). More
precisely, if X and Y are tuples from M with W∗(X) = W∗(Y), then their types
tpM(X) and tpM(Y) have the same covering entropy (Corollary 4.10). This allows
us to define the entropy EntU (N : M) of a separable tracial W∗–algebra N ⊆ M as
the entropy of the type of any generating set. As suggested in Hayes, Jekel, Nelson,
and Sinclair [18], we streamline the proof of this invariance property using the result
that every tuple Y from W∗(X) can be expressed as f(X) for some quantifier-free
definable function (see Jekel [22, §13]). More generally, we can extend the definition
of EntU (N : M) to the case where N ⊆ M is not separable by setting it to be the
supremum of EntU (N0 : M) over separable W∗–subalgebras N0 ⊆ N or equivalently,
the supremum of EntU (tpM(X)) over all tuples X ∈ L∞(N )N (see Definition 4.11).
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Covering entropy for types in tracial W∗–algebras 3

The covering entropy EntU (N : M) can be viewed intuitively as a measurement of the
amount of tracial W∗–embeddings of N into the matrix ultraproduct Q =

∏
n→U Mn(C)

that extend to elementary embeddings of M (compare §4.4). This is the analog of the
idea that the 1–bounded entropy h(N : M) of N in the presence of M quantifies
the amount of W∗–embeddings of N into Q that extend to any embedding of M.
Thus, our work is motivated in part by the study of embeddings into ultraproducts,
which is one theme of recent work on von Neumann algebras; for instance, see Popa
[28], Goldbring [14], Ioana and Spaas [20], Atkinson and Kunnawalkam Elayavalli [2],
Atkinson, Goldbring, and Kunnawalkam Elayavalli [1], Gao [11].

We make a precise connection between EntU (N : M) and 1–bounded entropy as
follows. There is a canonical projection πqf from the space of types to the space
of non-commutative laws, since a non-commutative law describes the evaluation of
quantifier-free formulas (rather than all logical formulas) in a tuple X. Given a non-
commutative law (or quantifier-free type) µ, the 1–bounded entropy hU (µ) can be
expressed through the following variational principle (Corollary 5.4):

(1–1) hU (µ) = sup
ν∈π−1

qf (µ)
EntU (ν)

Thus, the 1–bounded entropy is the quantifier-free version of the entropy for types.

In a similar way, the 1–bounded entropy of N in the presence of M is the version
using existential types. Entropy in the presence is described using microstates for a
tuple X in N such that there exist compatible microstates for a tuple Y that generates
M. In the model-theoretic framework, the existence of such microstates for M is
described through the evaluation of existential formulas in the original generators and
their microstates (see §5.4). Similar to the quantifier-free setting, there is a projection
π∃ from the space of types into the space of existential types, and a similar variational
principle expressing the covering entropy of an existential type µ as the supremum of
EntU (ν) over full types ν ∈ π−1

∃ (µ) (Lemma 5.13).

Altogether these ingredients allow us to prove the following result about ultraproduct
embeddings, which is restated and proved in Theorem 5.24:

Theorem 1.1 Let c ∈ R. Let N ⊆ M be an inclusion of separable tracial W∗–algebras
hU (N : M) > c. Then there exists an embedding ι of M into the matrix ultraproduct
Q =

∏
n→U Mn(C) such that EntU (ι(N ) : Q) > c, hence also hU (ι(N ) : Q) > c.

The hypotheses of the theorem hold for instance when N = M is a nontrivial
free product by Voiculescu [33, Proposition 6.8] and Jung [25, Corollary 3.5] and
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Hayes [16, Proposition A.16] since hU (M : M) = ∞. They also hold for the von
Neumann algebras of groups with non-approximately-inner cocycles by Shlyakhtenko
[30, Theorem 3] and Jung [25, Corollary 3.5] and Hayes [16, Proposition A.16].

In particular, since there exists M with hU (M : M) = ∞, the theorem implies
that there exist types in Q with arbitrarily large covering entropy, and therefore,
hU (Q : Q) = ∞. Similarly, the entropy EntU (Q : Q) given by Definition 4.11 is
infinite.

Corollary 1.2 Let U be a free ultrafilter on N and let Q =
∏

n→U Mn(C). Then
hU (Q : Q) = ∞ and EntU (Q : Q) = ∞. Hence, Q is not strongly 1–bounded.

The following corollary of Theorem 1.1 was communicated to me by Ben Hayes.

Corollary 1.3 Let N ⊆ M be an inclusion of separable tracial W∗–algebras h(M) > 0
such that N is a II1 factor (it has trivial center). Then there exists a free ultrafilter V
and an embedding ι : M →

∏
n→V Mn(C) such that N ′ ∩

∏
n→V Mn(C) = C.

Proof The 1–bounded entropy h(M) is the supremum of hV (M) over free ultrafilters
V . Hence, there exists some free ultrafilter U such that hV (M) > 0 and by Theorem
1.1 there is an embedding ι0 : M → Q =

∏
n→U Mn(C) with hU (ι0(M) : Q) > 0.

A general fact about 1–bounded entropy is that if A ⊆ B and A′ ∩ B is diffuse, then
h(A : B) ≤ 0. Indeed, if A′ ∩B is diffuse, it contains a diffuse amenable subalgebra C .
Let

N = W∗(u ∈ Q unitary: uCu∗ ∩ C is diffuse)

(this is known as the step 1 wq-normalizer of C and was introduced in Gatalan and Popa
[10]). Note that A ⊆ N . Hence, by Hayes [16, Property 1, page 10],

hU (A : B) ≤ hU (N : B).

By Hayes [16, Theorem 2.8 and Proposition 3.2],

hU (N : B) = hU (C : B).

Then using Hayes [16, Property 1, page 10] again,

hU (C : B) ≤ hU (C : C) = hU (C)

which is zero since C is amenable. Hence, h(A : B) ≤ 0.

By the contrapositive, since in our case h(ι(M) : Q) ≥ hU (ι0(M) : Q) > 0, then
ι0(M)′ ∩Q is not diffuse. Therefore, it contains a minimal projection p. Let pQp be
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the compression of Q by p equipped with the trace τpQp(x) = τQ(pxp)/τ (p), and let
ι : M → pQp be the map ι(x) = pι0(x)p = ι0(x). Since p commutes with ι0(M), it
follows that ι0 is a ∗–homomorphism, and since M is a II1 factor and hence has a
unique trace, the map ι must be trace-preserving. Because p was a minimal projection
in ι0(M)′ ∩Q, we know ι(M)′ ∩ pQp has no nontrivial projections and hence is C.

Finally, note that pQp is a matrix ultraproduct
∏

n→V Mn(C) for some ultrafilter V .
Indeed, by stability of projections there exist projections pn in Mn(C) such that p is
the equivalence class of (pn)n∈N in Q. Let k(n) be the rank of pn . One can check that
pQp =

∏
n→U pnMn(C)pn ∼=

∏
n→U Mk(n)(C), which is simply a matrix ultraproduct

for a different ultrafilter V .

As shown in Jekel [23, Theorem 1.2], the analogous result holds for free entropy rather
than 1–bounded entropy without having to change the ultrafilter U to the ultrafilter V .

1.2 Embeddings into Ultraproducts

Our results relate to recent work and questions about embeddings into ultraproducts.
Jung [24] used the study of microstates to show that a separable tracial W∗–algebra
A is amenable if and only if all embeddings of A into RU are unitarily conjugate.
Atkinson and Kunnawalkam Elayavalli [2] strengthened this result by showing that A is
amenable if and only if all embeddings of A into RU are ucp-conjugate (meaning they
are conjugate by an automorphism of RU that lifts to a sequence of unital completely
positive maps R → R). Atkinson, Goldbring, and Kunnawalkam Elayavalli [1] later
showed that if a separable II1 factor M is Connes-embeddable and all embeddings of
M into MU are automorphically conjugate, then M ∼= R.

One can ask similar questions for embeddings into the ultraproduct Q =
∏

n→U Mn(C)
for some fixed free ultrafilter U . Atkinson and Kunnawalkam Elayavalli [2] showed
that if A is a separable Connes-embeddable tracial W∗–algebra and the space of unitary
orbits of embeddings A → Q is separable in a certain metric, then A must be amenable.
In particular, if all embeddings A → Q are unitarily conjugate, then A is amenable. It
is an open question whether this result still holds when “unitarily conjugate” is replaced
by “automorphically conjugate.” However, Theorem 1.1 implies the following result,
which was pointed out to me by Srivatsav Kunnawalkam Elayavalli:

Corollary 1.4 Let A be a tracial W∗–algebra. Suppose that any two embeddings
A → Q =

∏
n→U Mn(C) are conjugate by an automorphism of Q. Then hU (A) ≤ 0.
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6 David Jekel

Proof We proceed by contradiction. Suppose that hU (A) > 0. By Theorem 1.1, there
exists an embedding α : A → Q with hU (α(A) : Q) > 0. Moreover, since A is
Connes-embeddable, so is R⊗A, so there exists some embedding β : R⊗A → Q.
In particular, β(R) ⊆ β(A)′ ∩ Q. If we assume for contradiction that α and β|A
are conjugate by an automorphism, then α(A)′ ∩Q also contains a copy of R, so in
particular, α(A)′ ∩ Q is diffuse. As pointed out in the proof of Corollary 1.3, this
implies that h(α(A) : Q) = 0, which contradicts our choice of α .

Intuitively, the corollary says that if the space of embeddings modulo automorphic
conjugacy is trivial, then the space of embeddings modulo unitary conjugacy is not
too large, since hU (A) quantifies the “amount” of embeddings A → Q up to unitary
conjugacy. The conclusion that hU (A) = 0 is a weakening of amenability since by
Jung’s theorem [24] amenability is equivalent to the space of embeddings modulo
unitary conjugacy being trivial.

We remark that the free entropy techniques used here to study embeddings into Q
cannot be directly applied to study embeddings into RU . For instance, Theorem 1.1
does not make sense with Q replaced by RU . Indeed, RU has property Gamma
by Farah Hart and Sherman [9, §3.2.2], and every tracial W∗–algebra with property
Gamma has 1–bounded entropy zero (this is a special case of Hayes [16, Corollary
4.6] and it is shown explicitly in Hayes, Jekel, Nelson, and Sinclair [18, §1.2, Example
4]). Thus, h(RU ) = 0 and therefore, for any subalgebra M of RU , we also have
hU (M : RU ) = 0 by Hayes [16, §2, Property 1]. Hence, Theorem 1.1 would not hold
with RU instead of Q. By contrast, many other operator-theoretic and model-theoretic
techniques are more easily applied to RU than to Q since RU is an ultrapower; see for
instance the following works of Goldbring [14, 15, 13].

1.3 Outline

In large part, our goal is to establish communication between the free probabilistic
and model theoretic subgroups of operator algebras, and to show that many of the
notions in free probability (such as non-commutative laws, microstates spaces in the
presence, and relative microstate spaces) arise naturally from the model-theoretic
framework. Therefore, we strive to make the exposition largely self-contained and use
model-theoretic language throughout.

We start out by explaining the model-theoretic framework for operator algebras in §2.
In particular, we give a more detailed explanation than current literature of the languages
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and structures for multiple sorts and multiple domains of quantification for each. Next,
in §3, we give a self-contained development of definable predicates and functions of
infinite tuples, including the result that every element of a tracial W∗–algebra can be
realized by applying a quantifier-free definable function to the generators which was
observed in the author’s thesis [22, 18].

§4 develops the framework of covering entropy for types. We show the invariance of
entropy under change of coordinates in §4.3, describe the relationship with ultraproduct
embeddings in §4.4, and finally show that adding variables in the (model-theoretic)
algebraic closure of given tuple X does not change its entropy in §4.5.

In §5, we describe the quantifier-free and existential versions of entropy, showing that
they agree with the 1–bounded entropy of Hayes. We conclude the proof Theorem 1.1
there.

In §6, we describe a generalization to conditional (or “relative”) entropy, which focuses
on quantifying the embeddings N → Q which restrict to a fixed embedding ι : A → Q
on a given W∗–subalgebra A. The existential version of the conditional covering
entropy was studied by Hayes explicitly for A diffuse abelian and implicitly for A
diffuse amenable [16], in which case it agrees with the unconditional version. However,
the conditional covering entropy (for full, quantifier-free, or existential types) makes
sense for any diffuse A with a specified embedding α : A → Q (though, as far as we
know, it may depend on the embedding α). Moreover, conditional entropy is natural
from the model-theoretic perspective, since it arises from replacing formulas in the
original language with formulas that have coefficients from the subalgebra A.
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8 David Jekel

2 Continuous model theory for tracial W∗–algebras

This section sketches the setup of continuous model theory, or model theory for metric
structures of Ben Yaacov, Berenstein, Henson, and Usvyatsov [3, 4] and its application
to operator algebras by Farah, Hart, and Sherman [7, 8, 9]. We strive to present a
self-contained exposition for two reasons: First, some readers may not be familiar with
the model-theoretic terminology. Second, we are following the treatment in [8] which
introduces “domains of quantification” to cut down on the number of “sorts,” which
means that some of the statements need to modified from their original form in [3].

2.1 Background on operator algebras

We start by giving some basic terminology and background on operator algebras. For
further detail and history, we suggest consulting the following references: Kadison and
Ringrose [26], Dixmier [6], Sakai [29], Takesaki [31], Blackadar [5], and Zhu [34].

C∗–algebras:

(1) A (unital) algebra over C is a unital ring A with a unital inclusion map C → A.
(2) A (unital) ∗–algebra is an algebra A equipped with a conjugate linear involution

∗ such that (ab)∗ = b∗a∗ .
(3) A unital C∗–algebra is a ∗–algebra A equipped with a complete norm ∥·∥ such

that ∥ab∥ ≤ ∥a∥∥b∥ and ∥a∗a∥ = ∥a∥2 for a, b ∈ A.

A collection of fundamental results in C∗–algebra theory establishes that C∗–algebras
can always be represented as algebras of operators on Hilbert spaces. If H is a Hilbert
space, the algebra of bounded operators B(H) is a C∗–algebra. Conversely, every unital
C∗–algebra can be embedded into B(H) by some unital and isometric ∗–homomorphism
ρ. By isometric, we mean that ∥ρ(a)∥ = ∥a∥, where ∥ρ(a)∥ is the operator norm on
B(H) and ∥a∥ is the given norm on the C∗–algebra A.

W∗–algebras: A von Neumann algebra is a ∗–subalgebra of B(H) (for some Hilbert
space H ) that is closed in the strong operator topology, the topology of pointwise
convergence as functions on H . A W∗–algebra is a C∗–algebra that admits a predual
(that is, it is the dual of some Banach space). A deep result of Sakai showed that for
a C∗–algebra A is a W∗–algebra if and only if it is isomorphic to a von Neumann
algebra; moreover, the weak-⋆ topology on a W∗–algebra A is uniquely determined by
its C∗–algebra structure as shown by Sakai [29, Corollary 1.13.3].
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Covering entropy for types in tracial W∗–algebras 9

Tracial W∗–algebras: A tracial W∗–algebra is a W∗–algebra M together with a linear
map τ : M → C satisfying:

• positivity: τ (x∗x) ≥ 0 for all x ∈ M
• unitality: τ (1) = 1
• traciality: τ (xy) = τ (yx) for x, y ∈ A
• faithfulness: τ (x∗x) = 0 implies x = 0 for x ∈ A.
• weak-⋆ continuity: τ : M → C is weak-⋆ continuous.

We call τ a faithful normal tracial state.

The standard representation: Given a tracial W∗–algebra (M, τ ), we can form a
Hilbert space L2(M, τ ) as the completion of M with respect to the inner product
⟨x, y⟩τ = τ (x∗y); if x ∈ M , then we denote the corresponding element of L2(M, τ )
by x̂. There is a unique unital ∗–homomorphism πτ : M → B(L2(M, τ )) satisfying
πτ (x)̂y = x̂y for x, y ∈ M . Now πτ is a ∗–homomorphism isometric with respect to the
operator norm, and its image is a von Neumann algebra. The construction of L2(M, τ )
and πτ is a special case of the GNS (Gelfand–Naimark–Segal) construction and πτ is
also known as the standard representation of (M, τ ). Note the convergence of a net xi to
x in M with respect to the strong operator topology in B(L2(M, τ )) implies convergence
of x̂i = πτ (xi)1̂ to x̂ = πτ (x)1̂ in L2(M, τ ). (It turns out that the converse is true if
(xi)i∈I is bounded in operator norm, but we will not need to use this fact directly.)

∗–polynomials and generators: Given an index set I , we denote by C⟨xi, x∗i : i ∈ I⟩ the
free unital algebra (or non-commutative polynomial algebra) generated by indeterminates
xi and x∗i for i ∈ I . We equip C⟨xi, x∗i : i ∈ I⟩ with the unique ∗–operation sending xi to
x∗i , thus making it into a ∗–algebra. If A is a unital ∗–algebra and (ai)i∈I a collection of
elements, there is a unique unital ∗–homomorphism ρ : C⟨xi, x∗i : i ∈ I⟩ → A mapping
xi to ai for each i ∈ I . We refer to the elements of C⟨xi, x∗i : i ∈ I⟩ as non-commutative
∗–polynomials, and if p ∈ C⟨xi, x∗i : i ∈ I⟩ and ρ : C⟨xi, x∗i : i ∈ I⟩ → A is as above,
we denote ρ(p) by p(ai : i ∈ I). Moreover, the image of ρ is the ∗–algebra generated
by (ai)i∈I .

If A is a C∗–algebra and (ai)i∈I is a collection of elements of I , then the C∗–algebra
generated by (ai)i∈I is the norm-closure of the ∗–algebra generated by (ai)i∈I . Similarly,
if M is a von Neumann algebra and (ai)i∈I is a collection of elements of M , then the
von Neumann subalgebra or W∗–subalgebra generated by (ai)i∈I is the strong operator
topology closure of the ∗–algebra generated by (ai)i∈I . In particular, we say that (ai)i∈I

generates M if the strong operator topology closure is all of M .

Journal of Logic & Analysis 15:2 (2023)



10 David Jekel

2.2 Languages and structures

Next, let us sketch the setup of continuous model theory, or model theory for metric
structures from Ben Yaacov, Berenstein, Henson, and Usvyatsov [3, 4]. We will
follow the treatment in Farah, Hart, and Sherman [8] which introduces “domains of
quantification” to cut down on the number of “sorts” needed.

A language L consists of:

• A set S whose elements are called sorts.
• For each S ∈ S , a privileged relation symbol dS (which will represent a metric)

and a set DS whose elements are called domains of quantification for S .
• For each S ∈ S and D,D′ ∈ DS an assigned constant CD,D′ .
• A countably infinite set of variable symbols for each sort S . We denote the

variables by (xi)i∈N .
• A set of function symbols.
• For each function symbol f , an assigned tuple (S1, . . . , Sn) of sorts called the

domain, another sort S called the codomain. We call n the arity of f .
• For each function symbol f with domain (S1, . . . , Sn) and codomain S , and for

every D = (D1, . . . ,Dn) ∈ DS1 × · · · × DSn , there is an assigned Df ,D ∈ DS

(representing a range bound), and assigned moduli of continuity ωf ,D,1 , . . . ,
ωf ,D,n . (Here “modulus of continuity” means a continuous increasing, zero-
preserving function [0,∞) → [0,∞)).

• A set of relation symbols.
• For each relation symbol R, an assigned domain (S1, . . . , Sn) as in the case of

function symbols.
• For each relation symbol R and for every D = (D1, . . . ,Dn) ∈ DS1 × · · · × DSn ,

an assigned bound NR,D ∈ [0,∞) and assigned moduli of continuity ωR,D,1 , . . . ,
ωR,D,n .

Given a language L, an L–structure M assigns an object to each symbol in L, called
the interpretation of that symbol, in the following manner:

• Each sort S ∈ S is assigned a metric space SM , and the symbol dS is interpreted
as the metric dM

S on SM .
• Each domain of quantification D ∈ DS is assigned a subset DM ⊆ SM , such that

DM is complete for each D, SM =
⋃

D∈DS
DM , and supX∈D,Y∈D′ dM

S (X,Y) ≤
CD,D′ .

