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Abstract 
   
Ferritin is a key molecule in iron metabolism, as it stores the iron in a non-toxic form for the cells. Serum ferritin is a 

parameter that reflects the iron content of the body. However, serum ferritin is also an acute-phase reactant protein,  

as increased levels of serum ferritin are reported in many diseases associated with inflammation. Hyperferritinemia 

was also reported in COVID-19 (the coronavirus disease 19) patients, where it is considered an independent 

prognostic factor for the patients, indicating increased severity of the disease, risk for complications, and death. 

Certain categories of patients (older, those with comorbidities) have an increased risk of SARS-CoV-2 (severe acute 

respiratory syndrome coronavirus 2) infectivity and developing more severe forms of COVID-19. Chronic/acute 

systemic inflammatory states often characterize such preexisting comorbidities. In the current paper, a new pathogenic 

link is proposed and analyzed: between preexisting hyperferritinemia in the context of patient comorbidities (metabolic, 

cardiovascular, kidney, inflammatory, autoimmune, cancer) and the risk of SARS-CoV-2 infectivity and of developing 

more severe forms of infection. Ferritin per se can be a causal agent in COVID-19, as it can generate and aggravate 

inflammation and contributes to the development of a severe cytokine storm. A severe, uncontrolled inflammatory state 

occurs, triggered by the high levels of serum ferritin, preexisting comorbidities, and SARS-CoV-2 infection, cause of 

lethality in many patients. The inflammatory stimuli can further aggravate the infection by activating ADAM-17 

(disintegrin and metalloprotease 17), a key enzyme involved in ACE2 (angiotensin-converting enzyme 2) activation 

and viral infectivity. In this context, iron chelators and antioxidants could become potential lines of treatment in COVID-

19. 
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Background  
Ferritin functions and structural features  
Ferritin is a highly conserved molecule, present from 

prokaryotes to vertebrate organisms, first described in 1937 by 

Victor Laufberger and extracted from horse spleen [1-4]. It is a 

nanocage protein that is a key player in iron metabolism, as it 

stores iron in a non-toxic form for the cell [5, 6].  It is also 

essential for iron recycling depending on cellular needs. Iron is 

required for a vast array of processes and reactions, being able 

to act as a donor/receiver of electrons and intervening in various 

processes either as a cofactor or a catalyst: cell energy 

production, mitochondrial respiration, RNA and DNA 

synthesis, protein synthesis; it is essential for the production of 

the heme groups of hemoglobin and therefore for oxygen  

 

 

transport and cellular oxygenation; synthesis of other molecules 

similar to hemoglobin, such as myoglobin, cytochromes; iron-

dependent histone demethylases; various enzymes; formation of 

iron-sulfur clusters; cell survival and proliferation; prevention 

of oxidative damage (antioxidant role of ferritin) or, on the 

contrary, generation of free oxygen reactive species (free iron); 

immuno-modulatory functions [6-9]. Free iron is very toxic as it 

can accept or donate electrons to other molecules, leading to 

cellular damage; it also reacts with free oxygen radicals (Fenton 

and Haber-Weiss reactions) and leads to even more aggressive 

reactive oxygen species [8-11]. Therefore, iron metabolism, 

circulation, oxidation states, and storage must be very tightly 

regulated processes, impeding free iron toxicity and iron 

overload but allowing for an adequate release of iron for the 

cellular needs [12]. The classical, ubiquitously present ferritin 

comprises 24 subunits that self-assemble into an almost 

spherical cage with an external and internal diameter of 12 nm 

and 8 nm, respectively [1, 7]. Invertebrates, two types of ferritin 
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subunits assemble to form the ferritin molecule: L (light) and H 