• Each function symbol f with domain (S1, . . . , Sn) and codomain S is interpreted as
a function fM : SM1 ×· · ·×SMn → SM . Moreover, for each D = (D1, . . . ,Dn) ∈
DS1 × · · · × DSn , the function fM maps DM

1 × · · · × DM
n into DM

f ,D . Finally,
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fM restricted to DM
1 × · · · × DM

n is uniformly continuous in the ith variable
with modulus of continuity of ωf ,D,i .

• Each relation symbol R with domain (S1, . . . , Sn) is interpreted as a function RM :
SM1 ×· · ·×SMn → R. Moreover, for each D = (D1, . . . ,Dn) ∈ DS1 ×· · ·×DSn ,
fM is bounded by NR,D on M(D1) × · · · × M(Dn) and uniformly continuous in
the ith argument with modulus of continuity of ωR,D,i .

The language Ltr of tracial W∗–algebras can be described as follows. We will also
simultaneously describe how a tracial W∗–algebra (M, τ ) gives rise to an Ltr –structure
M, that is, how each symbol will be interpreted.

• A single sort, to be interpreted as the W∗–algebra M . If M = (M, τ ) is a tracial
W∗–algebra, we denote the interpretation of this sort by L∞(M) because of the
intuition of tracial W∗–algebras as non-commutative measure spaces.

• Domains of quantification {Dr}r∈(0,∞) , to be interpreted as the operator norm
balls of radius r in M .

• The metric symbol d , to be interpreted as the metric induced by ∥·∥2,τ .
• A binary function symbol +, to be interpreted as addition.
• A binary function symbol ·, to be interpreted as multiplication.
• A unary function symbol ∗, to be interpreted as the adjoint operation.
• For each λ ∈ C, a unary function symbol, to be interpreted as multiplication

by λ.
• Function symbols of arity 0 (in other words constants) 0 and 1, to be interpreted

as additive and multiplicative identity elements.
• Two unary relation symbols Re tr and Im tr, to be interpreted the real and

imaginary parts of the trace τ .
• For technical reasons explained by Farah, Hart, and Sherman [8], we also introduce

for each d–variable non-commutative polynomial p a symbol tp : L∞(M)d

representing the evaluation of p, along with the appropriate range bounds Ntp,r
given by the supremum of ∥p(X1, . . . ,Xd)∥ over all (X1, . . . ,Xd) in a tracial
W∗–algebra M.

Each function and relation symbol is assigned range bounds and moduli of continuity
that one would expect, eg multiplication is supposed to map Dr × Dr′ into Drr′ with
ω·

(Dr,D′
r),1(t) = r′t and ω·

(Dr,D′
r),2 = rt .

Although not every Ltr –structure comes from a tracial W∗–algebra, one can formulate
axioms in the language such that any structure satisfying these axioms comes from a
tracial W∗–algebra [8, §3.2]. In order to state this result precisely, we first have to
explain formulas and sentences.
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2.3 Syntax: Terms, formulas, conditions, and sentences

Terms in a language L are expressions obtained by iteratively composing the function
symbols and variables. For example, if x1 , x2 , . . . are variables in a sort S and
f : S × S → S and g : S × S → S are function symbols, then f (g(x1, x2), x1) is a term.
Each term has assigned range bounds and moduli of continuity in each variable which
are the natural ones computed from those of the individual function symbols making up
the composition. Any term f with variables x1 ∈ S1 , . . . , xk ∈ Sk and output in S can
be interpreted in an L–structure as a function SM1 × · · · × SMk → SM . For example, in
the language Ltr , the terms are expressions obtained from iterating scalar multiplication,
addition, multiplication, and the ∗–operation on variables and the unit symbol 1. If
(M, τ ) is a tracial W∗–algebra, then the interpretation of a term in M is a function
represented by a ∗–polynomial.

Basic formulas in a language are obtained by evaluating relation symbols on terms. In
other words, if T1 , . . . , Tk are terms valued in sorts S1 , . . . , Sk , and R is a relation
S1 × · · · × Sk → R, then R(T1, . . . ,Tn) is a basic formula. The basic formulas have
assigned range bounds and moduli of continuity similar to the function symbols. In an
L–structure M, a basic formula ϕ is interpreted as a function ϕM : SM1 ×· · ·×SMk → R.
In Ltr , a basic formula can take the form Re tr(f ) or Im tr(f ) where f is an expression
obtained by iterating the algebraic operations. Thus, when evaluated in a tracial W∗–
algebra, it corresponds to the real or imaginary part of the trace of a non-commutative
∗–polynomial.

Formulas are obtained from basic formulas by iterating several operations:
• Given a formulas ϕ1 , . . . , ϕn and F : Rn → R continuous, F(ϕ1, . . . , ϕn) is a

formula.
• If ϕ is a formula, D is a domain of quantification for some sort S , and x is one

of our variables in S , then infx∈D ϕ and supx∈D ϕ are formulas.
Each occurrence of a variable in ϕ is either bound to a quantifier supx∈D or infx∈D , or
else it is free. We will often write ϕ(x1, . . . , xn) for a formula to indicate that the free
variables are x1 , . . . , xn .

All these formulas also have assigned range bounds and moduli of continuity. The moduli
of continuity of F(ϕ1, . . . , ϕn) are obtained by composition from the moduli of continuity
of F and ϕj as in [3, §2 Appendix and Theorem 3.5]. Next, if ϕ : S1 × · · · × Sn → S
and for D ∈ DSn

ψ(x1, . . . , xn−1) = sup
xn∈D

ϕ(x1, . . . , xn−1, xn)

ωψ,(D1,...,Dn−1),j = ωϕ,(D1,...,Dn−1,D),j.then
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Each formula has an interpretation in every L–structure M, defined by induction on
the complexity of the formula. If ϕ = F(ϕ1, . . . , ϕn), then ϕM = F(ϕM1 , . . . , ϕMn ).
Similarly, if ψ(x1, . . . , xn−1) = supxn∈D ψ(x1, . . . , xn), then

ψM(X1,X2, . . . ,Xn) = sup
Xn∈DM

ϕM(X1, . . . ,Xn−1).

Here X1 , . . . , Xn are elements of the sorts in the L–structure M, rather than formal
variables.

Example 2.1 In Ltr , some terms are:

x1x2, (x1x2)x3 + (x∗2x3)(x1x∗3)∗

A basic formula is:
Re tr(x1x2 + x∗3(x2x1)∗)

Another formula is:
Re tr(x1x2) + eIm tr(x∗1 (x2x∗3 ) Re tr(x4)

We can also write a formula:

sup
x1∈D2

[Re tr(x1x2) + eIm tr(x∗1 (x2x∗3 ) Re tr(x4)]

which will be interpreted as the supremum of the previous formula over x1 in the ball
of radius 2. In this formula, x1 is bound to the quantifier supx1∈D2

and the variables x2

and x3 are free.

For convenience, we will assume that our formulas do not have two copies of the same
variable (ie, if a variable is bound to a quantifier there is no other variable of the same
name that is free or bound to a different quantifier). For instance, in the formula

Im tr(x1) sup
x1∈D1

Re tr(x1x2 + x3x∗1)

the first occurrence of x1 is free while the latter two occurrences are bound to the
quantifier supx1∈D1

, but we can rewrite this formula equivalently as

Im tr(x1) sup
y1∈D1

Re tr(y1x2 + x3y∗1).

We will typically denote the free variables by (xi)i∈N and the bound variables by (yi)i∈N .
Lowercase letters will be used for formal variables while uppercase letters will be
used for individual operators in operator algebras (or more generally elements of an
L–structure).
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2.4 Theories, models, and axioms

A sentence is a formula with no free variables. If ϕ is a sentence, then the interpretation
ϕM in an L–structure is simply a real number.

A theory T in a language L is a set of sentences. We say that an L–structure M models
the theory T, or M |= T if ϕM = 0 for all ϕ ∈ T.

If M is an L–structure, then the theory of M, denoted Th(M) is the set of sentences
ϕ such that ϕM = 0. As observed by Farah, Hart, and Sherman [8], the theory of M
also uniquely determines the values ϕM of all sentences ϕ since ϕ− c is a sentence
for every constant c ∈ R.

More generally, if C is a class of L–structures, then Th(C) is the set of all sentences ϕ
such that ϕM = 0 for all M in C . The class C is said to be axiomatizable if every
L–structure that models Th(C) is actually in C .

Farah, Hart, and Sherman [8, §3.2] showed that the class of Ltr –structures that
represent actual tracial W∗–algebras is axiomatizable. The axioms, roughly speaking,
encode the fact that M is a ∗–algebra, the fact that τ is a tracial state, the fact that
∥xy∥L2(M) ≤ r∥y∥L2(M) for x ∈ DM

r , the relationship between the distance and the trace,
the fact that DM

r is contained in DM
r′ for r < r′ (that is, supx∈Dr

infy∈Dr′ d(x, y) = 0),
and the fact that tp agrees with the evaluation of the non-commutative polynomial p.

The theory of tracial W∗–algebras will be denoted Ttr . It is also shown in [8] that II1

factors (infinite-dimensional tracial W∗–algebras with trivial center) are axiomatizable
by a theory TII1 .

2.5 Ultraproducts

An important construction for continuous model theory and for W∗–algebras is the
ultraproduct. Ultraproducts are a way of constructing a limiting object out of arbitrary
sequences (or more generally indexed families) of objects. In order to force limits to
exist, one uses a device called an ultrafilter.

Let I be an index set. An ultrafilter U on I is a collection of subsets of I such that

• ∅ ̸∈ U .
• If A ⊆ B ⊆ I and A ∈ U , then B ∈ U .
• If A, B ∈ U , then A ∩ B ∈ U .
• For each A ⊆ I , either A ∈ U or Ac ∈ U .
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If U is an ultrafilter on I , Ω is a topological space, and f : I → Ω is a function, then
we say that

lim
i→U

f (i) = w

if for every neighborhood O ∋ w in Ω, the preimage f−1(O) is an element of U . Now if
i ∈ I , there is an ultrafilter Ui := {A ⊆ I : i ∈ A}, which is called a principal ultrafilter.
All other ultrafilters are called non-principal or free ultrafilters.

The set of all ultrafilters on I can be identified with the Stone-Čech compactification
of I , where I is given the discrete topology (see eg Hindman and Strauss [19, §3]).
The principal ultrafilters correspond to the points of the original space I . In particular,
this means that if Ω is a compact Hausdorff space and f : I → Ω is a function, then
limi→U f (i) exists in Ω.

Now consider a language L. Let I be an index set, U an ultrafilter on I , and for
each i ∈ I , let M be an L–structure. The ultraproduct

∏
i→U Mi is the L–structure

M defined as follows (see [3, §5]). For each sort S , consider tuples (Xi)i∈I where
Xi ∈ SMi .

• Let’s call (Xi)i∈I confined if there exists D ∈ DS such that Xi ∈ DMi for all i.
• Let’s call (Xi)i∈I and (Yi)i∈I equivalent if limi→U dMi

S (Xi,Yi) = 0.
• For a confined tuple (Xi)i∈I , let [Xi]i∈I denote its equivalence class.

We define SM to be the set of equivalence classes of confined tuples (Xi)i∈I . The metric
dM

S on SM is then given by

dM
S ([Xi]i∈I, [Yi]i∈I) = lim

i→U
dMi

S (Xi,Yi).

This is independent of the choice of representative for the equivalence classes because
of the triangle inequality, and it is finite because if Xi ∈ DMi and Yi ∈ (D′)Mi for
all i, then dMi

S (Xi,Yi) ≤ CD,D′ . Then SM is a metric space and SM =
⋃

D∈DS
DM ,

where DM is the set of classes [Xi]i∈I with Xi ∈ DMi for all i. Moreover, DM is
automatically complete [3, Proposition 5.3].

Each function symbol f : S1 × · · · × Sn → S receives its interpretation fM through

fM([X1,i]i∈I, . . . , [Xn,i]i∈I) = [fMi(X1,i, . . . ,Xn,i)]i∈I

which is well-defined because of the uniform continuity of f on each domain of
quantification, and similarly, each relation receives its interpretation in M through

RM([X1,i]i∈I, . . . , [Xn,i]i∈I) = lim
i→U

RMi(X1,i, . . . ,Xn,i).

One can verify by the same reasoning as [3, §5] that M is indeed an L–structure.

One of the reasons ultraproducts are so important is because of the following result,
known as (the continuous analog of) Łos’s theorem. See [3, Theorem 5.4].
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Theorem 2.2 Let L be a language, U an ultrafilter on an index set I , and Mi an
L–structure for each i ∈ I . Let M =

∏
i→U Mi . If ϕ is a formula with free variables

x1 ∈ S1 , . . . , xn ∈ Sn , then for any [X1,i]i∈I ∈ SM1 , . . . , [Xn,i]i∈I ∈ SMn , we have

ϕM([X1,i]i∈I, . . . , [Xn,i]i∈I) = lim
i→U

ϕMi(X1,i, . . . ,Xn,i).

Corollary 2.3 In the situation of the previous theorem, if T is an L–theory, and if
Mi |= T for all i, then M |= T.

In particular, this shows that an ultraproduct of Ltr –structures that are tracial W∗–
algebras will also be an Ltr –structure that is a tracial W∗–algebra. One can verify that
the model-theoretic ultraproduct agrees in this case with the ultraproduct of tracial
W∗–algebras.

3 Definable predicates and functions

This section describes types, definable predicates, and definable functions. The material
in §3.1 – §3.4 is largely a mixture of folklore and adaptations of [3]; our main
contribution is to write down the results in the setting of infinite tuples and domains of
quantification. In §3.5, we give a characterization of quantifier-free definable functions
in Ltr based on Jekel [22, §13] and Hayes, Jekel, Nelson, and Sinclair [18, §2].

3.1 Types

Definition 3.1 Let S = (Sj)j∈N be an N–tuple of sorts in L. Let FS be the space of
L–formulas with free variables (xj)j∈N with xj from the sort Sj . If M is an L–structure
and X ∈

∏
j∈N SMj , then the type of X is the map:

tpM(X) : FS → R, ϕ 7→ ϕM(X)

Definition 3.2 Let S = (Sj)j∈N be an N–tuple of sorts in L, and let T be an L–
theory. If D ∈

∏
j∈NDSj , then we denote by SD(T) the set of types tpM(X) of all

X ∈
∏

j∈N DM
j for all M |= T.

Definition 3.3 If S is an N–tuple of L–sorts, the set FS of formulas defines a real
vector space. For each L–structure M and X ∈

∏
j∈N SMj , the type tpM(X) is a (real)

linear map FS → R. Thus, for each L–theory T and D ∈
∏

j∈NDSj , the space SD(T)

is a subset of the dual F†
S . We equip SD(T) with the weak-⋆ topology (also known as

the logic topology).
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The following observation is well known in continuous model theory; see [3, Corollary
5.12, Proposition 8.6]

Observation 3.4 SD(T) is compact in the weak-⋆ topology.

Proof Each formula ϕ has a range bound Nϕ,D such that |ϕM(X)| ≤ Nϕ,D for all L–
structures M and all X ∈

∏
j∈N Dj . Thus, SD(T) is a subset of

∏
ϕ∈FD

[−Nϕ,D,Nϕ,D]
with the product topology, which is compact by Tychonoff’s theorem.

Moreover, SD(T) is a closed subset. While closedness can be expressed in terms of nets,
it can also be expressed in terms of ultralimits. A set A is closed if and only if for every
I and f : I → A and ultrafilter U , the limit limi→U f (i) exists in A. It then follows from
Theorem 2.2 that if [Xi]i∈I is an element of an ultraproduct M of L–structures Mi ,
then tpM([Xi]i∈I) = limi→U tpMi(Xi).

Although many times authors choose to work with SD(T) for each D, we find it
convenient to specify a topology on the entire space of types SS(T) that extends the
topology on each SD(T), so that our later results can be stated about SS(T) globally.
The topology on SD(T) is given by a categorical colimit of the topologies on SD(T).

Definition 3.5 For a language L, tuple S of sorts, and theory T, let SS(T) denote
the space of S–types for all M |= T. Note that SS(T) is the union of all SD(T) for
all D ∈

∏
j∈NDSj . We say that O ⊆ SS(T) is open if O ∩ SD(T) is open for every

D ∈
∏

j∈NDSj ; this defines a topology on SD(T), which we will also call the logic
topology.

Observation 3.6 For a language L, tuple S of sorts, theory T, and D ∈
∏

j∈NDSj ,
the inclusion map SD(T) → SS(T) is a topological embedding.

Proof Note that SS(T) is Hausdorff; indeed, µ and ν are two distinct types, then there
exists a formula ϕ with µ(ϕ) ̸= ν(ϕ). One can check that the sets

U = {σ ∈ SS(T) : |σ(ϕ) − µ(ϕ)| < |σ(ϕ) − ν(ϕ)|}
V = {σ ∈ SS(T) : |σ(ϕ) − ν(ϕ)| < |σ(ϕ) − µ(ϕ)|}and

are open and they separate µ and ν .

Continuity of the inclusion map SD(T) → SS(T) follows from the definition of open
sets in SD(T). Then since SD(T) is compact and SS(T) is Hausdorff, the map is a
topological embedding.
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Observation 3.7 For a language L, tuple S of sorts, theory T, and topological space
Ω, a function ψ : SS(T) → Ω is continuous if and only if ψ|SD(T) is continuous for
every D ∈

∏
j∈NDSj .

Proof This follows from the definition of open sets in SS(T).

3.2 Definable predicates

Next, we describe definable predicates, which are certain limits of formulas. It will turn
out that definable predicates correspond precisely to continuous functions SS(T) → R,
and thus they are a natural completion of the space of formulas in the setting of
continuous model theory. Our approach to the definition will be semantic rather than
syntactic, defining these objects immediately in terms of their interpretations.

Definition 3.8 Let L be a language and T an L–theory. A definable predicate relative
to T is a collection of functions ϕM :

∏
j∈N SMj → R (for each M |= T) such that for

every collection of domains D = (Dj)j∈N and every ϵ > 0, there exists a finite F ⊆ N
and an L–formula ψ(xj : j ∈ F) such that whenever M |= T and X ∈

∏
j∈N DM

j , we
have

|ϕM(X) − ψM(Xj : j ∈ F)| < ϵ.

In other words a definable predicate is an object that can be uniformly approximated
by a formula on any product of domains of quantification, where the approximation
works uniformly for all models of the theory T. This is done relative to T because, for
instance, in the study of tracial W∗–algebras we do not care if the definable predicate
makes sense to evaluate on arbitrary Ltr –structures, only those which actually come
from tracial W∗–algebras.

Note that every formula defines a definable predicate. However, two formulas as defined
in the previous section (where the range bounds and moduli of continuity are part of the
definition) may reduce to the same definable predicate (especially given the restriction
that we work relative to a given theory T).

The next proposition describes definable predicates as continuous functions on the
space of types. This is an adaptation of [3, Theorem 9.9] to the setting with domains of
quantification.
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Proposition 3.9 Let L be a language and T an L–theory. Let ϕ be a collection of
functions ϕM :

∏
j∈N SMj → R for each M |= T. The following are equivalent:

(1) ϕ is a definable predicate relative to T.
(2) There exists a continuous γ : SS(T) → R such that ϕM(X) = γ(tpM(X)) for all

M |= T and X ∈
∏

j∈N SMj .

Proof (1) =⇒ (2). First, suppose that ϕ is a formula. Then by definition of type,
ϕM(X) only depends on the type of X in M, and hence ϕM(X) = γ(tpM(X)) for some
γ : SS(T) → R. For each D ∈

∏
j∈NDSj , the restriction of γ to a map SD(T) → R is

continuous by definition of the weak-⋆ topology. Hence, by Observation 3.7, γ is a
continuous function SS(T) → R.

Now let ϕ be a general definable predicate. Fix D ∈
∏

j∈NDSj . Then taking ϵ = 1/n in
Definition 3.8, there exists a formula ϕD,n depending on finitely many of the variables
xj , such that

(3–1) |ϕM(X) − ϕMD,n(X)| < 1
n

for all M |= T and X ∈
∏

j∈N DM
j . By the previous paragraph, there exists a

continuous γD,n : SD(T) → R such that ϕMD,n(X) = γD,n(tpM(X)) for all M |= T and
X ∈

∏
j∈N DM

j . By (3–1),

sup
µ∈SD(T)

|γD,n(µ) − γD,m(µ)| ≤ 1
n
+

1
m

which implies that the sequence γD,n converges as n → ∞ to a continuous γD :
SD(T) → R. Also, by (3–1),

ϕM(X) = γD(tpM(X)))

for M |= T and X ∈
∏

j∈N DM
j . This in turn implies that γD and γD′ agree on

SD(T)∩SD′(T) for any D and D′ ∈
∏

j∈NDSj . Thus, for some function γ : SS(T) → R,
we have γD = γ|D for D ∈

∏
j∈NDSj . By Observation 3.7, γ is continuous on SS(T).

(2) =⇒ (1). Assume there exists γ : SS(T) → R continuous such that ϕM(X) =
γ(tpM(X)) for all M |= T and X ∈

∏
j∈N SMj . Fix D ∈

∏
j∈NDSj . Let A be the set

of functions SD(T) → R given by the application of formulas ϕ ∈ FS . Then A is a
subalgebra of C(SD(T),R) since formulas are closed under sums, products, and scalar
multiplication by real numbers. Moreover, A separates points because by definition two
types are the same if they agree on all formulas. Therefore, since γ|SD(T) is continuous,
the Stone-Weierstrass theorem implies that there exists a formula ψ depending on
finitely many of the variables xj such that |ϕM(X) − ψM(X)| < ϵ whenever M |= T
and X ∈

∏
j∈N DM

j .
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Lemma 3.10 If S is an N–tuple of types and D ∈
∏

j∈NDSj , then the logic topology
on SD(T) agrees with the weak-⋆ topology obtained by viewing SD(T) as a subspace
of the dual of the vector space of definable predicates.

Proof We defined the logic topology as the weak-⋆ topology generated by the pairing of
types with formulas in variables xj ∈ Sj for j ∈ N. Since every formula gives a definable
predicate, the weak-⋆ topology obtained from the pairing with definable predicates is
at least as strong as the logic topology. On other hand, for each D ∈

∏
j∈NDSj , every

definable predicate can be approximated uniformly by
∏

j∈N DM
j for all M |= T, and

hence the pairing with each definable predicate ϕ defines a map SD(T) → R that is
continuous with respect to the logic topology, and hence the logic topology is at least as
strong as the weak-⋆ topology obtained from pairing with definable predicates.

Just like formulas, definable predicates are uniformly continuous on any product of
domains of quantification. But to say this properly, we should clarify what “uniform
continuity” means for a function of infinitely many variables. If Ωj is a metric space,
then

∏
j∈NΩj with the product topology is metrizable but without a canonical choice

of metric. However, we will say that ϕ :
∏

j∈NΩj → R is uniformly continuous if for
every ϵ > 0, there exists a finite F ⊆ N and δ > 0, such that

dj(xj, yj) < δ for j ∈ F =⇒ |ϕ(x) − ϕ(y)| < ϵ.

In other words, uniform continuity is defined with respect to the product uniform
structure on

∏
j∈NΩj . (See for instance James [21] for background on uniform

structures.)

Observation 3.11 If ϕ = (ϕM) is a definable predicate over L relative to T, then ϕ
satisfies the following uniform continuity property:

For every D ∈
∏

j∈NDSj and ϵ > 0, there exists a finite F ⊆ N and δ > 0 such that,
for every M |= T and X,Y ∈

∏
j∈N DM

j ,

dM(Xj,Yj) < δ for all j ∈ F =⇒ |ϕM(X) − ϕM(Y)| < ϵ.

Moreover, for every D ∈
∏

j∈NDSj , there exists a constant C such that |ϕM| ≤ C for
all M |= T.

By construction, this result holds for formulas in finitely many Xj ’s, and it holds for
general definable predicates by the principle that uniform continuity and boundedness
are preserved under uniform limits.

Journal of Logic & Analysis 15:2 (2023)



Covering entropy for types in tracial W∗–algebras 21

Another useful property is that definable predicates are closed under the same types of
operations as formulas. In fact, we can use infinitary rather than finitary operations.
Point (1) here is an adaptation of [3, Proposition 9.3].

Lemma 3.12

(1) If F : RN → R is continuous (where RN has the product topology) and (ϕj)j∈N
are definable predicates

∏
j∈N Sj → R in L relative to T, then F((ϕj)j∈N) is a

definable predicate.
(2) If ϕ is a definable predicate

∏
j∈N Sj ×

∏
j∈N S′j → R in L relative to T and

D′ ∈
∏

j∈NDS′j
, then

ψM(X,Y) := inf
Y∈

∏
j∈N(D′

j )M
ϕ(X,Y)

is also a definable predicate in L relative to T.

Proof (1) This follows from 3.9 and the fact that continuity is preserved by composition.

(2) Fix D ∈
∏

j∈NDSj and ϵ > 0. Then there exist a formula ϕ0 whose free variables are
a finite subset of the xj ’s and yj ’s, such that |ϕM−ϕM0 | < ϵ on

∏
j∈N DM

j ×
∏

j∈N(D′
j)
M

for all M |= T. Note that

ψM
0 (X) = inf

Y∈
∏

j∈N DM
j

ϕM0 (X,Y)

also defines a formula because the infimum is effectively over only finitely many Yj ’s.
Also, |ψM

0 − ψM| ≤ ϵ on
∏

j∈N DM
j for all M |= T. Therefore, ψ is a definable

predicate.

We conclude with a brief remark on separability since we will use the separability of Ltr

in the sequel. For a L–theory T, we equip C(SS(T)) with the locally convex topology
generated by the family of seminorms

ϕ 7→ ∥ϕ|SD(T)∥C(SD(T))

for D ∈
∏

j∈NDSj . In other words, a net ϕi to ϕ converges in this topology if and only
if ∥(ϕ− ϕi)|SD(T)∥C(SD(T)) → 0 for all D.

Definition 3.13 A language L is separable if

(1) L has countably many sorts.
(2) For every N–tuple S of sorts, the space C(SS(∅)) is separable, where ∅ denotes

the empty theory.
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Observation 3.14 If L is a separable language, T is an L–theory, and D is an N–tuple
of domains from an N–tuple of sorts S, then SD(T) is metrizable.

Proof By separability of L, there is a dense sequence (ϕn)n∈N in C(SS(∅)). Since the
restriction maps C(SS(∅)) → C(SD(∅)) and C(SD(∅)) → C(SD(T)) are continuous,
(ϕn) also defines a dense subset in C(SD(T)). For each n, there exists a constant Kn

such that |µ(ϕn)| ≤ Kn for all µ ∈ SD(T); this holds because ϕn can be uniformly
approximated on D by formulas, which are also uniformly bounded. Then we may
define a metric on SD(T) by:

d(µ, ν) =
∑
n∈N

1
2nKn

|µ(ϕn) − ν(ϕn)|

The verification that this induces the weak-∗ topology is routine. The types SD(T)
induce linear functionals on C(SD(T)), or in other words, SD(T) is contained in the unit
ball of the dual of C(SD(T)) so convergence on a dense subset of C(SD(T)) is equivalent
to convergence on all of C(SD(T)).

Observation 3.15 The language Ltr of tracial W∗–algebras is separable.

Proof Consider Ltr formulas obtained using only scalar multiplication by numbers
in Q[i] rather than C and using only suprema and infima over Dr for r ∈ Q ∩ (0,∞).
There are only countably many such formulas, and one can show that these formulas
are dense in the space of definable predicates.

3.3 Definable functions

Although definable functions are often defined only for finite tuples, it is useful for the
theory of covering entropy to work with infinite tuples as both the input and the output
functions. The following “functional” description of definable functions makes it easy
to prove properties relating them with definable predicates and the type space.

Definition 3.16 Let S and S′ be N–tuples of sorts in the language L. A definable
function f :

∏
j∈N Sj →

∏
j∈N S′j relative to the L–theory T is a collection of maps

fM :
∏

j∈N SMj →
∏

j∈N(S′j)
M for M |= T satisfying the following conditions:

(1) For each D ∈
∏

j∈NDSj , there exists D′ ∈
∏

j∈NDS′j
such that for every M |= T,

fM maps
∏

j∈N DM
j into

∏
j∈N(D′

j)
M .
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(2) Whenever S̃ is another tuple of sorts and ϕ is a definable predicate relative to T
in the free variables x′j ∈ S′j and x̃j ∈ S̃j for j ∈ N, then ϕ(f(x), x̃) is a definable
predicate in the variables x = (xj)j∈N and x̃ = (x̃j)j∈N .

The next proposition gives a more down-to-earth characterization of definable functions
which can be more easily checked in examples. This is in fact typically used as the
definition [3, Definition 9.22].

Proposition 3.17 Let S and S′ be N–tuples of types in the language L and let T be
an L–theory. Let f :

∏
j∈N Sj →

∏
j∈N S′j be a collection of maps fM :

∏
j∈N SMj →∏

j∈N(S′j)
M for M |= T satisfying (1) of Definition 3.16. Then f is a definable function

if and only if, for each k ∈ N, the map ϕk(x, y) = d(fk(x), y) is a definable predicate on∏
j∈N Sj × S′k .

Proof ( =⇒ ) Let S̃ = S′ , and consider the definable predicate ϕ(x′, x̃) = d(x′k, x̃k).
Taking S̃ = S′ in Definition 3.16 (2), we see that if f is a definable function, then
ϕ(f(x), x̃) = d(fk(x), x̃k) is a definable predicate. So substituting y for x̃k , we have
proved the claim.

( ⇐= ) In order to verify (2) of Definition 3.16, let S̃ be an N–tuple of sorts, and
let ϕ(x′, x̃) be a definable predicate on

∏
j∈N S′j ×

∏
j∈N S̃j . We need to show that

ψ(x, x̃) = ϕ(f(x), x̃) is a well-defined definable predicate relative to T. Thus, to check
Definition 3.8, fix D ∈

∏
j∈NDSj and D̃ ∈

∏
j∈NDS̃j

and ϵ > 0. Since we assumed
that Definition 3.16 (1) holds, there exists D′ such that f maps

∏
j∈N Dj into

∏
j∈N D′

j .

By Definition 3.8, there exists a formula η depending on finitely many of the variables
x′j and x̃j that approximates ϕ within ϵ/2 on

∏
j∈N(D′

j)
M ×

∏
j∈N(D̃j)M . Let F′ be

the set of indices j such that η depends on x′j . For t > 0, let

ψt(x, x̃) = inf
yj∈D′

j :j∈F

η(yj : j ∈ F, x̃) +
1
t

∑
j∈F

d(fj(x), yj)


which is a definable predicate by our assumption on f and by Lemma 3.12 (2).

We want to show that ψt is close to ϕ when t is sufficiently small. We automatically have
ψM

t (X, X̃) ≤ ηM(f(X), X̃) for X ∈
∏

j∈N(D′
j)
M and X̃ ∈

∏
j∈N(D̃j)M when M |= T

since fj(X) is a value of Y participating in the infimum. To get a bound in the other
direction, first observe that since η is a formula, |η| is bounded on

∏
j∈N D′

j ×
∏

j∈N D̃j

by some constant C . We then observe using the triangle inequality that

ηM(Y, X̃) +
1
t

∑
j∈F

dM(Yj, fMj (X)) ≥ ηM(fM(X), X̃)
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unless
∑

j∈F dM(Yj, fMj (X)) < 2Ct , and therefore the infimum is witnessed by Y such
that

∑
j∈F dM(Yj, fMj (X)) < 2Ct . Furthermore, by the uniform continuity property of

the formula η (Observation 3.11), there exists t such that if
∑

j∈F dM(Yj, fMj (X)) < 2Ct ,
then

|ηM(Y, X̃) − ηM(f(X), X̃)| < ϵ

2
.

It follows that for this value of t ,

ηM(f(X), X̃) − ϵ

2
≤ ψM

t (X, X̃) ≤ ηM(f(X), X̃)

|ψM
t (X, X̃) − ψM(X, X̃)| < ϵhence also

for M |= T and X ∈
∏

j∈N DM
j and X̃ ∈

∏
j∈N(D̃j)M . Since ψ can be approximated

in this way by definable predicates, it is a definable predicate, which proves the claim
of the proposition.

Corollary 3.18 If fk :
∏

j∈N Sj → S′k is a term for each k ∈ N, then f = (fj)j∈N is a
definable function relative to any theory T.

Proof By definition a term maps a product of domains of quantification into some
domain of quantification, which verifies (1) of Definition 3.16. Moreover, for each k ,
d(fk(x), yk) is a formula, hence a definable predicate, so by the previous proposition f is
a definable function.

Similar to definable predicates, definable functions are automatically uniformly con-
tinuous with respect to d on each product of domains of quantification. This is a
straightforward generalization of [3, Proposition 9.23].

Lemma 3.19 Let L be a language, T an L–theory, S and S′ N–tuples of sorts, and
f :
∏

j∈N Sj →
∏

j∈N S′j a definable function. Then for every D ∈
∏

j∈NDSj and F ⊆ N
finite and ϵ > 0, there exists E ⊆ N finite and δ > 0 such that

dM
Si

(Xi,Yi) < δ for all i ∈ E =⇒ dM
S′j

(fMj (X), fMj (Y)) < ϵ for all j ∈ F

whenever M |= T and X,Y ∈
∏

j∈N DM
j .

Proof Let D′ ∈
∏

j∈NDSj such that fM maps
∏

j∈N DM
j into

∏
j∈N(D′

j)
M for all

M |= T. Fix ϵ > 0 and F ⊆ N finite. Then by Lemma 3.12 and Proposition 3.17, the
object

ϕM(X,Y) = max
j∈F

dM
S′j

(fMj (X),Yj)
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is a definable predicate relative to T. Hence, by Observation 3.11 there exists E ⊆ N
finite and δ > 0 such that

dM
Si

(X′
i ,Xi) < δ for i ∈ E and dM

S′j
(Yj,Y ′

j ) < δ for j ∈ F

=⇒ |ϕM(X,Y) − ϕM(X′,Y′)| < ϵ

for X, X′ ∈
∏

j∈N DM
j and Y, Y′ ∈

∏
j∈M(D′

j)
M and M |= T. Taking Y = f(X), we

see that

|ϕM(X, fM(X)) − ϕM(X′, fM(X))| = max
j∈F

dM
S′j

(fj(X′), fj(X)) < ϵ

whenever M |= T and X, X′ ∈
∏

j∈N Dj and maxi∈E dM
Si

(Xi,X′
i) < δ , which is the

desired uniform continuity property.

Next, we describe the relationship between definable functions and types.

Lemma 3.20 Let S and S′ be N–tuples of sorts, and let f :
∏

j∈N Sj →
∏

j∈N S′j be a
definable function relative to T.

(1) If ϕ is a definable predicate in the variables x′j ∈ S′j for j ∈ N, then ϕ ◦ f is a
definable predicate.

(2) If M |= T and X ∈
∏

j∈N SMj , then tpM(fM(X)) is uniquely determined by
tpM(X) and f .

(3) Let f∗ : SS(T) → SS′(T) be the map such that tpM(fM(X)) = f∗ tpM(X). Then
f∗ is continuous with respect to the logic topology.

Proof (1) Considering another N–tuple S̃ of sorts, we may view ϕ(x) as a definable
predicate in (x, x̃), and hence by Definition 3.16, ϕ ◦ f is a definable predicate.

(2) For every definable predicate ϕ in x′ , ϕ ◦ f is a definable predicate, and hence
ϕM ◦ fM(X) is uniquely determined by tpM(X) for all M |= T and X ∈

∏
j∈N SMj .

Since this is true for every definable predicate ϕ in variables x′ , it follows that tpM(f(X))
is uniquely determined by f and tpM(X).

(3) Let O be an open set in SS′(T). By definition of the topology on SS(T), in order
to show that (f∗)−1(O) is open, is suffices to show that (f∗)−1(O) ∩ SD(T) is open for
every D ∈

∏
j∈NDSj .

For any such D, by Definition 3.16 (1), there exists D′ ∈
∏

j∈NDS′j
such that fM

maps
∏

j∈N DM
j into

∏
j∈N(D′

j)
M for all M |= T. This implies that f∗ maps SD(T)

into SD′(T). Hence, (f∗)−1(O) ∩ SD(T) = (f∗|SD(T))−1(O ∩ SD′(T)), so to show that
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this set is (f∗)−1(O) ∩ SD(T) is open, it suffices to check continuity of f∗ as a map
SD(T) → SD′(T).

By Lemma 3.10, the topology on SD′(T) is generated by the pairings of types with every
definable predicate ϕ in the variables x′ . If ϕ is such a definable predicate, then ϕ ◦ f is
a definable predicate in x by (1), and therefore, it is continuous with respect to the logic
topology on SD(T). Thus, the map f∗ : SD(T) → SD′(T) is continuous as desired.

Finally, we verify that definable functions are closed under composition.

Observation 3.21 Let S, S′ , and S′′ be N–tuples of sorts in the language L. If
f :
∏

j∈N Sj →
∏

j∈N S′j and g :
∏

j∈N S′j →
∏

j∈N S′′j are definable functions, then so is
g ◦ f .

Proof If D ∈
∏

j∈NDSj , then since f is definable, there exists D′ ∈
∏

j∈NDS′j
such

that fM maps
∏

j∈N DM
j into

∏
j∈N(D′

j)
M for every M |= T. Similarly, there exists

D′′ ∈
∏

j∈NDS′′j
such that gM maps

∏
j∈N(D′

j)
M into

∏
j∈N(D′′

j )M . Hence, (g ◦ f)M

maps
∏

j∈N DM
j into

∏
j∈N(D′′

j )M , so that g ◦ f satisfies (1) of Definition 3.16.

Let S̃ be another N–tuple of sorts and let ϕ be a definable predicate in the variables
x′′j ∈ S′′j for j ∈ N and x̃j for j ∈ N. By the definability of g, ψ(x′, x̃) := ϕ(g(x′), x̃) is
also a definable predicate. Then by definability of f , ψ(f(x), x̃) = ϕ((g ◦ f)(x), x̃) is a
definable predicate. Therefore, g ◦ f satisfies (2) of Definition 3.16, so it is a definable
function.

3.4 Quantifier-free types and definable predicates

Quantifier-free formulas, that is, formulas defined without suprema or infima, are
the simplest kind of formula and have special significance in our study of tracial
W∗–algebras.

Definition 3.22 Quantifier-free formulas are formulas obtained through the application
of relations to terms and iterative application of continuous functions Rn → R, that is,
formulas obtained without using sup and inf operations. If S is an N–tuple of sorts,
we denote the set of quantifier-free formulas in variables xj ∈ Sj for j ∈ N by Fqf,S .

Quantifier-free types, the space of quantifier-free types, and quantifier-free definable
predicates are defined in the same ways as the analogous objects for types, to wit:
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Definition 3.23 Let S be an N–tuple of sorts in the language L. If M is an L–structure,
then the quantifier-free type of X ∈

∏
j∈N SMj is the map:

tpMqf (X) : FS → R, ϕ 7→ ϕM(X)

Definition 3.24
• If T is an L–theory and S is an N–tuple of sorts, then Sqf,S(T) will denote the

set of types tpMqf (X) for X ∈
∏

j∈N SMj and M |= T.
• If D ∈

∏
j∈N DS , then Sqf,D(T) will denote the set of types tpM(X) for M |= T

and X ∈
∏

j∈N DM
j .

• We equip Sqf,D(T) with the weak-⋆ topology as a subset of the dual of Fqf,S .
• We equip Sqf,S(T) with the topology such that O is open if and only if O∩Sqf,D(T)

is open for every D ∈
∏

j∈NDSj . We call this the (quantifier-free) logic topology.

Definition 3.25 Let T be an L–theory and S is an N–tuple of sorts. A quantifier-free
definable predicate is collection of functions ϕM :

∏
j∈N SMj → R for M |= T such

that for every D ∈
∏

j∈NDSj and ϵ > 0, there exists a quantifier-free formula ψ in
finitely many of the variables xj ∈ Sj , such that

|ϕM(X) − ψM(X)| < ϵ

for X ∈
∏

j∈N DM
j for M |= T.