(heavy) ferritins, genetically encoded on the 11q and 19q 

chromosomes in humans. The ratio of H/L–ferritin subunits is 

variable depending on the tissue, type of cell, cell 

subcompartment, metabolic rate, environmental factors, growth 

factors, translational and post-translational changes, and the 

presence of a large array of diseases [3, 4, 6, 8, 10, 13, 14]. The 

H-subunit has ferroxidase activity and plays the key role of 

oxidizing ferrous ions (Fe2+) to ferric ions (Fe3+) that can be 

further be stored in a mineralized, stable internal core of ferritin 

[6, 13]. Out of the multiple oxidation iron states (from -2 to +6), 

Fe3+ is the most stable, non-toxic iron state [7, 15]. The process 

of iron oxidation from Fe2+ to Fe3+ is therefore essential for 

the conversion of iron to a non-toxic form that can be stored 

inside of the cell; it is also important as it consumes free oxygen 

radicals in the process of iron oxidation that would otherwise 

accumulate and lead to cell damage [3, 8]. L-ferritin subunit 

lacks a ferroxidase activity; it has a salt bridge in its folds and 

therefore plays a role only in the stability of the ferritin cage 

and in the ferric iron storage [1, 13]. As the two subtypes of 

ferritin units have functional and structural differences, the ratio 

between the two in the ferritin nanocage differs between tissues, 

depending on the metabolic rate and need for a fast release of 

iron for incorporation into proteins. For example, in tissues 

characterized by high metabolic rates and the generation of a 

considerable amount of reactive oxygen species, such as the 

brain, heart, kidney, there is a predominant expression of the H-

ferritin in the ferritin nanocage. Instead, in tissues characterized 

by important iron storage, such as the liver and spleen, there is 

more L-ferritin than H-ferritin into the cells [3, 6, 9]. 

 

Types of ferritin  
There are three types of intracellular ferritin in humans: 

cytosolic, nuclear, and mitochondrial [9]. Nuclear ferritin forms 

H-subunits, while both L- and H-ferritins are present in the 

cytosol [6]. Mitochondrial ferritin is very similar to the H-

subunit ferritin, with a 79% homology between the two; it is 

expressed mainly in the tissues characterized by high metabolic 

rates, having a protective role against the oxidative stress, and 

being uncorrelated to the cellular iron content [1, 3]. Cellular 

ferritin synthesis is stimulated by high iron levels, oxidative 

stress, inflammatory stimuli/pathways. As H- and L- ferritin 

promoters have an antioxidant responsive element, ferritin 

synthesis is influenced by oxidative stress. Also, there is a 

hypoxia-responsive element in the 5'-promoter region of the 

ferritins, explaining why cellular ferritin levels increase during 

hypoxia [3]. 

 

Serum ferritin 

Ferritin is also found in the serum and various liquids, such as 

cerebrospinal fluid, synovial fluid, and urine, being constituted 

only from L-subunits [3, 9]. Serum L-ferritin is one of the 

tiniest understood molecules, although it is a laboratory test 

more and more requested in clinical practice [10]. It is not 

known if it is a monomeric or multimeric structure, and its 

functions are of unclear significance yet. Although 

insufficiently ascertained, circulating L-ferritin would act as an 

iron deliverer for cells [9]. Despite the limitations regarding its 

knowledge, serum ferritin is considered a very valuable clinical 

parameter. It can provide information regarding the body's iron 

content and differentiate between iron-deficiency anemia and 

other causes of anemia [5, 6, 9, 10]. However, serum ferritin 

levels do not always correlate well with the iron organism 

levels, as they can be influenced by many factors and diseases 

[6, 9, 10, 16, 17]. Also, serum ferritin stores only a small 

amount of iron [4], and therefore its quantification offers only 

limited information in this regard. The sources of serum ferritin 

are non-classical pathways secretion out of the cells into the 

serum; and release into the serum as a result of cell damage and 

death [1, 9, 10, 18, 19]. Various stimuli, such as pro-

inflammatory cytokines (interleukin 1 (IL-1), interleukin 6 (IL-

6), interleukin 10 (IL-10), tumor necrosis factor-alpha (TNF-

alpha), and interferon-gamma (IFN-gamma) that act via NF-kB 

pathway), growth factor or hypoxia can lead to increased 

secretion of ferritin [9, 10]. One of the significant sources of 

ferritin is the macrophages, which secrete it along with other 

cytokines [6, 19]; another important source can be the 

hepatocytes [9, 10]. After macrophage release, serum ferritin is 

physiologically glycosylated to a necessary extent (50-80% of 

the serum ferritin); a lower or a higher level of glycosylation 

has been associated with various diseases [6, 10]. The normal 

serum ferritin range is up to 200 μg/L in females and up to 300 

μg/L in males [5, 10]. The serum ferritin appears to correlate 

well with the levels of intracellular ferritin, and high 

intracellular ferritin will be usually paralleled by 

hyperferritinemia. Hyperferritinemia can indicate a high level of 

iron or, maybe even more frequently, the presence of 

one/multiple diseases characterized by inflammatory states. A 

high level of iron is toxic [17] and determines an increase in 

ferritin generation via the iron regulatory proteins 1 and 2 (IRP 

1 and 2) acting on IRE (iron response elements) present at the 

5’UTR of the ferritin transcripts [1, 2, 10]. It was reported that 

inflammatory stimuli mainly induce an increase in H-ferritin 

level, while high iron levels of L-ferritin [9]. 