The following can be verified in the same way as for types, when S is an N–tuple of
sorts and T is an L–theory:

• For each D ∈
∏

j∈NDSj , the space Sqf,D(T) is a compact Hausdorff space.
• ϕ is a quantifier-free definable predicate if and only if ϕM(X) = ω(tpM(X)) for

some continuous ω : Sqf,S(T) → R.
• If ϕj is a quantifier-free definable predicate for j ∈ N and F : RN → R is

continuous, then F((ϕj)j∈N) is a quantifier-free definable predicate.

Furthermore, the quantifier-free type space and the type space can be related as follows.

Observation 3.26 Let S be an N–tuple of sorts in L and T an L–theory. Let
π : SS(T) → Sqf,S(T) be the map that sends a type (as a linear map FS → R) to its
restriction to Fqf,S . Then π(SD(T)) = Sqf,D(T) for each D ∈

∏
j∈NDSj , and π is a

topological quotient map.

Proof First, π is a continuous map SD(T) → Sqf,D(T) by definition of the weak-⋆
topology. Then since a set in SS(T) is open if and only if its restriction to SD(T)
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is open, and the same holds for the quantifier-free versions, we deduce that π is
continuous. It is immediate from the definitions that π(SD(T)) = Sqf,D(T). Then
because SD(T) is compact and Sqf,D(T) is Hausdorff, π defines a topological quotient
map SD(T) → Sqf,D(T). Finally, using the definition of open sets in SS(T) and Sqf,S(T),
we deduce that O ⊆ Sqf,S(T) is open if and only if π−1(O) is open, hence π is a
topological quotient map.

Remark 3.27 A convenient feature of Ltr is that π−1(Sqf,r(Ttr)) = Sr(Ttr). Indeed,
suppose that M |= Ttr and X ∈ L∞(M)N with tpMqf (X) ∈ Sr(Ttr). Then the operator
norm of Xj can be recovered from tpMqf (X) through

∥Xj∥ = lim
k→∞

(Re trM((X∗
j Xj)k))1/2k

hence X ∈
∏

j∈N DM
rj

, so that tpM(X) ∈ Sr(Ttr).

3.5 Quantifier-free definable functions in Ltr

Quantifier-free definable functions are defined analogously to definable functions.

Definition 3.28 T be an L–theory, and let S and S′ be N–tuples of sorts. A
quantifier-free definable function f :

∏
j∈N Sj →

∏
j∈N S′j is a collection of functions

fM :
∏

j∈N SMj →
∏

j∈N(S′j)
M for all M |= T satisfying the following conditions:

(1) For each D ∈
∏

j∈NDSj , there exists D′ ∈
∏

j∈NDS′j
such that for every M |= T,

fM maps
∏

j∈N DM
j into

∏
j∈N(D′

j)
M .

(2) Whenever S̃ is another tuple of sorts and ϕ is a quantifier-free definable predicate
relative to T in the free variables x′j ∈ S′j and x̃j ∈ S̃j for j ∈ N, then ϕ(f(x), x̃) is
a quantifier-free definable predicate in the variables x = (xj)j∈N and x̃ = (x̃j)j∈N .

Example 3.29 If fj is a term in a finite subset of the variables xj , then f = (fj)j∈N is a
quantifier-free definable function relative to any L–theory T. To see this, suppose that ϕ
is a quantifier-free definable predicate and D is a tuple of domains of quantification. Let
f map D into D′ . As a quantifier-free definable predicate, ϕ can, for any given ϵ > 0,
be approximated on D′ by a quantifier-free formula ψ with error smaller than ϵ on∏

j∈N(D′
j)
M for all M |= T. Then ψ ◦ f is a quantifier-free formula that approximates

ϕ ◦ f within ϵ on
∏

j∈N DM
j for all M |= T.

The following facts about quantifier-free definable functions are verified just as in the
case of definable functions:
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• Quantifier-free definable functions are closed under composition.
• If ϕ is a quantifier-free definable predicate and f is a quantifier-free definable

function, then ϕ ◦ f is a quantifier-free definable predicate.
• For each definable function f :

∏
j∈N Sj →

∏
j∈N S′j , there is a continuous map

f∗ : SS(T) → SS′(T) given by tpMqf (f(X)) = f∗ tpMqf (X).
• If f is a quantifier-free definable function, then for each k ∈ N, the object
ϕ(x, y) = dS′k

(fk(x), y) is a quantifier-free definable predicate.
• Hence, f is a quantifier-free definable function, then it is a definable function by

Proposition 3.17.
• Thus, a quantifier-free definable function is uniformly continuous on every

product of domains of quantification.
The proof of ( ⇐= ) in Proposition 3.17 uses quantifiers (specifically infima) and thus
does not directly adapt to the quantifier-free setting. This is why we argued that terms
are quantifier-free functions directly in Example 3.29 rather than as in Corollary 3.18.

In the special case of Ltr and Ttr , we have the following characterizations of quantifier-
free definable functions. Recall that Ltr has one type S and the domains of quantification
are given by Dr for each r > 0. Given r = (rj)j∈N ∈ (0,∞)N , we write Sqf,r(Ttr) for
the set of quantifier-free types of N–tuples in

∏
j∈N Drj in Ltr relative to Ttr . A variant

of this theorem was proved in the author’s Ph.D. thesis [22, Proposition 13.6.4].

Theorem 3.30 Let f be a collection of functions fM : L∞(M)N → L∞(M)N for
each M |= Ttr . Suppose that for every r ∈ (0,∞)N , there exists r′ ∈ (0,∞)N such
that fM maps

∏
j∈N DM

rj
into

∏
j∈N DM

r′j
; assume that for each r a corresponding r′

has been chosen, which we will refer to below. Then the following are equivalent.
(1) f is a quantifier-free definable function in Ltr relative to Ttr .
(2) For each k ∈ N, the object ϕ(x, y) = dS′k

(fk(x), y) is a quantifier-free definable
predicate.

(3) For each k ∈ N, r ∈ (0,∞)N , and quantifier-free type µ ∈ Sqf,Dr(Ttr) and ϵ > 0,
there exists a term g and an open neighborhood O of µ in Sqf,r(Ttr) such that,
for all M |= T and X ∈

∏
j∈N DM

rj
,

gM(X) ∈ Dr′k

tpMqf (X) ∈ O =⇒ dM(fMk (X), gM(X)) < ϵ.and

(4) For each k ∈ N, r ∈ (0,∞)N , and ϵ > 0, there exist m ∈ N, quantifier-free
formulas ϕ1 , . . . , ϕm , and terms g1 , . . . , gm such that

m∑
j=1

ϕMj (X)gMj (X) ∈ Dr′k
and dM

fMk (X),
m∑

j=1

ϕMj (X)gMj (X)

 < ϵ
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whenever M |= T and X ∈
∏

j∈N DM
rj

.

Proof (1) =⇒ (2) follows as in Proposition 3.17.

(2) =⇒ (3). Fix r and µ and ϵ. Let X be an N–tuple from a tracial W∗–algebra M
which has quantifier-free type µ. Note that if ϕ is a quantifier-free formula and N is a
W∗–subalgebra of M containing X, then ϕN (X) = ϕM(X). Hence, the quantifier-free
type of X in N is the same as the quantifier-free type in M. In particular, we can replace
M with N = W∗(X) and thus assume without loss of generality that M = W∗(X).

Recall that M is faithfully represented on the GNS space L2(M) (see §2.1, the standard
representation). By the Kaplansky density theorem [27] (also explained in Kadison and
Ringrose [26, Theorem 5.3.5]), the ball of radius r′k in the C∗–algebra C∗(X) generated
by X is dense in the ball of radius r′k in M = W∗(X) with respect to the strong operator
topology. Since approximation in the strong operator topology implies approximation
in the 2–norm associated to the trace, it follows that there exists Z ∈ C∗(X) such that
∥Z∥ ≤ r′k and ∥Z − Y∥2 = dM(Z,Y) < ϵ/2.

Next, we must obtain a term g bounded by r′k such that dM(gM(X), Y) < ϵ. Because we
want g to be bounded by r′k on

∏
j∈N Drj for all M |= Ttr , we view the ∗–polynomials

in infinitely many indeterminates as part of a universal C∗–algebra. For ∗–polynomials
p in infinitely many variables xj : j ∈ N, let:

∥p∥u = sup

∥p(X)∥ : X ∈
∏
j∈N

DM
rj
,M |= Ttr


This defines a C∗–norm on C⟨xj, x∗j : j ∈ N⟩. Let A be the completion of C⟨xj, x∗j :
j ∈ N⟩ into a C∗–algebra. If M |= Ttr and X ∈

∏
j∈N DM

j , then ∥p(X)∥ ≤ ∥p∥u by
definition, so there is a ∗–homomorphism π : A → C∗(X) mapping xj ∈ A to Xj ∈ M
for each j ∈ N. By Blackadar [5, II.5.1.5], there exists z ∈ A such that π(z) = Z and
∥z∥A ≤ r′k .

Now by definition C⟨xj, x∗j : j ∈ N⟩ is dense in A. It follows that every element of the
r′k –ball of A can be approximated by non-commutative ∗–polynomials in the r′k –ball.
In particular, there exists some g ∈ C⟨xj, x∗j : j ∈ N⟩ with ∥g − z∥A < ϵ/2, and we can
also arrange that ∥g∥A ≤ r′k .

Then g is a term such that ∥gN (Y)∥ ≤ r′k for all Y ∈
∏

j∈N DN
rj

for all N |= Ttr and
such that dM(fMk (X), gM(X)) < ϵ for our particular choice of M = W∗(X) with
tpMqf (X) = µ. Now observe that ψ(x) is a quantifier-free definable predicate since the
term g is a quantifier-free definable function. Let O = {ν ∈ Sqf,r(Ttr) : ν(ψ) < ϵ}.
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Then O ∋ µ by our choice of g and O is open by continuity of ψ . Moreover, by
definition, if N |= T and Y ∈

∏
j∈N Drj and tpNqf (Y) ∈ O , then dN (fNk (Y), gN (Y)) <

ϵ.

(3) =⇒ (4). Fix k ∈ N, r ∈ (0,∞)N , and δ > 0. For each µ ∈ Sr(Ttr), there
exists an open Oµ ⊆ Sr(Ttr) and a term gµ such that for M |= T and X ∈

∏
j∈N DM

rj
,

gMµ (X) ∈ Dr′k
and

tpMqf (X) ∈ O =⇒ dM(gMµ (X), fMk (X)) < δ.

The sets Oµ form an open cover of the compact set Sqf,r(Ttr), and hence there exists
m ∈ N and µ1 , . . . , µm such that Oµ1 , . . . , Oµm cover Sqf,r(Ttr). Let Oj = Oµj and
gj = gµj .

Since Sqf,r(Ttr) is a compact Hausdorff space, there exists a continuous partition of
unity ψ1 , . . . , ψm subordinated to the cover O1 , . . . , Om . In other words, there exist
γ1 , . . . , γm ∈ C(Sqf,r(Ttr)) such that γj ≥ 0, γj|Oc

j
= 0, and

∑m
j=1 γj = 1. Therefore,

for M |= T and X ∈
∏

j∈N DM
rj

,

dM

 m∑
j=1

γj(tpMqf (X))gMj (X), fMk (X)

 =

∥∥∥∥∥∥
m∑

j=1

γj(tpMqf (X))(gMj (X) − fMk (X))

∥∥∥∥∥∥
L2(M)

≤
m∑

j=1

γj(tpMqf (X))
∥∥gMj (X) − fMk (X)

∥∥
L2(M)

≤
m∑

j=1

γj(tpMqf (X))δ

= δ∥∥∥∥∥∥
m∑

j=1

γj(tpMqf (X))gMj (X)

∥∥∥∥∥∥
L∞(M)

≤
m∑

j=1

γj(tpMqf (X))∥gMj (X)∥L∞(M) ≤ r′k.and

Because quantifier-free formulas comprise a dense subset of C(Sqf(T)) by the Stone–
Weierstrass Theorem, there exist quantifier-free formulas ψ1 , . . . , ψm such that

|ψM
j (X) − γj(tpM(X))| ≤ δ

m
for M |= Ttr and X ∈

∏
j∈N

DM
j .
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It follows that∥∥∥∥∥∥
m∑

j=1

ψM
j (X)gMj (X)

∥∥∥∥∥∥
L∞(M)

≤ r′k

m∑
j=1

|ψM
j (X)| ≤ r′k(1 + δ)

∥∥∥∥∥∥
m∑

j=1

γj(tpMqf (X))gMj (X) −
m∑

j=1

ψM
j (X)gMj (X)

∥∥∥∥∥∥
L2(M)

≤ r′kδ.and

Therefore, let ϕj = (1 + δ)−1ψj . Then∥∥∥∥∥∥
m∑

j=1

ϕMj (X)gMj (X)

∥∥∥∥∥∥
L∞(M)

≤ (1 + δ)−1r′k

m∑
j=1

|ψM
j (X)| ≤ r′k∥∥∥∥∥∥

m∑
j=1

ϕMj (X)gMj (X) −
m∑

j=1

ψM
j (X)gMj (X)

∥∥∥∥∥∥
L2(M)

≤ r′k(1 − (1 + δ)−1) =
δr′k

1 + δ
.and

Hence, by the triangle inequality:∥∥∥∥∥∥
m∑

j=1

ϕMj (X)gMj (X) − fM(X)

∥∥∥∥∥∥
L2(M)

≤ δ + δr′k +
δr′k

1 + δ

By choosing δ sufficiently small, we can guarantee that the right-hand side is smaller
than a given ϵ > 0, so the quantifier-free formulas ϕ1 , . . . , ϕm have the desired
properties for (4).

(4) =⇒ (2). Fix k and we will show that ϕ(x, y) = d(fk(x), y) is a quantifier-free
definable predicate. To this end, fix r ∈ (0,∞)N , r′ > 0, and ϵ > 0, and we will
approximate ϕ by a quantifier-free formula on

∏
j∈N DM

j × Dr′ within ϵ for M |= Ttr .
Let m ∈ N and ϕ1 , . . . , ϕm and g1 , . . . , gm be as in (4) for our given r and ϵ, and let

hM(X) =
m∑

j=1

ϕMj (X)gMj (X).

Then for M |= Ttr and X ∈
∏

j∈N DM
rj

and Y ∈ Dr′ , we have

|dM(fMk (X),Y) − dM(hM(X),Y)| ≤ dM(fMk (X), hM(X)) < ϵ.
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But note that

dM(hM(X),Y) =

∥∥∥∥∥∥
∑
j=1

ϕMj (X)gMj (X) − Y

∥∥∥∥∥∥
L2(M)

=

( m∑
j,k=1

ϕMj (X)ϕMk (X) Re trM(gMj (X)∗gMk (X))

− 2
m∑

j=1

ϕMj (X) Re trM(gMj Y) + Re trM(Y∗Y)
)1/2

which is a quantifier-free formula by inspection.

(3) =⇒ (1). Let ϕ be a quantifier-free definable predicate, and we will show that ϕ ◦ f
defines a continuous function on Sqf,r(Ttr) for each r ∈ (0,∞)N for each r, and hence
ϕ ◦ f is a quantifier-free definable predicate. To this end, it suffices to show that for
each r ∈ (0,∞), each µ ∈ Sqf,r(Ttr), and each ϵ > 0, there exists an neighborhood
O of µ in Sqf,r(Ttr) such that |ϕM ◦ fM(X) − µ(ϕ ◦ f)| < ϵ whenever M |= Ttr and
tpMqf (X) ∈ O .

Fix r, µ, and ϵ. Let r′ ∈ (0,∞)N be such that fM maps
∏

j∈N DM
rj

into
∏

j∈N DM
r′j

for M |= T. By the uniform continuity property of definable predicates, there exists
F ⊆ N finite and δ > 0 such that:

Y,Y′ ∈
∏
j∈N

DM
r′j

and max
k∈F

dM(Yk,Y ′
k) < δ =⇒ |ϕM(Y) − ϕM(Y′)| < ϵ

3

By (3), for each k ∈ F , choose a term gk and open Ok ⊆ Sr(Ttr) such that, for all M |= T
and X ∈

∏
j∈N DM

rj
, gMk (X) ∈ Dr′k

and tpMqf (X) ∈ Ok =⇒ dM(fMk (X), gM(X)) < δ.

For k ̸∈ F , let gk = 0. Then, by our choice of δ and gMk , for all M |= T and
X ∈

∏
j∈N DM

rj
:

tpMqf (X) ∈
⋂
k∈F

Ok =⇒ |ϕM(fM(X)) − ϕM(gM(X))| < ϵ

3

Moreover, g = (gk)k∈N is an N–tuple of terms, hence g is a quantifier-free definable
function. This implies that ϕ ◦ g is a quantifier-free definable predicate. This implies
that O′ := {ν ∈ Sqf,r(Ttr) : |ν(ϕ ◦ g) − µ(ϕ ◦ g)| < ϵ/3} is open in Sqf,r(Ttr). Let:

O := O′ ∩
m⋂

k=1

Ok
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Then M |= Ttr and tpMqf (X) ∈ O implies that

|ϕM ◦ fM(X) − µ(ϕ ◦ f)|
≤ |ϕM ◦ fM(X) − ϕM ◦ gM(X)|+ |ϕM ◦ gM(X) − µ(ϕ ◦ g)|

+ |µ(ϕ ◦ g) − µ(ϕ ◦ f)|
< ϵ

as desired.

Example 3.31 Suppose ρj ∈ C(R), and let fMj (X) = ρj( 1
2 (Xj + X∗

j )) for M |= T,
where ρj( 1

2 (Xj + X∗
j )) is defined through functional calculus. By approximating ρj

uniformly on [−rj, rj] by a polynomial gj and applying the spectral theorem, we can
verify Theorem 3.30 (3) and hence conclude that f is a quantifier-free definable function
relative to Ttr . Similarly, if fj(X) = Xjρj(X∗

j Xj), then f is a quantifier-free definable
function, an observation that we will use in the proof of Proposition 3.32. In this
way, continuous functional calculus fits into the larger model-theoretic framework of
quantifier-free definable functions.

Building on Theorem 3.30 and Example 3.31, we can show that every element of
the W∗–algebra can be realized as a quantifier-free definable function applied to the
generators. This fact will be use later on to show that covering entropy remains invariant
under change of generators for a tracial W∗–algebra. This is a version of [22, Proposition
13.6.6] and [18, Proposition 2.4], and the idea behind the proof is a “forced limit”
construction (see Ben Yaacov and Usvyatsov [4, §3.2] or Ben Yaacov, Berenstein,
Henson, and Usvyatsov [3, §9, definable predicates]) applied to quantifier-free definable
functions rather than quantifier-free definable predicates.

Proposition 3.32 If M = (M, τ ) is a tracial W∗–algebra and X ∈
∏

j∈N Drj generates
M and Y ∈

∏
j∈N DM

r′j
, then there exists a quantifier-free definable function f in

Ltr relative to Ttr such that Y = f(X). In fact, f can be chosen so that fMk maps∏
j∈N L∞(M) into

∏
j∈N DM

r′j
for all M |= T.

Proof Arguing as in (2) =⇒ (3) of Theorem 3.30, for each k ∈ N and m ∈ N
there exists a non-commutative polynomial gk,m such that ∥gNk,m(X′)∥L∞(N ) ≤ r′k for
N |= Ttr and X′ ∈

∏
j∈N DN

rj
, and:

dM(gMk,m(X),Yk) <
1

2m+1
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Hence also:
dM(gMk,m(X), gMk,m+1(X)) <

3
2m+2 <

1
2m

Let Fm : R → R be the continuous function such that Fm(t) = 0 for t ≤ 3/2m+2 and
Fm(t) = 1 for t ≥ 1/2m and Fm is affine on [3/2m+2, 1/2m]. Then

ϕk,m(x) = Fk(d(gk,m(x), gk,m+1(x)))

is a quantifier-free formula. Moreover, by construction, ϕMk,m(X) = 1 for our given M
and X, while at the same time ϕNk,m(X′) is zero whenever ∥gNk,m(X′)−gNk,m+1(X′))∥L2(N ) >

1/2m for any N |= Ttr and X′ ∈
∏

j∈N DN
rj

. Let

ψk,m = ϕk,1ϕk,2 . . . ϕk,m.