 
Increased serum ferritin levels in diseases 

Serum ferritin and intracellular ferritin have markedly increased 

levels in many inflammatory autoimmune diseases and acute 

phase reactions [10, 19, 20]. Such diseases that are 

characterized by chronic or acute inflammation, altered iron 

metabolism, and associate high serum ferritin levels include 

infections (acute, chronic, sepsis;  viral, such as influenza 

infection, HCV and HIV; bacterial (including tuberculosis); 

autoimmune diseases, such as rheumatoid arthritis, systemic 

erythematosus lupus; kidney diseases; cancer (breast, colorectal, 

non-small lung cancer, prostate, pancreatic, oral, ovarian, 

renal); metabolic diseases (diabetes mellitus, obesity, 

dyslipidemia); cardiovascular diseases including hypertension; 

neurodegenerative diseases, such as Parkinson, Alzheimer, 

multiple sclerosis [1, 2, 4, 10, 13, 16, 21-35]. The inflammatory 

state/chronic inflammatory microenvironment is considered a 

consequence, a trigger, and/or an aggravating factor for the 

diseases mentioned above, leading to increased patient 

morbidity and mortality rates and the development of other 

severe chronic diseases [30 36-39]. Older age and male patients 

usually have higher serum ferritin levels than younger and 

female counterparts [40-45]. An elevated serum ferritin level in 

such diseases is considered an inflammatory marker, an acute 

phase reactant. It can be used along with other markers (C-

reactive protein, procalcitonin, lactate dehydrogenase (LDH), 

fibrinogen, D-dimers, erythrocyte sedimentation rate (ESR), IL-

6, etc.) for a better interpretation of disease evolution. The 

significantly increased levels of serum ferritin seen in the 

mentioned diseases and states correlate very well with the 

severity degree of the disease. Therefore, serum ferritin levels 

can be used as prognostic markers for the disease evolution, risk 

of developing severe complications, and death [19, 20]. It was 

reported that a ferritin level higher than 200 μg/L is a clear 

indicator for an increased risk of mortality for the patients with 

the previously mentioned diseases, the most critical cumulative 
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risk being at ferritin levels higher than 600 μg/L [10]. Also, 

elevated serum ferritin levels can predict the development of 

such diseases that develop under chronic systemic pro-

inflammatory states [46-48]. Even a link between 

inflammation– metabolic syndrome- high serum ferritin levels 

and the risk of developing other diseases, such as 

cardiovascular, was reported [49, 50]. That is, ferritin level 

holds a prognostic significance. However, it is not known 

whether the high levels of serum ferritin seen in the multiple 

diseases mentioned above are a cause or a secondary 

consequence, nor if they can exhibit protecting or, on the 

contrary, aggravating effects in the course of a pathological 

process. It is not known whether there is an etiologic role for 

ferritin in the mentioned diseases [6, 10, 51]. Some studies 

report a pro-inflammatory effect of ferritin per se [10, 14, 16, 

51], while others consider that ferritin can act as a protective 

factor in specific pathologies (e.g., protective effects of H-

ferritin against acute kidney injury or vascular calcification) [1].  

The increase in the ferritin levels seen in the inflammatory 

states can initially represent a mechanism of protection against 

a dangerous external agent (virus, bacteria, fungi) or internal 

(abnormal, compromised, toxic structures, such as in 

autoimmune diseases, neurodegenerative diseases, metabolic 

diseases, cancer). Pathogens and cancer cells require high iron 

levels for their survival and multiplication; in the case of 

cancers, iron is also essential for epithelial to mesenchymal 

transition, migration, and metastasis [6]. In the scenario of 

infections, ferritin might be a protective molecule as it 

sequestrates into intracellular stores, preventing the iron from 

being used by the pathogenic agents [9]; also, it has an 

antioxidant role. At the same time, serum ferritin could display 

immune-modulatory or even immunosuppressive roles, limiting 

the detrimental uncontrolled inflammatory storm [2, 9, 51]. By 

its anti-apoptotic functions, ferritin might determine a chronic 

tolerance to infections like hepatitis C virus, malaria, 

mycobacteria, HIV, and even sepsis [1, 9]. In infections and 

ferritin, another player intervenes as well: hepcidin. Hepcidin, a 

relatively newly described molecule produced in the liver, 

physiologically prevents iron release from the cells via 

ferroportin; hepcidin also inhibits iron absorption by the 

enterocytes. Therefore, hepcidin also limits pathogens' iron 

access [4, 8, 10, 11]. However, the opposite, detrimental effect 

of deregulated hyperferritinemia is even more frequently 

reported as a pathogenic vicious circle of disease can occur. 