Then ψk,m satisfies the same properties that we just showed for ϕk,m with the additional
property that ψk,m+1 ≤ ψk,m .

For N |= Ttr and X′ ∈ L∞(N )N , define:

fNk,m(X′) := gNk,1(X′) +
m−1∑
j=1

ψN
k,j(X

′)(gNk,j+1(X′) − gNk,j(X
′))

= (1 − ψk,1)N (X′)gNk,1(X′) +
m−1∑
j=2

(ψk,j−1 − ψk,j)N (X′)gNk,j(X
′)

+ ψN
k,m−1(X′)gNk,m(X′)

Then f·,m = (fk,m)k∈N is a quantifier-free definable function by Theorem 3.30 since it is
equal to a finite sum of quantifier-free formulas multiplied by terms. Observe that for
N |= Ttr and X′ ∈

∏
j∈N DN

rj
,

∥fNk,m(X′)∥L∞(N ) ≤ (1−ψk,1)N (X′)r′k +
m−1∑
j=2

(ψk,j−1−ψk,j)N (X′)r′k +ψ
N
k,m−1(X′)r′k = r′k

relying on the fact that ψk,j ≤ ψk,j−1 . Furthermore, for X′ ∈
∏

j∈N DN
rj

, we have:

∥fNk,m(X′) − fNk,m+1(X′)∥L2(N ) = ψN
k,m(X′)∥gNk,m(X′) − gNk,m+1(X′)∥L2(N ) ≤

1
2m

This implies that for X′ ∈
∏

j∈N DN
rj

, the sequence fNk,m(X′) converges as m → ∞ to
some fNk (X′) with:

∥fNk (X′) − fNk,m(X′)∥L2(N ) ≤
1

2m−1
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Furthermore, for our given M and X, we have

fMk (X) = gMk,1(X) +
∞∑

j=1

(gMk+1,j(X) − gMk,j (X)) = Yk

because we assumed that gMk,j (X) → Yk as j → ∞.

Now this fk is only well-defined a priori on
∏

j∈N Drj for our fixed choice of r. In order
to extend it to a global function, we use a cut-off trick based on Example 3.31. Let
ρj : R → R be the function:

ρj(t) =

{
1, t ≤ r2

j ,

rjt−1/2, t ≥ r2
j

Let h be given by hNj (X′) = X′
jρj((X′

j)
∗Xj). Then h is a quantifier-free definable

function relative to Ttr by Example 3.31. Moreover, if N |= Ttr and X′ ∈, we have

∥hNj (X′)∥2
L∞(N ) = ∥hNj (X′)∗hNj (X′)∥L∞(N )

= ∥ρj((X′
j)
∗X′

j))(X
′
j)
∗X′

jρj((X′
j)
∗X′

j)∥L∞(N ) ≤ r2
j

since ρj(t)2t ≤ r2
j . Therefore, hN maps L∞(N )N into

∏
j∈N DN

rj
for all N |= Ttr .

Also, hN (X′) = X′ for X′ ∈
∏

j∈N DN
rj

.

Now f·,m ◦h is a quantifier-free definable function since it is a composition of quantifier-
free definable functions. Because fk,m converges to fk uniformly on

∏
j∈N Drj as

m → ∞, we see that fk,m ◦ h converges uniformly to fk ◦ h globally as m → ∞. This
implies that f ◦h is a quantifier-free definable function because quantifier-free functions
are closed under limits that are uniform on each product of domains (for instance, using
Theorem 3.30 (3) or (4)). Moreover, fM(hM(X)) = fM(X) = Y by construction.
Finally, (f ◦h)N maps into

∏
j∈N DN

r′j
for all N |= Ttr since (fk,m ◦h)N maps

∏
j∈N DN

rj

into DN
r′k

.

Remark 3.33 We can also deduce from the proof that every continuous function γ on
Sqf,r(Ttr) extends to a continuous function on Sqf(Ttr), namely γ ◦ h∗ where h is as in
the proof. In other words, every quantifier-free definable predicate on

∏
j∈N Drj relative

to Ttr extends to a global quantifier-free definable predicate. The same can be said for
definable predicates, dropping the word “quantifier-free” in this argument.

Proposition 3.32 also leads to a proof of the following fact, which is well-known among
W∗–algebraists:
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Lemma 3.34 Let X be an N–tuple in a tracial W∗–algebra M and Y an N–tuple in a
tracial W∗–algebra N . Let W∗(X) and W∗(Y) be the W∗–subalgebras generated by X
and Y with the traces obtained from restricting the traces on M and N respectively.
Then the following are equivalent:

(1) tpMqf (X) = tpNqf (Y).
(2) There exists a trace-preserving ∗–isomorphism σ : W∗(X) → W∗(Y) such that

σ(X) = Y.

Proof (2) =⇒ (1). If such a ∗–isomorphism σ exists, then for every p ∈ C⟨xi, x∗i :
i ∈ N⟩, we have τM(p(X)) = τN (σ(p(X))) = τN (p(Y)). Hence, every atomic formula
evaluates to the same thing on X and on Y. Since general quantifier-free formulas are
obtained by applying continuous connectives to atomic formulas, it follows by induction
on complexity that ϕM(X) = ϕN (Y) for any quantifier-free formula Y, and hence
tpMqf (X) = tpNqf (Y).

(1) =⇒ (2). Let Fqf(Ttr) be the set of quantifier-free definable functions in Ltr with
respect to Ttr . Since quantifier-free functions are closed under composition, Fqf(Ttr)
is a ∗–algebra. Moreover, the evaluation maps α : Fqf(Ttr) → M, f 7→ fM(X) and
β : Fqf(Ttr) → N , f 7→ fN (Y) are ∗–homomorphisms, and by the previous proposition
the images of α and β are W∗(X) and W∗(Y) respectively. Since Re tr(f ) and
Im tr(f ) are quantifier-free definable predicates, τM ◦α(f ) = tr(f )M(X) = tr(f )N (Y) =
τN ◦ β(f ) for f ∈ Fqf(Ttr), hence also ∥α(f )∥L2(M) = ∥β(f )∥L2(N ) . This implies that
kerα = kerβ . Therefore, we obtain a ∗–isomorphism W∗(X) ∼= Fqf(Ttr)/ kerα =

Fqf(Ttr)/ kerβ ∼= W∗(Y), which is trace-preserving since τM ◦ α = τN ◦ β .

4 Entropy for types

We define a version of Hayes’ 1–bounded entropy for types rather than only quantifier-
free types. Later, in §5, we will see that Hayes’ 1–bounded entropy of N in the
presence of M (denoted hU (N : M)) can be realized as a special case of entropy for a
closed subset of the type space.

4.1 Definition of covering entropy

If K is a subset of the type space S(Ttr) and r ∈ (0,∞)N , we define

Γ(n)
r (K) =

X ∈
∏
j∈N

DMn(C)
rj

: tpMn(C)(X) ∈ K

 .
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We view this as a microstate space as in Voiculescu’s free entropy theory. We will then
define the entropy of O through covering numbers of Γ(n)

r (O) up to unitary conjugation.

Definition 4.1 (Orbital covering numbers) Given Ω ⊆ Mn(C)N and a finite F ⊆ N
and ϵ > 0, we define Norb

F,ϵ(Ω) to be the set of Y ∈ Mn(C)N such that there exists
a unitary U in Mn(C) and X ∈ Ω such that ∥Yi − UXiU∗∥2 < ϵ for all i ∈ F . If
Ω ⊆ Norb

F,ϵ(Ω
′), we say that Ω′ orbitally (F, ϵ)–covers Ω. We denote by Korb

F,ϵ(Ω) the
minimum cardinality of a set Ω′ that orbitally (F, ϵ)–covers Ω.

Definition 4.2 Fix a non-principal ultrafilter U on N. For a subset K of the S(Ttr)
and F ⊆ I finite and ϵ > 0, we define

EntUr,F,ϵ(K) = inf
open O⊇K

lim
n→U

1
n2 log Korb

F,ϵ(Γ
(n)
r (O)).

Observation 4.3 (Monotonicity) Let K′ ⊆ K ⊆ S(Ttr), let F′ ⊆ F ⊆ N finite, let
0 < ϵ ≤ ϵ′ , and let r, r′ ∈ (0,∞)N with r′j ≤ rj . Then

EntUr′,F′,ϵ′(K′) ≤ EntUr,F,ϵ(K).

In particular, if O ⊆ S(Ttr) is open, then

EntUr,F,ϵ(O) = lim
n→U

1
n2 log Korb

F,ϵ(Γ
(n)
r (O)).

Definition 4.4 (Entropy for types) For K ⊆ S(T), define

EntUr (K) := sup
finite F⊆N
ϵ>0

EntUr,F,ϵ(K)

EntU (K) := sup
r∈(0,∞)N

EntUr (K).and

Moreover, if µ ∈ S(Ttr), we define EntU (µ) = EntU ({µ}).

4.2 Variational principle

In this section, we show that the covering entropy defines an upper semi-continuous
function on the type space, and then deduce a variational principle for the entropy of a
closed set, in the spirit of various results in the theory of entropy and large deviations.

Lemma 4.5 (Upper semi-continuity) For each r ∈ (0,∞)N , F ⊆ N finite, and ϵ > 0,
the function µ 7→ EntUr,F,ϵ(µ) is upper semi-continuous on S(Ttr).
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Proof For each open O ⊆ S(Ttr), let

fO(µ) =

{
EntUr,F,ϵ(O), µ ∈ O
∞, otherwise.

Since O is open, fO is upper semi-continuous. Moreover, EntUr,F,ϵ(µ) is the infimum of
fO(µ) over all open O ⊆ S(Ttr), and the infimum of a family of upper semi-continuous
functions is upper semi-continuous.

Proposition 4.6 (Variational principle) Let K ⊆ S(Ttr) and let r ∈ (0,∞)N , F ⊆ N
finite, and ϵ > 0. Then

(4–1) sup
µ∈K

EntUr,F,ϵ(µ) ≤ EntUr,F,ϵ(K) ≤ sup
µ∈cl(K)

EntUr,F,ϵ(µ).

Hence,

(4–2) sup
µ∈K

EntU (µ) ≤ EntU (K) ≤ sup
µ∈cl(K)

EntU (µ).

Proof If µ ∈ K , then by monotonicity (Observation 4.3), EntUF,ϵ({µ}) ≤ EntUF,ϵ(K).
Taking the supremum over µ ∈ K , we obtain the first inequality of (4–1).

For the second inequality of (4–1), let C = supµ∈cl(K) EntUF,ϵ(µ). If C = ∞, there
is nothing to prove. Otherwise, let C′ > C . For each µ ∈ cl(K) ∩ Sr(Ttr), there
exists some open neighborhood Oµ of µ in S(Ttr) such that EntUr,F,ϵ(Oµ) < C′ . Since
{Oµ}µ∈cl(K)∩Sr(Ttr) is an open cover of the compact set cl(K) ∩ Sr(Ttr), there exist µ1 ,
. . . , µk ∈ cl(K) ∩ Sr(Ttr) such that

K ∩ Sr(Ttr) ⊆
k⋃

j=1

Oµj .

Let O =
⋃k

j=1 Oµj . Then

Korb
F,ϵ(Γ

(n)
r (O)) ≤

k∑
j=1

Korb
F,ϵ(Γ

(n)
r (Oµj)) ≤ k max

j
Korb

F,ϵ(Γ
(n)
r (Oµj)).

Thus,
1
n2 log Korb

F,ϵ(Γ
(n)
r (O)) ≤ 1

n2 log k + max
j

1
n2 log Korb

F,ϵ(Γ
(n)
r (Oµj)).

Taking the limit as n → U ,

EntUr,F,ϵ(cl(K)) ≤ EntUr,F,ϵ(O) ≤ max
j

EntUr,F,ϵ(Oµj) ≤ C′.
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Since C′ > C was arbitrary,

EntUr,F,ϵ(K) ≤ Entr,F,ϵ(cl(K)) ≤ C = sup
µ∈cl(K)

EntUr,F,ϵ(µ)

completing the proof of (4–1). Taking the supremum over F and ϵ and r in (4–1), we
obtain (4–2).

4.3 Invariance under change of coordinates

Next, we prove certain invariance properties of the covering entropy. First, EntUr (µ) is
independent of r provided that µ ∈ Sr(Ttr). Second, if W∗(X) = W∗(Y) inside M,
then EntU (tpM(X)) = EntU (tpM(Y)), which allows us to define EntU (N ,M) for a
W∗–subalgebra N inside M. Both of these properties are deduced from the following
lemma about push-forward under definable functions. This is closely related to Hayes
[16, Lemma A.8 and Theorem A.9].

Proposition 4.7 (Monotonicity under push-forward) Let f be a definable function
relative to Ttr , let r ∈ (0,∞)N , and let r′ ∈ (0,∞)N be such that f maps

∏
j∈N Drj into∏

j∈N Dr′j
. Let K ⊆ Sr(Ttr) be closed. Then

EntUr′(f∗(K)) ≤ EntUr (K).

Remark 4.8 The analogous monotonicity property does not hold for the original
1–bounded entropy h of a quantifier-free type, but it does hold for 1–bounded entropy
in the presence. The monotonicity property holds for the full type and for the existential
type of X because those types already encode information about how X interacts with
the ambient algebra. For more information, see Remark 5.16.

Proof Let F′ ⊆ N finite and ϵ′ ∈ (0, 1) be given. Because f is a definable function, it
is uniformly continuous by Lemma 3.19, hence there exists a finite F ⊆ I and ϵ > 0
such that for every M |= Ttr and X, Y ∈

∏
j∈N DM

rj
,

(4–3) ∥Xj − Yj∥2 < ϵ for all j ∈ F =⇒ ∥fj′(X) − fj′(Y)∥2 < ϵ′/3 for all j′ ∈ F′.

Let O be a neighborhood of K in Sr(Ttr). By Urysohn’s lemma, there exists a
continuous function ψ : Sr(Ttr) → [0, 1] such that ϕ = 0 on K and ϕ = 1 on
Sr(Ttr)\O . As in Proposition 3.9, there exists a formula η such that |ηM−ϕM| < ϵ′/3
on
∏

j∈N DM
rj

. Next, define ψM :
∏

j∈N SMr′j → R by

ψM(Y) = inf
X∈

∏
j∈N DM

j

(
ηM(X) + max

j′∈F′
dM(fMj′ (X),Yj′)

)
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which is a definable predicate relative to Ttr by Lemma 3.12.

Viewing ψ as a continuous function on Sr′(Ttr), let O′ = ψ−1((−∞, 2ϵ′/3)). Note
that f∗(K) ⊆ O′ since if Y = fM(X), then we can take this value of X in the infimum
defining ψ and obtain that ψM(Y) ≤ ϵ′/3. Meanwhile, if M |= Ttr and Y ∈

∏
j∈N DM

r′j
with tpM(Y) ∈ O′ , then there exists X ∈

∏
j∈N DM

rj
with

ηM(X) + max
j′∈F′

dM(fMj′ (X),Yj′) <
2ϵ′

3

which implies that tpM(X) ∈ O and maxi′∈F′∥fMi′ (Y) − Xi′∥ < 2ϵ′/3. Applying
this with M = Mn(C), we obtainΓ(n)(O′) ⊆ N2ϵ′/3(fMn(C)(Γ(n)(O))). If Ω is an
(F, ϵ)–cover of Γ(n)(O), then by (4–3) and the fact that f is equivariant with respect to
conjugation of an N–tuple by a fixed unitary, f∗(Ω) is an orbital (F′, ϵ′/3)–cover of
f∗(Γ(n)(O)), and therefore also an orbital (F′, ϵ′)–cover of Γ(n)(O′). It follows that

Korb
r′,F′,ϵ′(Γ

(n)(O′)) ≤ Korb
r,F,ϵ(Γ

(n)(O)).

Hence,
EntUr′,F′,ϵ′(f∗(K)) ≤ EntUr′,F′,ϵ′(O′) ≤ Entr,F,ϵ(O).

Since O was an arbitrary neighborhood of K , we obtain

EntUr′,F′,ϵ′(f∗(K)) ≤ EntUr,F,ϵ(K) ≤ EntUr (K).

Since F′ and ϵ′ were arbitrary, we conclude that EntUr′(f∗(K)) ≤ EntUr (K), as desired.

Corollary 4.9 If K is a closed subset of Sr(Ttr), then EntU (K) = EntUr (K).

Proof By definition, EntU (K) ≥ EntUr (K). On the other hand, fix some r′ ∈ (0,∞)N

and let r′′ = max(r′, r). By Observation 4.3, EntUr′(K) ≤ EntUr′′(K). Now applying
Proposition 4.7 to the identity map, since id maps

∏
j∈N Drj into

∏
j∈N Dr′′j

, it follows

that EntUr′′(K) ≤ EntUr (K). Since r′ was arbitrary, EntU (K) ≤ EntUr (K).

Corollary 4.10 Let M = (M, τ ) be a tracial W∗–algebra and X, Y ∈ MN . If
Y ∈ W∗(X)N , then

EntU (tpM(Y)) ≤ EntU (tpM(X)).

In particular, if W∗(X) = W∗(Y), then EntU (tpM(X)) = EntU (tpM(Y)).

Proof By Proposition 3.32, there exists a quantifier-free definable function f relative
to Ttr such that Y = fM(X). Now tpM(Y) = f∗ tpM(X). Hence, applying Proposition
4.7 to K = {tpM(X)} (for an appropriate choice of r), we obtain EntU (tpM(Y)) ≤
EntU (tpM(X)). The second claim follows by symmetry.
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With this invariance result in hand, it seems natural to define the covering entropy for a
separable W∗–subalgebra of M as the entropy of any N–tuple of generators. However,
the following definition works even in the non-separable case.

Definition 4.11 If M = (M, τ ) is a tracial W∗–algebra and N is a W∗–subalgebra,
we define

EntU (N : M) = sup
X∈L∞(N )N

EntU (tpM(X)).

Observation 4.12 Let M be a tracial W∗–algebra, and let N be a W∗–subalgebra.
If X ∈ L∞(N )Nsa generates N , then for any Y ∈ NN , we have EntU (tpM(Y)) ≤
EntU (tpM(X)) by Corollary 4.10, and therefore,

EntU (N : M) = EntU (tpM(X)).

Moreover, if P is a W∗–subalgebra of N , then EntU (P : M) ≤ EntU (N : M).

Remark 4.13 Furthermore, it is evident from Definition 4.11 that EntU (N : M)
only depends on the set of types in M that are realized in L∞(N )N . Hence, if two
embeddings N → M1 and N → M2 are elementarily equivalent—meaning that for
every definable predicate ϕ and X ∈ L∞(N )N , we have ϕM1(X) = ϕM2(X)—then
EntU (N : M1) = EntU (N : M2).

4.4 Entropy and ultraproduct embeddings

Lemma 4.14 (Ultraproduct realization of types) Let Q =
∏

n→U Mn(C). Let
µ ∈ S(Ttr). Then EntU (µ) is either nonnegative or it is −∞. Moreover, EntU (µ) ≥ 0
if and only if there exists X ∈ L∞(Q)N such that tpQ(X) = µ.

Proof Note that log Korb
F,ϵ(Γ

(n)
r (O)) is either ≥ 0 or it is −∞. Therefore, EntUr (µ) is

either nonnegative or it is −∞. It remains to show the second claim of the lemma.

( =⇒ ) In light of the foregoing argument, if EntU (µ) ≥ 0, then EntUr (µ) ≥ 0 for some
r. By Observations 3.14 and 3.15, Sr(Ttr) is metrizable, hence there is a sequence
(Ok)k∈N of neighborhoods of µ in S(T) such that Ok+1 ⊆ Ok and

⋂
k∈NOk = {µ}.

For k ∈ N, let Ek = {n ∈ N : Γ(n)
r (Ok) ̸= ∅}. Now choose X(n) ∈ MN(C)N as follows.

For each n ̸∈ E1 , set X(n) = 0. For each n ∈ Ek \ Ek+1 , let X(n) be an element of
Γ(n)

r (Ok). If n ∈
⋂

k∈N Ek , that means that Γ(n)({µ}) ̸= ∅, so in this case we may
choose X(n) ∈ Mn(C)N with tpMn(C)(X(n)) = µ.
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Since U is an ultrafilter, either Ek ∈ U or Ec
k ∈ U . If we had Ec

k ∈ U , then
limn→U (1/n2) log Korb

F,ϵ(Γ
(n)(Ok)) would be −∞ since the set would be empty for

n ∈ Ec
k . Hence, Ek ∈ U . For n ∈ Ek , we have tpMn(C)(X(n)) ∈ Ok . Therefore,

limn→U tpMn(C)(X(n)) ∈ Ok . Since this holds for all k , limn→U tpMn(C)(X(n)) = µ. Let
X = [X(n)]n∈N ∈ L∞(Q)N . Then

tpQ(X) = lim
n→U

tpMn(C)(X(n)) = µ.

( ⇐= ) Suppose that X is an element of the ultraproduct with type µ. Let rj = ∥Xj∥∞ .
Express X as [X(n)]n∈N for some X(n) ∈ Mn(C)N with ∥X(n)

j ∥ ≤ rj . Since the type of
X(n) converges to the type of X, for every neighborhood O of µ, there exists E ∈ U
such that tpMn(C)(X(n)) ∈ O for all n ∈ E , and in particular, Γ(n)

r (O) ̸= ∅ for n ∈ E .
This implies that EntUF,ϵ(O) ≥ 0 for every F and ϵ. Hence, EntU (µ) ≥ 0.

Recall that an embedding M → Q of tracial W∗–algebras is said to be elementary if
for every definable predicate ϕ and X ∈ L∞(M)N , we have ϕQ(X) = ϕM(X). This
in particular implies that M and Q are elementarily equivalent, that is, they have the
same theory.

Corollary 4.15 Suppose that M is a separable tracial W∗–algebra and N ⊆ M is
a W∗–subalgebra. If EntU (N : M) ≥ 0, then there exists an elementary embedding
ι : M → Q.

Remark 4.16 Since the embedding ι : M → Q is elementary, in particular the
embeddings N → M and N → Q are elementarily equivalent, and hence EntU (ι(N ) :
Q) = EntU (N : M).

Proof of Corollary 4.15 By Observation 4.12, EntU (M : M) ≥ EntU (N : M) ≥ 0.
Let X ∈ L∞(M)N generate M. Then by the previous lemma, there exists X′ ∈ Q
with the same type of X. In particular, since X and X′ have the same quantifier-free
type, Lemma 3.34 shows that there is an embedding ι : M → Q with ι(X) = X′ .
To show that ι is elementary, suppose that Y ∈ L∞(M)N and ϕ is a definable
predicate. By Proposition 3.32, there exists a quantifier-free definable function f such
that Y = fM(X). Since f is quantifier-free, dQ(ι(Yj), fQj (X′)) = dM(Yj, fMj (X)) = 0,
hence ι(Y) = fQ(ι(X)). Therefore, ϕQ(ι(Y)) = (ϕ ◦ f)Q(X′) = (ϕ ◦ f)M(X) = ϕM(Y),
where the middle equality follows because tpQ(X′) = tpM(X), and therefore the
embedding is elementary.
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4.5 Entropy and Algebraicity

In this section, we show that EntU (N : M) = EntU (acl(N ) : M), where acl(N ) is
the algebraic closure of continuous model theory. At present, very little is known
about algebraic closures for tracial W∗–algebras. Nonetheless, it is natural to study how
the model-theoretic 1–bounded entropy behaves under this model-theoretic operation,
analogously to how Hayes studied the behavior of 1–bounded entropy under various
W∗–algebraic operations. (See Hayes [16, §2] and Hayes, Jekel, Nelson, and Sinclair
[18, §2.3].)

First, we explain the definition of algebraic closure.

Definition 4.17 (Algebraicity) Let M be a structure in some language L, and let N
be a substructure. Let S be a sort in L.

• A map ϕ : SM → R is a definable predicate in M over N if for every
D ∈

∏
j∈NDSj and ϵ > 0, there exists a formula ψ in variables xj from Sj for

j ∈ N and yj from S′j for j ∈ N, and there exists Y ∈
∏

j∈N(S′j)
N such that

|ϕ(X) − ψM(X,Y)| < ϵ for all X ∈
∏
j∈N

DM
j .

• If A ⊆ SM , we say that A is definable in M over N if the map SM → R : X 7→
dM(X,A) is definable in M over N .

• If a ∈ SM , we say that a is algebraic over N if there exists a compact set
A ⊆ SM such that a ∈ A and A is definable in M over N .

Remark 4.18 It will be convenient in our arguments that for tracial W∗–algebras M
and N , if a function ϕ : L∞(M) → R is definable in M over N , then there exists a
definable predicate θ and Y ∈ L∞(N )N such that ϕ(X) = θ(X,Y). This follows by a
forced-limit argument similar to Proposition 3.32: Since ϕ is definable in M over N ,
then for each k ∈ N, there exists a formula θk and Yk ∈ L∞(N )N such that

|ϕ(X) − θk(X,Yk)| < 1
2k for X ∈ DM

k .

Let Y by an N–tuple obtained by joining together the Yk ’s into a single tuple, so
that θk can be viewed as a definable predicate in (X,Y). Similar to the proof of
Proposition 3.32, there exists a definable predicate ψk such that ψM

k (X,Y) = 1 and
ψk · (θk+1 − θk) < 2/2k on Dk . Then

θ := θ1 +
∞∑

k=1

ψk(θk+1 − θk)

converges uniformly on every domain Dr and satisfies ϕ(X) = θM(X,Y).
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Definition 4.19 (Algebraic closure) Let M be an L–structure and N an L–
substructure. We define Sacl(N ) to be the set of a ∈ SM that are algebraic in M over N .
We let acl(N ) = (Sacl(N ))S∈S . (Although we omit M from the notation, the algebraic
closure a priori depends on the ambient structure M.)

For the properties of algebraic closure, see Ben Yaacov, Berenstein, Henson, and
Usvyatsov [3, §10]. In particular, one can show that if N1 ⊆ acl(N2), then acl(N1) ⊆
acl(N2) (“what is algebraic over the algebraic closure of N2 is algebraic over N2 ").
Moreover, one can verify directly from Definition 4.17 that f is a term and Y1 , . . . ,
Yk ∈ N , then fM(Y1, . . . , Yk) ∈ acl(N ). By combining these properties, it follows that
acl(N ) is an L–substructure of M.

Thus, in particular, if N ⊆ M are tracial W∗–algebras, then the algebraic closure
acl(N ) of N in M is a tracial W∗–subalgebra of M as well. We will show that
EntU (acl(N ) : M) = EntU (N : M). We first consider the case of adjoining to an
N–tuple X a single element Y that is algebraic over W∗(X), and this case takes the
bulk of the work.

Theorem 4.20 Let X be an N–tuple in M = (M, τ ). Let Y ∈ M be algebraic over
W∗(X). Then

EntU (tpM(Y,X)) = EntU (tpM(X)).

The inequality EntU (tpM(X)) ≤ EntU (tpM(Y,X)) follows from Proposition 4.7, so we
only need to prove the opposite inequality.

The idea of the argument is that Y comes from a definable compact set A. We can
cover A by some finite number k of ϵ–balls. Transferring this to the microstate
approximations would tell us that for each matrix approximation X′ for X, the possible
matrix approximations for Y can be covered by k many ϵ–balls. So the covering
number for the microstate space of (Y,X) would be at most k times that of X; the factor
of k is negligible in the large-n limit because we will take the logarithm and divide by
n2 .

Proof EntU (tpM(X)) ≤ EntU (tpM(Y,X)) holds by Proposition 4.7.

By algebraicity of Y and Remark 4.18, there exists a compact A ⊆ M, a definable
predicate ϕ relative to Ttr , and X′ ∈ W∗(X)N such that Y ∈ A and dM(Z,A) =

ϕM(Z,X′). Since X′ = f(X) for some quantifier-free definable function f , we have

dM(Z,A) = ϕM(Z, f(X)) = ψM(Z,X)
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where ψ is the definable predicate given by composing ψ with f in the coordinates 2,
3, . . .

Fix r = (rj)j∈N such that Xj ∈ Drj and fix r such that Z ∈ Dr . We want to show that:

sup
(F′,ϵ′)

inf
O∋tpM(Y,X)

lim
n→U

1
n2 log Korb

F′,ϵ′(Γ
(n)
r,r(O′))

≤ sup
(F,ϵ)

inf
O∋tpM(Y,X)

lim
n→U

1
n2 log Korb

F,ϵ(Γ
(n)
r (O))

Here we regard N as starting at 1, and we index the tuple (Y,X) by {0} ⊔ N, where
the 0 index corresponds to Y . Fix F′ ⊆ {0} ⊔ N finite and ϵ′ > 0. Since enlarging F′

would only increase the quantity inside the sup(F′,ϵ′) , assume without loss of generality
that F′ contains the index 0 corresponding to the variable Y , hence F′ = {0} ⊔ F1 for
some F1 ⊆ N.

By compactness of A, there exists k ∈ N and there exist Y1 , . . . , Yk ∈ A such that
the ϵ′/4–balls centered at Y1 , . . . , Yk cover A. This implies that every point within a
distance of ϵ′/4 from A is within a distance of ϵ′/2 from one of the points Y1 , . . . , Yk ,
and therefore

sup
Y∈DM

r

min
(
ϵ′/4 − ψM(Y,X),min(dM(Y,Y1), . . . , dM(Y,Yk)) − ϵ′/2

)
≤ 0.

Choose tj ∈ (0,∞) such that Yj ∈ Dtj . Let α and β be the definable predicates

α(y1, . . . , yk, x) = sup
y∈DM

r

min(ϵ′/4 − ψ(y, x),min(d(y, y1), . . . , d(y, yk)) − ϵ′/2)

β(x) = inf
y1∈Dt1

. . . inf
yk∈Dtk

α(y1, . . . , yk, x)and

so that αM(Y1, . . . ,Yk,X) ≤ 0 and βM(X) ≤ 0.

By uniform continuity (Observation 3.11), there exists F2 ⊆ N finite and δ > 0 such
that for all N |= Ttr , all Y ′

1 ∈ Dt1 , . . . , Y ′
k ∈ Dtk , and all X′ , X′′ ∈

∏
j∈N DN

rj
, we have:

max
j∈F2

dN (X′
j ,X

′′
j ) < δ =⇒ |αN (Y ′

1, . . . ,Y
′
k,X

′) − αN (Y ′
1, . . . ,Y

′
k,X

′′)| < ϵ′

16

Fix a neighborhood O of tpM(X), and let

O′ = {tpN (Y ′,X′) : N |= Ttr, ψ
N (Y ′,X′) < ϵ′/8, βN (X) < ϵ′/16, tpN (X′) ∈ O}

which is a neighborhood of tpM(Y,X). Let ϵ = min(δ, ϵ′) and F = F1 ∪ F2 . We claim
that:

Korb
F′,ϵ′(Γr,r(O′)) ≤ k Korb

F,ϵ(Γr(O))
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There exists an orbital (F, ϵ)–cover Ω of Γ(n)
r (O) with Ω ⊆ Γ(n)

r (O) and |Ω| ≤
KF,ϵ/2(Γ(n)

r (O)). Indeed, we can let Ω0 be any orbital (F, ϵ/2)–cover of Γ(n)
r (O) not

necessarily contained in Γ(n)
r (O) and let Ω contain one point Γ(n)

r (O) ∩ NF,ϵ/2(Y) for
each Y ∈ Ω′ where the intersection is nonempty.

For each X′ ∈ Γ(n)
r (O), we have

βMn(C)(X′) <
ϵ′

16

and therefore, there exist Y ′
1 ∈ DMn(C)

r1 , . . . , Y ′
k ∈ DMn(C)

rk such that

αMn(C)(Y ′
1, . . . ,Y

′
k,X

′) <
ϵ′

16
.

Choose for each X′ ∈ Ω a corresponding Y ′
1(X′), . . . , Y ′

k(X′), and let

Ω′ = {(Y ′
1(X′),X′), . . . , (Y ′

k(X′),X′) : X′ ∈ Ω}.

We claim that Ω′ is an orbital (F′, ϵ′)–cover of Γ(n)
r,r(O′). Let (Y ′′,X′′) ∈ Γ(n)

r,r(O′).
Then X′′ ∈ Γr(O). Therefore, there exists a unitary U and X′ ∈ Ω such that
UX′′U∗ ∈ NF,ϵ(X′). Let Y ′

1 = Y ′
1(X′), . . . , Y ′

k = Y ′
k(X′), and note that because

dMn(C)(X′
j ,X

′′
j ) < δ for j ∈ F2 , we have

|αMn(C)(Y ′
1, . . . ,Y

′
k,UX′′U∗) − αMn(C)(Y ′

1, . . . ,Y
′
k,X

′)| < ϵ′

16

αMn(C)(Y ′
1, . . . ,Y

′
k,UX′′U∗) <

ϵ′

16
+
ϵ′

16
=
ϵ′

8
.hence

By definition of α , this means that

sup
Y′∈DMn

r (C)
min
(
ϵ′/4 − ψMn(C)(Y ′,UX′′U∗),

min(dMn(C)(Y ′,Y ′
1), . . . , dMn(C)(Y ′,Y ′

k)) − ϵ′/2
)
<
ϵ′

8
.

Now because (Y ′′,X′′) ∈ Γ(n)
r,r(O′), we have

ψMn(C)(UY ′′U∗,UX′′U∗) = ψMn(C)(Y ′′,X′′) < ϵ′/8.

It follows that
ϵ′

4
− ψMn(C)(UY ′′U∗,UX′′U∗) >

ϵ′

8
and therefore

min(dMn(C)(UY ′′U∗,Y ′
1), . . . , dMn(C)(UY ′′U∗,Y ′

k)) − ϵ′

2
<
ϵ′

8
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hence d(UY ′′U∗,Yi) < ϵ′/2 + ϵ′/8 < ϵ′ for some i ∈ {1, . . . , k}. Therefore, overall

UX′′U∗ ∈ NF,ϵ(X′) ⊆ NF1,ϵ′(X
′) and UY ′′U∗ ∈ Nϵ′(Y ′

i )

and thus (Y ′′,X′′) ∈ NF′,ϵ′(Y ′
i ,X′), which shows that Γ(n)

r,r′(O
′) ⊆ Norb

F′,ϵ′(Ω
′).

We conclude that
KF′,ϵ′(Γ(n)

r,r(O′)) ≤ k KF,ϵ/2(Γ(n)
r (O)).

Hence, applying limn→U (1/n2) log to both sides,

EntU(r,r′),F′,ϵ′(O′) ≤ EntUr,F,ϵ(O).

Because for every O there exists such an O′ , we obtain

EntU(r,r),F′,ϵ′(tp
M(Y,X)) ≤ Entr,F,ϵ/2(tpM(X)).

Then because for every (F′, ϵ′) there exists such an (F, ϵ), we get

EntUr,r(tpM(Y,X)) ≤ EntUr (tpM(X)).

Taking the supremum over r and r completes the proof.

Corollary 4.21 Let M be a tracial W∗–algebra and N a tracial W∗–subalgebra. Then

EntU (acl(N ) : M) = EntU (N : M).

Proof The inequality EntU (acl(N ) : M) ≥ EntU (N : M) holds by Observation 4.12.

On the other hand, suppose that Y is an N–tuple in acl(N ). Using Remark 4.18, each
Yk is algebraic over some separable W∗–subalgebra of N . Let N0 ⊆ N be the join
of all these subalgebras, so that N0 is separable and Y is algebraic over N0 . Let
X ∈ L∞(N0)N generate N0 . Since Y1 is algebraic over N0 , we have

EntU (tpM(X,Y1)) = EntU (tpM(X)).

Similarly, since Y2 is algebraic over W∗(X,Y1), we have

EntU (tpM(X,Y1,Y2)) = EntU (tpM(X)).

Continuing inductively, for k ∈ N,

EntU (tpM(X,Y1, . . . ,Yk)) = EntU (tpM(X)).

Now to analyze EntU (tpM(X,Y)), suppose r ∈ (0,∞)N⊔N and ϵ > 0 and F ⊆ N ⊔N
is finite. Then F ⊆ N ⊔ {1, . . . , k} for some k ∈ N. For every neighborhood O of
tpM(X, Y1, . . . , Yk), there is a corresponding neighborhood O′ of tpM(X,Y) given as
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the preimage of O under map restricting the type of an N ⊔ N–tuple to the type of the
N ⊔ {1, . . . , k}–subtuple. Since F ⊆ N ⊔ {1, . . . , k}, then

EntUr,F,ϵ(O′) = EntUr′,F,ϵ(O)

where r′ is the restriction of r to N ⊔ {1, . . . , k}. This implies that:

EntUr,F,ϵ(tp
M(X,Y)) ≤ EntUr′,F,ϵ(tp

M(X,Y1, . . . ,Yk))

≤ EntU (tpM(X,Y1, . . . ,Yk)) = EntU (tpM(X))

Since r, F , and ϵ were arbitrary, EntU (tpM(X,Y)) ≤ EntU (tpM(X)). Also,

EntU (tpM(Y)) ≤ EntU (tpM(X,Y))

by Corollary 4.10. Since Y was an arbitrary N–tuple in acl(N ), we obtain EntU (acl(N ) :
M) ≤ EntU (N : M) as desired.

5 Entropy for quantifier-free and existential types

In this section, we explain how Hayes’ 1–bounded entropy (or covering entropy for
non-commutative laws) relates to the entropy for types in this paper. Specifically, the
1–bounded entropy for laws corresponds is the version for quantifier-free types and the
1–bounded entropy of N in the presence of a larger W∗–algebra M is the version for
existential types.

5.1 Entropy for quantifier-free types

We begin with the quantifier-free version, essentially the same as orbital version of
h(M) in Hayes [16, Appendix A].

Definition 5.1 (Entropy for quantifier-free types) For K ⊆ Sqf(Ttr) and r ∈ (0,∞)N ,
we define:

Γ(n)
r (K) =

X ∈
∏
j∈N

DMn(C)
rj

: tpMn(C)
qf (X) ∈ K


Then we define, for F ⊆ N finite and ϵ > 0,

EntUqf,r,F,ϵ(K) = inf
O⊇K open in Sr(Ttr)

lim
n→U

1
n2 log Korb

F,ϵ(Γ
(n)
r (O))

EntUqf(K) = sup
r,F,ϵ

EntUqf,r,F,ϵ(K).and we set

For µ ∈ Sqf(Ttr), let EntUqf(µ) = EntUqf({µ}).
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Some earlier works such as Hayes [16] phrased the definition of EntUqf(µ) in terms of
particular open sets Ok (for instance, those defined by looking at moments of order
up to k being within some distance 1/k of the moments of µ), following the same
conventions as Voieculescu [32] originally used. This does not change the definition
because of the following lemma.

Lemma 5.2 Let r ∈ (0,∞)N . Let K ⊆ Sr(Ttr). Let (Ok)k∈N be a sequence of open
subsets of S(Ttr) such that Ok+1 ⊆ Ok and

⋂∞
k=1 Ok = K . Then

EntUr,F,ϵ(K) = lim
k→∞

EntUr,F,ϵ(Ok) = inf
k∈N

EntUr,F,ϵ(Ok).

The same holds with S(Ttr) and EntU replaced by their quantifier-free versions.

Proof By Observation 4.3,

EntUr,F,ϵ(K) ≤ EntUr,F,ϵ(Ok+1) ≤ EntUr,F,ϵ(Ok)

EntUr,F,ϵ(K) ≤ inf
k∈N

EntUr,F,ϵ(Ok) = lim
k→∞

EntUr,F,ϵ(Ok).so that

For the inequality in the other direction, fix O ⊇ K open. Then Sr(Ttr) \ O is closed
and disjoint from k . Moreover, it is contained in Kc =

⋃
k∈NOc

k =
⋃

k∈NOc
k . By

compactness, there is a finite subcollection of Oc
k ’s that covers Sr(Ttr) \ O . The Ok ’s

are nested, so there exists some k such that Sr(Ttr)\O ⊆ Ok
c , hence Ok ∩Sr(Ttr) ⊆ O .