Ferritin can determine more inflammation, aggravating the 

infection [14]. More ferritin can release more free iron from the 

cells; high free iron signals for even more ferritin synthesis, 

oxidative stress, inflammation, and cellular damage; excess 

ferritin can lead to the generation of ferritin aggregates, as 

described in some genetic ferritin disorders [3]. Such a 

deregulated process has also been described in 

neurodegenerative diseases (Alzheimer, Parkinson), although it 

is unclear whether ferritin metabolism alteration is the etiologic 

agent or only a consequence of the disease. However, in 

infections, hepcidin production is increased, leading to 

pronounced sequestration of iron into the cells, especially into 

macrophages, aiming to deprive the pathogens of it [8, 12]. This 

explains a chronic inflammatory type of anemia in such chronic 

diseases [4, 8]. At the same time, important iron sequestration 

into the host cells (via increased intracellular ferritin and 

following hepcidin production) would potentially become toxic; 

the ferritin iron storage capacity is probably saturable, and upon 

iron saturation, ferritinophagy and ferritinoptosis will ensue; 

there will be freer iron into the cells, oxidative damage, and cell 

death.   

In cancer, more ferritin and intracellular iron stores have also 

been described. Iron is helpful for the cancer cells as it is a 

catalyst for the histone demethylation, a process required for 

epigenetic plasticity; also, more intracellular ferritin protects the 

cell from oxidative damage; otherwise, such significant 

oxidative stress could easily affect the cells characterized by 

high metabolic rates, as cancer cells [1, 6, 9]. Ferritin might be 

pro-oncogenic by promoting oxidative stress, followed by lipid 

peroxidation, DNA strand damage, mutagenesis [4,10]. 

However, elevated ferritin levels can activate pro-inflammatory 

macrophages associated with cancer cells that appear to 

function for cancer progression [6, 9]. 

 

Ferritin- a link between various comorbidities and COVID-

19  

A recent observation is that in COVID-19 infection, there are 

increased levels of serum ferritin (hyperferritinemia, that is 

more than 300 μg ferritin/L), along with other pro-inflammatory 

markers (IL-1, IL-6, TNF-alpha, IFN-gamma, D-dimers, LDH, 

procalcitonin, C-reactive protein). In fact, a 3 to 4 times higher 

serum ferritin level was reported in the COVID-19 non-

survivors [2, 6, 16, 19, 51]. Also, higher serum ferritin levels 

were reported in patients with thrombotic complications than in 

the others [16]. Hyperferritinemia correlates well with the 

severity of the COVID-19, and the serum ferritin levels increase 

during the aggravation of the infection [19, 52]. Therefore, high 

serum ferritin levels indicate a very severe infection and poor 

prognosis, predicting the development of life-threatening 

complications, such as respiratory failure, organ dysfunction, 

need for ICU hospitalization, and death [11, 14, 16, 19, 20]. 

Interestingly, serum ferritin levels begin to decrease when the 

COVID-19 patients’ state begins to ameliorate [51]. Actually, 

ferritin levels are considered an independent prognostic factor 

for COVID-19 patients [19]. Also, ferritin levels have been 

proposed as a marker of viral replication [16]. It is already 

ascertained that specific categories of patients have a higher risk 

of SARS-CoV-2 infectivity and developing more aggressive, 

severe forms of COVID-19. Such categories are older, male 

patients; also patients with preexisting comorbidities such as 

hypertension, cardiovascular diseases; metabolic diseases 

(diabetes mellitus, obesity, dyslipidemia, and steatosis); kidney 

diseases; cancer; inflammatory and autoimmune diseases [1, 16, 

19, 29, 53-58]. Until now, no apparent, final, and unanimous 

explanation was found regarding the mechanisms behind such 

vulnerability for the SARS-CoV-2 severe infections in the 

categories mentioned above of patients. As ACE2 are the 

receptors for the SARS-CoV-2 [59], a temporary hypothesis 

was a higher expression of ACE2 receptors in such diseases, 

male patients, and older age, increasing the risk and severity of 

SARS-CoV-2 infection [53, 60-65]. However, this hypothesis 

was not validated afterward. For example, children have higher 

levels of whole-membrane ACE2 receptors, but instead, they 

have a low risk of infectivity or of developing symptomatic or 

severe forms of COVID-19. Usually, if they are infected, they 

develop asymptomatic/oligosymptomatic mild forms of 

infection, and only children with preexisting severe 

comorbidities can present more severe forms of the disease 

[66]. The explanation, therefore, could come not from a higher 

expression of ACE2 receptors but their hyperferritinemia status, 

cause and/or consequence, as well as a contributor to their 

chronic inflammatory states. There is already a report where the 

authors consider a link between inflammation, cancer, and more 

severe forms of SARS-CoV-2 infection [29].  