Therefore,
inf
k∈N

EntUr,F,ϵ(Ok) ≤ EntUr,F,ϵ(O).

Since O was arbitrary,

inf
k∈N

EntUr,F,ϵ(Ok) ≤ EntUr,F,ϵ(K).

The argument for the quantifier-free case is identical.

This lemma also allows us to relate the entropy EntUqf for quantifier-free types directly
to the entropy for types EntU .

Lemma 5.3 Let πqf : S(Ttr) → Sqf(Ttr) be the canonical restriction map. Let
K ⊆ Sqf(Ttr) be closed. Then

EntUqf(K) = EntU (π−1
qf (K)).
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Proof Fix r ∈ (0,∞)N , and let Kr = K ∩ Sqf,r(Ttr). Since Sqf,r(Ttr) is metrizable,
there exists a sequence of open sets Ok in Sqf,r(Ttr) such that Ok+1 ⊆ Ok and⋂

k∈NOk = Kr (and these can be extended to open sets in Sqf(Ttr) since the inclusion
of Sqf,r(Ttr) is a topological embedding). Now π−1

qf (Ok) is open in Sr(Ttr) and

π−1
qf (Ok+1) ⊆ π−1

qf (Ok+1) ⊆ π−1
qf (Ok) and

⋂
k∈N π

−1
qf (Ok) = π−1

qf (Kr). Note that

Γ(n)
r (Ok) = Γ(n)

r (π−1
qf (Ok)). Thus, using the previous lemma:

EntUqf,r,F,ϵ(K) = EntUqf,r,F,ϵ(Kr)

= inf
k∈N

Entqf,r,F,ϵ(Ok)

= inf
k∈N

Entr,F,ϵ(π−1
qf (Ok))

= EntUr,F,ϵ(π
−1
qf (Kr))

= EntUr,F,ϵ(π
−1
qf (K))

Taking the supremum over r, F , and ϵ completes the argument.

In particular, by combining this with the variational principle (Proposition 4.6), we
obtain the following corollary.

Corollary 5.4 Let πqf : S(Ttr) → Sqf(Ttr) be the restriction map. If µ ∈ Sqf(Ttr), then

EntUqf(µ) = sup
ν∈π−1

qf (µ)
EntU (ν).

This also implies that the quantifier-free entropy of tpMqf (X) only depends on W∗(X),
which is an important property of 1–bounded entropy previously established by Hayes
in [16, Theorem A.9].

Corollary 5.5 Let M = (M, τ ) be a tracial W∗–algebra. Let X, Y ∈ MN . If
W∗(X) = W∗(Y), then

EntUqf(tp
M
qf (X)) = EntUqf(tp

M
qf (Y)).

Proof By Proposition 3.32, there exist quantifier-free definable functions f and g such
that fM(X) = Y and gM(Y) = X. If µ ∈ π−1

qf (tpMqf (X)), then f∗µ ∈ π−1
qf (tpMqf (Y))

since πqf ◦ f∗ = f∗ ◦ πqf . Similarly, g∗ maps π−1
qf (tpMqf (Y)) into π−1

qf (tpMqf (X)).

Since d(f ◦ g(x), x) is a quantifier-free definable predicate, its value only depends on
the quantifier-free type of the input, and thus gN ◦ fN (Z) = Z whenever N |= Ttr and
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tpNqf (Z) = tpMqf (X). In particular, if µ ∈ π−1
qf (tpMqf (X)), then g∗f∗µ = µ. The same

holds for g ◦ f . Hence, f and g define mutually inverse maps between π−1
qf (tpMqf (X))

and π−1
qf (tpMqf (Y)). Note also that π−1

qf (tpMqf (X)) is contained in Sr(Ttr) for some r by
Remark 3.27. Therefore, by Proposition 4.7,

EntU (π−1
qf (tpUqf(X))) = EntU (π−1

qf (tpUqf(Y)))

which implies the claimed result by Lemma 5.3.

Furthermore, since the quantifier-free type does not depend on the ambient tracial
W∗–algebra M, it follows that if X and Y in different tracial W∗–algebras generate
isomorphic tracial W∗–algebras, then their quantifier-free types have the same entropy.
Hence, it is consistent to define for a separable tracial W∗–algebra M,

EntUqf(M) = EntUqf(tp
M
qf (X))

where X is an N–tuple of generators for M (for the definition of EntUqf(M) in the case
of non-separable M, see Remark 5.21 below). However, Remark 5.16 shows that there
is no quantifier-free analog of monotonicity under pushforward (Proposition 4.7).

5.2 Existential types

Now we turn our attention to existential types.

Definition 5.6 An existential formula in a language L is a formula of the form

ϕ(x) = inf
y1∈D1,...,yk∈Dk

ψ(x, y1, . . . , yk)

where ψ is a quantifier-free formula and D1 , . . . , Dk are domains of quantification
in the appropriate sorts. Similarly, we say that ϕ is an existential definable predicate
relative to T if

ϕM(X) = inf
Y∈

∏
j∈N DM

j

ψM(X,Y)

for M |= T, where ψ is a quantifier-free definable predicate.

Observation 5.7 Any existential definable predicate can be approximated uniformly
on each product of domains of quantification by an existential formula.
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Definition 5.8 Let M be an L–structure, S an N–tuple of sorts, and X ∈
∏

j∈N SMj .
Let F∃,S denote the space of existential formulas. The existential type tpM∃ (X) is the
map

tpM∃ (X) : F∃,S → R, ϕ 7→ ϕM(X).

If T is an L–theory, we denote the set of existential types that arise in models of T by
S∃,S(T).

The topology for existential types, however, is not simply the weak-⋆ topology on
S∃,D(T) for each tuple of domains. Rather, we define neighborhoods of a type
µ = tpM(X) using sets of the form {ν : ν(ϕ) < µ(ϕ) + ϵ}. The idea is that if
ϕM(X) = infY∈

∏
j∈N DM

j
ψM(X,Y) for some quantifier-free definable predicate ϕ, then

µ(ϕ) ≤ c means that there exists Y such that ψM(X,Y) < c + δ for any δ > 0. Thus,
a neighborhood corresponds to types ν where there exists Y that gets within ϵ of the
infimum achieved by µ.

Definition 5.9 Let T be an L–theory, S an N–tuple of sorts, and D ∈
∏

j∈NDSj . We
say that O ⊆ S∃,D(T) is open if for every µ ∈ O , there exist existential formulas ϕ1 ,
. . . , ϕk and ϵ1 , . . . , ϵk > 0 such that

{ν ∈ S∃,D(T) : ν(ϕj) < µ(ϕj) + ϵj for j = 1, . . . , k} ⊆ O.

Moreover, we say that O ⊆ S∃,S(T) is open if O ∩ S∃,D(T) is open in S∃,D(T) for all
D ∈

∏
j∈NDSj .

Observation 5.10
• Any set of the form {ν : ν(ϕ1) < c1, . . . , ν(ϕk) < ck}, where ϕ1 , . . . , ϕk are

existential definable predicates, is open in S∃,S(T).
• The same holds if ϕj is an existential definable predicate rather than existential

formula, since it can be uniformly approximated by existential formulas on each
product of domains of quantification, hence existential definable predicates may
be used in Definition 5.9 without changing the definition.

• The inclusion S∃,D(T) → S∃,S(T) is a topological embedding since each of the
basic open sets in S∃,D(T) given by ν(ϕj) < µ(ϕj) + ϵj for j = 1, . . . , k extends
to an open set in S∃,S(T).

• The restriction map SS(T) → S∃,S(T) is continuous.

Remark 5.11 Like the Zariski topology on the space of ideals in a commutative ring,
the topology on S∃,S(T) is often non-Hausdorff. For instance, the closure of a point is
given by

{µ} = {ν : ν(ϕ) ≥ µ(ϕ) for all ϕ ∈ F∃,S}.
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Meanwhile, the intersection of all neighborhoods of µ is given by

(5–1) Kµ = {ν : ν(ϕ) ≤ µ(ϕ) for all ϕ ∈ F∃,S}.

We say that ν extends µ if ν(ϕ) ≤ µ(ϕ) for all existential formulas ϕ, which is
equivalent to saying that for ϕ ∈ F∃,S , we have µ(ϕ) = 0 implies that ν(ϕ) = 0
(since max(ϕ− c, 0) is an existential formula if ϕ is). Then {µ} = Kµ if and only if
it does have any proper extension, or it is maximal. These closed points correspond
to existential types from existentially closed models (see Goldbring [15, §6.2]), and
such maximal existential types in S∃,D(T) form a compact Hausdorff space. However,
our present goal is to work with general tracial W∗–algebras, not only those that are
existentially closed.

5.3 Entropy for existential types

Here we define the entropy for existential types which corresponds to Hayes’ entropy
of N in the presence of M. We explain our definition in this subsection, and in the
next one we relate it with Hayes’ definition.

Definition 5.12 For K ⊆ S∃(Ttr), let

Γ(n)
r (K) = {X ∈

∏
j∈N

DMn(C)
rj

: tpMn(C)
∃ (X) ∈ K}

and define for r ∈ (0,∞)N , F ⊆ N, finite, and ϵ > 0,

EntU∃,r,F,ϵ(K) = inf
O⊇K open

lim
n→U

1
n2 log Korb

F,ϵ(Γ
(n)
r (O)).

EntU∃ (K) = sup
r,F,ϵ

EntU∃,r,F,ϵ(K).Then let

Because of the non-Hausdorff nature of S∃(Ttr), we will be content to focus on the
existential entropy for an individual existential type rather than for a closed set of
existential types.

Lemma 5.13 Let µ ∈ S∃(Ttr), and let Kµ be given by (5–1). Let π : S(Ttr) → S∃(Ttr)
be the canonical restriction map. Then

EntU∃ (µ) = EntU
(
π−1 (Kµ

))
= sup
ν∈π−1(Kµ)

EntU (ν).
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Proof Fix r ∈ (0,∞)N , F ⊆ N finite, and ϵ > 0. If O is a neighborhood of µ in
S∃(Ttr), then it contains Kµ , and hence π−1(O) is a neighborhood of π−1(Kµ) in
S(Ttr). Moreover, Γ(n)

r (O) = Γ(n)
r (π−1(O)), hence

EntUr,F,ϵ
(
π−1 (Kµ

))
≤ EntU∃,r,F,ϵ(µ).

It remains to show the reverse inequality. Since the space of definable predicates on∏
j∈N Drj relative to Ttr is separable with respect to the uniform metric, so is the space

of existential definable predicates. Let (ϕj)j∈N be a sequence of existential definable
predicates that are dense in this space. Let

Ok =

{
ν ∈ S∃,r(Ttr) : ν(ϕj) < µ(ϕj) +

1
k

for j ≤ k
}
.

Note that ⋂
k∈N

Ok = {ν ∈ S∃,r(Ttr) : ν(ϕk) ≤ µ(ϕk) or k ∈ N} = Kµ.

Moreover,

π−1(Ok+1) ⊆
{
ν ∈ S(Ttr) : ν(ϕj) ≤ µ(ϕj) +

1
k + 1

for j ≤ k + 1
}

⊆ π−1(Ok).

Therefore, by Lemma 5.2 applied to π−1(Ok), we have

EntU∃,r,F,ϵ(µ) ≤ inf
k∈N

EntU∃,r,F,ϵ(Ok) = inf
k∈N

EntUr,F,ϵ(π
−1(Ok)) = EntUr,F,ϵ(π

−1(Kµ))

where the last equality follows from the density of {ϕk : k ∈ N}. Thus, EntU∃,r,F,ϵ(µ) =
EntUr,F,ϵ(π

−1(Kµ)). Taking the supremum over r, F , and ϵ yields the first asserted
equality EntU∃ (µ) = EntU (π−1(Kµ)). The second equality follows from the applying
the variational principle (Proposition 4.6) to the closed set π−1(Kµ).

Like the entropy for full types, the entropy for existential types satisfies a certain
monotonicity under pushforwards. First, to clarify the meaning of pushforward, note
that if f is a quantifier-free definable function and ϕ is an existential definable predicate,
say

ϕM(X) = inf
Y∈

∏
j∈N DM

r′j

ψM(X,Y) for M |= Ttr

where ψ is a quantifier-free definable predicate; then

(ϕ ◦ f)M(X) = inf
Y∈

∏
j∈N DM

r′j

ψM(f(X),Y)
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is also an existential definable predicate. Hence, there is a well-defined pushforward map
f∗ : S∃(Ttr) → S∃(Ttr) given by f∗µ(ϕ) = µ(ϕ ◦ f). Furthermore, f∗ is continuous with
respect to the topology on S∃(Ttr) for the same reason that ϕ◦f is an existential definable
predicate whenever ϕ is an existential definable predicate and f is a quantifier-free
definable function.

The following lemma can be proved directly in a similar way to Proposition 4.7, as was
essentially done by Hayes in [16]; compare also the proof of Proposition 5.23 below.
However, as one of our main goals is to illuminate the model-theoretic nature of the
existential entropy, we will give an argument to deduce this from Proposition 4.7.

Lemma 5.14 Let µ ∈ S∃(Ttr) and let f be a quantifier-free definable function relative
to Ttr . Then

EntU∃ (f∗µ) ≤ EntU∃ (µ).

Proof Let π : S(Ttr) → S∃(Ttr) be the restriction map. Let

K = Kµ = {ν ∈ S∃(Ttr) : ν(ϕ) ≤ µ(ϕ) for existential ϕ}

and similarly, let K′ = Kf∗µ . By Lemma 5.13:

EntU∃ (µ) = EntU∃ (K) = EntU (π−1(K))

EntU∃ (f∗µ) = EntU∃ (K′) = EntU (π−1(K′))

Meanwhile, by Proposition 4.7, Corollary 4.9, and Remark 3.27,

EntU (f∗π−1(K)) ≤ EntU (π−1(K)).

Therefore, it suffices to show that π−1(K′) = f∗(π−1(K)).

By continuity of the pushforward on the space of existential types, it follows that
f∗(K) ⊆ K′ , and hence

f∗(π−1(K)) ⊆ π−1(f∗(K)) ⊆ π−1(K′).

To prove the reverse inclusion, fix ν ∈ π−1(K′). Fix r such that K ⊆ S∃,r(Ttr) and r′

such that f maps
∏

j∈N DM
rj

into
∏

j∈N DM
r′j

for M |= Ttr . For F ⊆ N finite and ϕ1 ,
. . . , ϕk existential definable predicates, consider the definable predicate:

ψM(Y) = inf
X∈

∏
j∈N DM

r′j

∑
j∈F

dM(fMj (X),Yj) +
k∑

j=1

max(0, ϕMj (X) − µ(ϕj))


Then ψ is an existential definable predicate: indeed, if

ϕMi (X) = inf
Z∈

∏
j∈Dri,j

ηMi (X,Z)
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where η is quantifier-free then:

ψM(Y) =

inf
X∈

∏
j∈N DM

r′j

inf
Zi∈

∏
j∈N DM

ri,j
for i=1,...,k

[∑
j∈F

dM(fMj (X),Yj) +
k∑

i=1

max(0, ηMi (X,Zi) − µ(ϕi))
]

Since ν ∈ π−1(K′), it follows that

nu(ψ) ≤ f∗µ(ψ) = 0;

this last equality holds because if tpN∃ (X′) = µ and Y′ = f∗(X′), then ψN (Y′) = 0
since X′ participates in the infimum defining ψN (Y′).

Unwinding the definition of ν(ψ) ≤ 0, we have shown that for every ϵ > 0 and
F ⊆ N finite and ϕ1 , . . . , ϕk existential definable predicates, there exist M |= Ttr and
Y ∈ L∞(M)N and X ∈ L∞(M)N with tpM(Y) = ν and∑

j∈F

dM(fMj (X),Yj) +
k∑

j=1

max(0, ϕMj (X) − µ(ϕj)) < ϵ.

Using an ultraproduct argument (or equivalently using the compactness theorem in
continuous model theory, [3, Theorem 5.8], [4, Corollary 2.16]), there exists some M,
X and Y such that tpM(Y) = ν , dM(Yj, fMj (X)) = 0, and ϕM(X) ≤ µ(ϕ) for all
existential definable predicates ϕ.

This implies that tpM∃ (X) ∈ Kµ = K , hence tpM(X) ∈ π−1(K). Therefore, ν =

tpM(Y) = f∗ tpM(X) ∈ f∗(π−1(K)) as desired.

The next corollary follows from Lemma 5.14 and Proposition 3.32.

Corollary 5.15 If M |= Ttr and X, Y ∈ L∞(M)N and W∗(Y) ⊆ W∗(X), then

EntU∃ (tpM(Y)) ≤ EntU∃ (tpM(X)).

In particular, if W∗(X) = W∗(Y), then EntU∃ (tpM(Y)) = EntU∃ (tpM(X)).

Remark 5.16 The monotonicity property fails for the quantifier-free entropy. For
instance, let M be the von Neumann algebra of the free group F2 and R the hyperfinite
II1 factor. Then EntUqf(M) = ∞ but EntUqf(M⊗R) = 0 (by the same reasoning as in
Corollary 1.4). The proof of Lemma 5.19 breaks down because if π : S(Ttr) → Sqf(Ttr)
is the restriction map, then π−1(f∗µ) ̸= f∗(π−1(µ)) in general. Given a Y with
tpMqf (Y) = f∗µ, in order to show the existence of some X with fM(X) ≈ Y, we would
have to use an existential formula in Y.
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Now come to the definition of existential entropy for N ⊆ M, which we will show in
§5.4 is equivalent to Hayes’ h(N : M).

Definition 5.17 Let M be a tracial W∗–algebra and N ⊆ M a W∗–subalgebra. Then
define

EntU∃ (N : M) := sup
X∈L∞(N )N

EntU∃ (tpM∃ (X)).

The following is immediate from Corollary 5.15.

Corollary 5.18 Let M be a tracial W∗–algebra and N ⊆ M a W∗–subalgebra. If
X ∈ L∞(N )N generates N , then EntU∃ (N : M) = EntU∃ (tpM∃ (X)).

Lemma 5.19 Let M1 ⊆ M2 ⊆ M3 be a tracial W∗–algebras. Then

EntU∃ (M1 : M3) ≤ EntU∃ (M2 : M3) and EntU∃ (M1 : M3) ≤ EntU∃ (M1 : M2).

Proof The first inequality is immediate from Definition 5.17. For the second inequality,
note that for every X ∈ L∞(M1)N and every existential formula ϕ, we have ϕM3(X) ≤
ϕM2(X) since the first is the infimum over a larger set than the second. In other words,
tpM3

∃ (X) is an extension of tpM2
∃ (X), and hence every neighborhood of tpM2

∃ (X) is also a
neighborhood of tpM3

∃ (X). This implies that EntU∃ (tpM3
∃ (X)) ≤ EntU∃ (tpM2

∃ (X)). Since
this holds for all X ∈ L∞(M)N , we obtain EntU∃ (M1 : M3) ≤ EntU∃ (M1 : M2).

Next, we show that the quantifier-free entropy can be expressed in terms of the existential
entropy.

Lemma 5.20 Let M be a separable tracial W∗–algebra. Then

EntUqf(M) = EntU∃ (M : M).

Proof Suppose X ∈ L∞(M)N generates M. Fix r such that X ∈
∏

j∈N DM
rj

. Let π :
S∃(Ttr) → Sqf(Ttr) be the restriction map. It suffices to show that Ent∃,r,F,ϵ(tpM∃ (X)) =
EntUqf,r,F,ϵ(tp

M
qf (X)) for all r, F , and ϵ, which in turn will follow if we prove that every

neighborhood O′ of tpM∃ (X) in S∃,r(Ttr) contains π−1(O) for some neighborhood O
of tpMqf (X) in Sqf,r(Ttr) and vice versa.

Let O be a neighborhood of tpMqf (X). By the definition / properties of the weak-⋆
topology, there exist some quantifier-free definable predicates ϕ1 , . . . , ϕk and intervals
(ak, bk) such that

tpMqf (X) ∈ {ν ∈ Sqf,r(Ttr) : ν(ϕi) ∈ (ai, bi) for i = 1, . . . , k} ⊆ O.
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Then ϕi and −ϕi are both existential definable predicates, hence

π−1(O) ⊇ O′ := {ν ∈ S∃,r(Ttr) : ν(ϕi) < bi, ν(−ϕk) < −ai for i = 1, . . . , k}.

Conversely, let O′ be a neighborhood of tpM∃ (X) in S∃,r(X). Then there exists
existential definable predicates ϕ1 , . . . , ϕk and c1 , . . . , ck ∈ R such that

tpM∃ (X) ∈ {ν ∈ S∃,r(Ttr) : ν(ϕi) < ci for i = 1, . . . , k} ⊆ O′.

Suppose that
ϕNi (X′) = inf

Y′∈
∏

j∈N DN
ri,j

ψN
i (X′,Y′)

for all N |= Ttr and X′ ∈ L∞(N )N , where ψi is quantifier-free. Because ϕMi (X) < ci ,
there exists Yi ∈

∏
j∈N DM

ri,j
with ψM

i (X,Yi) < ci . By Proposition 3.32, there exists a
quantifier-free definable function fi such that Yi = fMi (X) and fNi maps into

∏
j∈N DN

ri,j

for all N |= Ttr . Let

ηNi (X′) = ψN
i (X′, fN (X′)) ≥ ϕNi (X′).

Then ηi is quantifier-free. Thus,

tpMqf (X) ∈ O := {ν ∈ Sqf,r(Ttr) : ν(ηi) < ci}
π−1(O) ⊆ {ν ∈ S∃,r(Ttr) : ν(ϕi) < ci for i = 1, . . . , k} ⊆ O′and

as desired.

Remark 5.21 Therefore, it is natural to define EntUqf(M) for general (not necessarily
separable M) by EntUqf(M) := EntU∃ (M : M).

5.4 Existential entropy and entropy in the presence

Let us finally explain why the existential entropy defined here agrees with (the ultrafilter
version of) Hayes’ 1–bounded entropy of N in the presence of M in [16]. The
definition is given in terms of Voiculescu’s microstate spaces for some X in the presence
of Y from [33].

Definition 5.22 (Hayes [16]) Let M be a tracial W∗–algebra. Let I and J be arbitrary
index sets and let X ∈ L∞(M)I and Y ∈ L∞(M)J . Let r ∈ (0,∞)I and r′ ∈ (0,∞)J

such that ∥Xj∥ ≤ rj and ∥Yj∥ ≤ r′j . Let Sr,r′,qf(Ttr) be the set of quantifier-free
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types of tuples from
∏

i∈I Dri ×
∏

j∈J Dr′j
equipped with the weak-⋆ topology. Let

p : Mn(C)I⊔J → Mn(C)I be the canonical coordinate projection. Then we define

hUr,r′(X : Y) := sup
ϵ>0

sup
F⊆I finite

inf
O∋tpMqf (X,Y)

lim
n→U

1
n2 log Korb

F,ϵ(p[Γ(n)
r,r′(O)])

where O ranges over all neighborhoods of tpMqf (X,Y) in Sr,r′,qf(Ttr).

Here we use arbitrary index sets I and J rather than N because we do not assume that
M is separable. This is a technical issue we will have to consider when proving that
our definition using N–tuples agrees with Hayes.’ Apart from that, the idea of the proof
is that a matrix tuple X′ is in the projection p[Γ(n)

r,r′(O)] if and only if there exists some

Y′ such that tpMn(C)
qf (X′,Y′) ∈ O . If X′,Y′ being in Γ(n)

r,r′(O) can be detected by a
quantifier-free formula being less than some c (using Urysohn’s lemma), then X′ being
in p[Γ(n)

r,r′(O)] can be detected by an existential formula.

Proposition 5.23 In the setup of Definition 5.22, we have hUr,r′(X : Y) = EntU∃ (W∗(X) :
W∗(X,Y)).

We remark at the start of the proof that all the facts we proved about definable predicates
and functions work for arbitrary index sets, so long as they do not invoke metrizability
of the type space. We also leave some details to the reader for the sake of space.

Proof We may assume without loss of generality that M = W∗(X,Y) since restricting
to a smaller W∗–algebra does not change the quantifier-free type of (X,Y).

First, let us show that hUr,r′(X : Y) ≤ EntU∃ (W∗(X) : M). Let F ⊆ I finite and ϵ > 0.
First, to deal with changing index sets from I to N, let α : F → N be an injective
function and let f be the quantifier-free definable function that sends an I–tuple X′ to
the N–tuple obtained by putting X′

j into the α(j)th entry for j ∈ F and fills the other
entries with zeros. Let Z = fM(X), fix some T ∈ (0,∞)N with Z ∈

∏
j∈N DN

tj , and
let O be a neighborhood of µ = tpM∃ (Z) in S∃,T(Ttr). Then there exist existential
definable predicates ϕ1 , . . . , ϕk and ϵ1 , . . . , ϵk > 0 such that

{ν ∈ S∃,T(Ttr) : ν(ϕj) ≤ µ(ϕj) + ϵj for j = 1, . . . , k} ⊆ O.

There exist quantifier-free definable predicates ψ1 , . . . , ψk such that

ϕNj (Z′) = inf
W′∈

∏
i∈N DN

ti,j

ψN
j (Z′,W′)
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for all N and Z′ ∈ L∞(N )N . Moreover, for our particular M and Z, there exists
Wj ∈

∏
i∈N DM

ti,j such that

ψM
j (Z,Wj) < µ(ϕj) + ϵj.

By Proposition 3.32, Wj = gj(X,Y) for some quantifier-free definable function gj .
Let ψj(f, gj) denote the quantifier-free definable predicate defined for I ⊔ J–tuples by
applying f to the I–tuple and gj to the I ⊔ J–tuple and then applying ψj . Then

O′ :=
k⋂

j=1

{σ ∈ Sqf,r,r′(Ttr) : σ(ψj(f, gj)) < µ(ϕj) + ϵj}

is a neighborhood of tpMqf (X,Y) in Sqf,r,r′(Ttr) such that

p[Γ(n)
r,r′(O

′)] ⊆ (fMn(C))−1[Γ(n)
T (O)].

Therefore,
Korb

F,ϵ(p[Γ(n)
r,r′(O

′)]) ≤ Korb
α(F),ϵ(Γ

(n)
T (O)).

Because for every such O , there exists such an O′ , we obtain that

inf
O′∋tpMqf (X,Y)

lim
n→U

1
n2 log Korb

F,ϵ(p[Γ(n)
r,r′(O

′)])

≤ EntU∃,α(F),ϵ(tp
M
∃ (f(X))) ≤ EntU∃ (W∗(X) : M).

Since F and ϵ were arbitrary, we are done with the first inequality.

To prove the second inequality, we must show that for all Z ∈ W∗(X)N , we have
Ent∃(tpM∃ (Z)) ≤ hr,r′(X : Y). Fix Z, let T ∈ (0,∞)N with ∥Zj∥ ≤ tj , and write
Z = fM(X) for some quantifier-free definable function f depending on countably
many coordinates of X. Let O′ be a neighborhood of tpMqf (X,Y). Note that O′

contains a neighborhood of µ that depends only on finitely many coordinates of X
and Y. By Urysohn’s lemma and Remark 3.33, there exists a quantifier-free definable
predicate ψ with values in [0, 1] (depending on only finitely many coordinates) such
that ψM(X,Y) = 0 and {σ ∈ Sqf,r,r′(Ttr) : σ(ψ) < 1} ⊆ O′.

Fix F ⊆ N finite and ϵ ∈ (0, 2), and consider the existential formula:

ϕN (Z′) = inf
X′∈

∏
i∈I DN

ri

inf
Y′∈

∏
j∈J DN

r′j

(∑
k∈F

dN (fNk (X′),Z′
k) + ψN (X′,Y′)

)
Because f and ψ only depend on countably many coordinates, the infima can be
expressed using only countably many variables, so this expression is a valid existential
definable predicate. Moreover, note that for Z′ ∈

∏
k∈N DMn(C)

tk , we have:

ϕMn(C)(Z′) <
ϵ

2
=⇒ Z′ ∈ Nϵ/2(fMn(C) ◦ p(Γ(n)

r,r′)(O
′))
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Let O = {µ ∈ S∃,T(Ttr) : µ(ϕ) < ϵ/2}. By applying the uniform continuity of f
(Lemma 3.19) for the given ϵ/2 and F in the target space, we obtain a corresponding
F′ ⊆ I and δ > 0 such that

Korb
ϵ,F(Γ(n)

T (O)) ≤ Korb
ϵ/2,F(fMn(C) ◦ p(Γ(n)

r,r′)(O
′)) ≤ Korb

δ,F′(p(Γ(n)
r,r′(O

′))).

Applying the definitions of the appropriate limits, suprema, and infima shows that
EntU (tpM∃ (Z)) ≤ hr,r′(X : Y).

5.5 Applications to ultraproduct embeddings

Theorem 5.24 Let N ⊆ M be separable tracial W∗–algebras, and let Q =∏
n→U Mn(C). Suppose that EntU∃ (N : M) ≥ 0. Then for every c < EntU∃ (N : M),

there exists an embedding ι : M → Q such that

EntU∃ (ι(N ) : Q) ≥ EntU (ι(N ) : Q) > c.

Proof Let X be an N–tuple of generators for N . Let π : S(Ttr) → S∃(Ttr) be the
restriction map. By Lemma 5.13,

c < EntU∃ (tpM∃ (X)) = sup
µ∈π−1(KtpM∃ (X))

EntU (µ)

so there exists a type µ such that π(µ) ∈ KtpM∃ (X) and EntU (µ) > c. By Lemma 4.14,
there exists X′ ∈ Q with tpQ(X′) = µ. As in Corollary 4.15, there exists an embedding
ι : N → Q with ι(X) = X′ . Observe that

EntU∃ (ι(N ) : Q) = EntU∃ (tpQ∃ (X′)) ≥ EntU (tpQ(X′))

= EntU (ι(N ) : Q) = EntU (µ) > c

where we apply in order Corollary 5.18, Lemma 5.13, Observation 4.12, and the choice
of µ and X′ .

It only remains to show that ι extends to an embedding of M. Let Y ∈ L∞(M)N

be a set of generators. Let r and r′ be such that X ∈
∏

j∈N DM
rj

and Y ∈
∏

j∈N DM
r′j

.
Since the quantifier-free type space Sqf,r,r′(Ttr) for N ⊔ N–tuples is metrizable, there
exists a nonnegative continuous function on Sqf,r,r′(Ttr) that equals zero at and only at
the point tpMqf (X,Y). By Remark 3.33, this continuous function extends to a global
quantifier-free definable predicate ϕ. Let ψ be the existential predicate given by

ψN (Z) = inf
W∈

∏
j∈N DN

r′j

ϕN (Z,W)
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for N |= Ttr and Z ∈ L∞(N )N . Thus, ψM(X) ≤ ϕM(X,Y) = 0.

Because ψ is existential and tpQ∃ (X′) ∈ KtpM∃ (X) , we have ψQ(X′) ≤ ψM(X) = 0. We

may write X′ = [X(n)]n∈N where X(n) ∈
∏

j∈N DMn(C)
rj (this follows for instance from the

construction of X′ through Lemma 4.14). Then limn→U ψ
Mn(C)(X(n)) = ψQ(X′) = 0,

hence there exists Y(n) ∈
∏

j∈N DMn(C)
r′j

such that limn→U ϕ
Mn(C)(X(n),Y(n)) = 0.

Let Y′ = [Y(n)]n∈N ∈
∏

j∈N DQ
r′j

. Then ϕQ(X′,Y′) = 0, and therefore, tpQqf(X
′,Y′) =

tpMqf (X,Y). Hence, by Lemma 3.34, there exists an embedding ι′ : M → Q with
ι′(X,Y) = (X′,Y′). This is the desired extension of ι.

Remark 5.25 Note that EntU∃ (ι(N ) : Q) ≤ EntU∃ (N : M) for any such embedding
ι. Thus, the point of the theorem is that some ι can be chosen to make this inequality
close to an equality. It is not obvious that there is an existential type in Q extending
the tpM∃ (X) with close to the same amount of entropy of µ. The key ingredient is the
variational principle (Proposition 4.6) applied through Lemma 5.13, which gives us not
only an existential type tpQ∃ (X′) extending tpM∃ (X) with large entropy, but even the full
type tpQ(X′) with large entropy.

In particular, the theorem shows that if EntUqf(M) > 0, then there exists an embedding
of M into Q with EntU (M : Q) > 0, and hence also h(M : Q) = EntU∃ (M : Q) > 0.

6 Remarks on conditional entropy

In this section, we sketch how the previous results could be adapted to the setting of
entropy relative to a W∗–subalgebra. However, we will not give the arguments in
detail because we will not be giving any new applications of the conditional version of
entropy. Our goal is mainly to complete our translation between the different flavors
of microstate spaces in free entropy theory and the different flavors of types in the
conditional setting.

Hayes’ original definition of 1–bounded entropy used microstate spaces relative to a
fixed microstate sequence for some self-adjoint element with diffuse spectrum. He
then showed that this was equivalent to the 1–bounded entropy defined through unitary
orbits (the definition that we have used so far in this paper). As remarked by Hayes,
Jekel, and Kunnawalkam Elayavalli [17, §4.1], the same reasoning shows that orbital
1–bounded entropy is equivalent to 1–bounded entropy relative to fixed microstates for
any diffuse amenable W∗–subalgebra P of M. In fact, one can formulate the definition
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of 1–bounded entropy of M relative to any W∗–subalgebra A with a fixed choice of
microstates Y(n) with limn→U tpMn(C)

qf (Y(n)) = tpMqf (Y). Unlike the case where A is
amenable, the 1–bounded entropy relative to A may, as far as we know, depend on
the choice of microstates for A, and in general it will not coincide with the orbital
1–bounded entropy. Nonetheless, relative 1–bounded entropy for general A has a
natural motivation in terms of ultraproduct embeddings: Fixing A ⊆ N ⊆ M and an
embedding ι : A → Q :=

∏
n→U Mn(C), a relative 1–bounded entropy h(N : M|A, ι)

would quantify the amount of embeddings of ι′ : N → Q that extend ι and which
admit some extension ι′′ : M → Q.

Just as we have interpreted the entropy in the presence as corresponding to existential
types in the model-theoretic framework, relative entropy naturally corresponds to types
over A. Types over A represent types in a language Ltr,A described as follows. Let A
be a separable tracial W∗–algebra. Let Ltr,A be the language obtained by adding to Ltr

a constant symbol α(a) ∈ D∥a∥ for each a ∈ A.

Let Ttr,A be the Ltr,A theory obtained from Ttr by adding the (infinite family of) axioms

• α(a + b) = α(a) + α(b) for each a, b ∈ A.
• α(λa) = λα(a) for a ∈ A and λ ∈ C.
• α(ab) = α(a)α(b) for a, b ∈ A.
• α(a∗) = α(a)∗ for a ∈ A.
• α(1) = 1.
• Re trα(a) = τA(a) where τA is the given trace on the tracial W∗–algebra A.

We leave it as an exercise to the reader to verify that every model of Ttr,A is given
by a tracial W∗–algebra M together with an embedding (unital, trace-preserving
∗–homomorphism) α : A → M, and conversely every such embedding defines a
model of Ttr,A . Given a tracial W∗–algebra M and an inclusion α : A → M, the
Ltr,A–type of a tuple X is also known as the type of X over A and denoted tpM(X/A).

Next, we want to define versions of entropy for quantifier-free, full, and existential types
over A, using covering numbers for microstate spaces corresponding to neighborhoods
of the type over A. Unfortunately, we cannot use neighborhoods in the space of
Ltr,A–types SA(Ttr,A) because the matrix algebra Mn(C) could never be a model of
Ttr,A since it cannot contain a copy of A unless A is finite-dimensional. In other
words, the issue is that we must work with approximate embeddings αn : A → Mn(C)
rather than literal embeddings, since the latter may not exist. Thus, we will look
at Ltr,A structures that satisfy Ttr but not necessarily Ttr,A , which are tracial von
Neumann algebras together with a function α : A → M that is not necessarily is
a ∗–homomorphism or even linear but does satisfy ∥α(a)∥ ≤ ∥a∥ for a ∈ A. We
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will denote by SA(Ttr) the set of Ltr,A–types that arise from models of Ttr , so that
SA(Ttr) ⊇ SA(Ttr,A).

Given a sequence of functions αn : A → Mn(C) and O ⊆ SA(Ttr), we define the
microstate space

Γ(n)
r (O | αn) = {X ∈ Mn(C)N : tpMn(C),αn(X) ∈ O}

where tpMn(C),αn(X) is the LA type of X in the LA structure given by Mn(C) and
αn : A → Mn(C). We are interested only in the case when (αn)n∈N defines a trace-
preserving ∗–homomorphism α : A → Q =

∏
n→U Mn(C). Then for a closed set

K ⊆ SA(Ttr,A) ⊆ SA(Ttr), we define

EntUr,F,ϵ(K | α) = inf
O⊇K open

lim
n→U

1
n2 log KF,ϵ(Γ(n)

r (O | α)

where the infimum is over all open neighborhoods of K in SA(Ttr), and then let
EntU (K | α) be the supremum over r, F , and ϵ.

As the notation above suggests, it turns out that this quantity only depends on the
embedding α : A → Q, not on the particular lift (αn)n∈N . To see this, suppose βn is
another such lift, so that for every a ∈ A we have dMn(C)(αn(a), βn(a)) → 0 as n → U .
Using Urysohn’s lemma, taking a smaller neighborhood if necessary, we can assume
the neighborhood O is given by ϕ < δ for some nonnegative formula ϕ(x1, x2, . . . )
in Ltr,A . Then ϕ can be equivalently viewed as an Ltr formula in the variables xj

together with additional variables corresponding to the elements of A. By uniform
continuity of the formulas, |ϕ(X, αn(a))a∈A) − ϕ(X, (βn(a))a∈A)| < δ/2 for n in a
small enough neighborhood of U . Thus, if the neighborhood O′ is given by ϕ < δ/2,
we get Γ(n)

r (O′ | βn) ⊆ Γ(n)
r (O | αn). The argument is finished by taking the appropriate

infima over O and limits.1

We remark that the approximate embedding αn : A → Mn(C) can be thought of as a
choice of microstates for every element of A. But, as in Hayes original description
of relative 1–bounded entropy, we could instead fix a generating set A for A, fix
microstates A(n) for that generating set, and define microstate spaces of matrix tuples
X such that the Ltr –type of (A(n),X) is in a certain neighborhood O of the set K . It is

1For the analog of this argument in the existential case, we would work only with the case
when K = Kµ for a single existential Ltr,A–type. The only issue adapting the above argument
to the existential case is in finding, for a given a neighborhood O of Kµ , a sub-neighborhood
of the form ϕ−1((−∞, ϵ)) for an existential formula ϕ . Since the space of existential types is
not Hausdorff, we cannot apply Urysohn’s lemma, but rather must work with the existential
formulas directly to construct such a neighborhood.
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a technical exercise to show that these definitions are equivalent, the key point being
that every element of a can be expressed as a quantifier-free definable function of the
generating tuple A.

Most of the properties we showed for EntU adapt to the relative version with the
same method of proof. For instance, it satisfies the analog of the variational principle
(Proposition 4.6) and monotonicity under pushforward (4.7). Thus, given A ⊆ N ⊆ M
and an embedding α : A → Q, we can define EntU (N : M | α) as the supremum of
EntU (tpM,α(X)) for tuples X from N . Analogously to Lemma 4.14, if EntU (M | α) ≥
0, then there is an embedding of N into Q that restricts to α on A and extends to an
elementary embedding of M. The quantifier-free and existential version of conditional
entropy are defined in a similar way, and the relationship between them works the same
way as it does for the unconditional version.
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