In this context, we hypothesize a causal link between 

preexisting elevated serum ferritin levels due to various patient 
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comorbidities (that associate an inflammatory state and 

oxidative stress) and a higher risk of SARS-CoV-2 infectivity 

of developing more severe forms of infection. The 

chronic/acute inflammation reported in such diseases sustained 

by hyperferritinemia creates a vulnerable status for other 

infections, including SARS-CoV-2 infection. Such a 

vulnerability fueled by the preexisting immune dysregulation 

and severe pro-inflammatory status [16] can more rapidly 

trigger a veritable cytokine storm. It is ascertained that the 

inflammatory states, via cytokines and chemokines, determine 

an upregulation of ferritin expression with the accumulation of 

more and more ferritin into the cells [14]. Pro-inflammatory 

cytokines such as IL-1, IL-6, IL-10, TNF-alpha, and IFN-

gamma, massively produced in COVID-19 as well, will 

therefore increase ferritin levels [1, 10, 20, 51]. It appears that 

once produced in excess; ferritin will feed a positive feedback 

loop, determining more inflammation, the generation of more 

pro-inflammatory cytokines, and the activation of M1 

macrophages [51]. Ferritin (H-ferritin) was reported to activate 

M1 macrophages, production of cytokines, leading to 

inflammation and even pyroptotic cell death [14,16]; it 

regulates many intracellular signaling pathways, such as pro-

inflammatory pathways, with the activation of the NF-kB 

(nuclear factor kappa-B) that leads to more inflammation; it 

also regulates c-Jun N-terminal kinase (JNK) pathway (ferritin 

inhibits it, preventing cell apoptosis and promoting survival); 

ERK pathway, MAPK-pathway, and others [3, 4, 6, 9]. It has 

also been reported that ferritin can directly, at the nuclear level, 

stimulate the gene expression of several pro-inflammatory 

cytokines, such as IL-1 beta, IL-6, TNF-alpha, and others [9, 

19]. The excessively produced inflammatory mediators will 

stimulate ferritinophagy, with increased intracellular free iron, 

leading to oxidative stress, lipid peroxidation, and ferroptosis 

[2, 6]. Ferroptosis is an iron-regulated form of cell death [3]. 

Ferroptosis will promote inflammation, oxidative stress, and 

cell damage [9, 11]. COVID-19 itself is also a disease that is 

characterized by an exaggerated uncontrolled systemic 

inflammation and cytokine storm, similar to the macrophage 

activation syndrome, leading to organ dysfunction and damage, 

increased infection severity, and mortality [2, 11, 16, 19, 20, 58, 

67-70]. Therefore, a positive feedback loop of inflammation 

triggered by preexisting high ferritin levels [14] (in the context 

of diseases associated with chronic inflammatory states) could 

be detrimental for sure. Systemic inflammation with 

uncontrolled cytokine storm is recognized as a cause of 

mortality in COVID-19 patients [6, 14, 51]. In infections like 

COVID-19, cell damage by the viruses is another source of 

ferritin release into the serum, as reported in liver diseases. As 

ferritin assembly is dependent on environmental factors, 

including pH, ferritin molecules will be able to disassemble into 

the serum, releasing toxic free iron that will determine oxidative 

stress, more inflammation, cytokine storm, and cellular damage, 

leading to multiple organ dysfunction and even death [10, 11]. 

The SARS-CoV-2 virus also attacks hemoglobin, releasing 

toxic free iron, leading to oxidative stress and inflammation. 

The inflammatory state will determine more ferritin being 

produced [4]; in fact, a vicious, positive feedback loop is 

described between cytokines and ferritin [19]. The released free 

iron, the result of the hemoglobin attack by the virus, will also 

stimulate ferritin production; the result will be more 

inflammation and a pro-thrombotic state (free iron determines 

fibrinogen conversion to fibrin) [11]. SARS-CoV-2 can also 

mimic hepcidin, leading to increased ferritin levels and further 

inflammation [11]. 

Therefore, as ferritin per se can also lead to/aggravate 

inflammation [9, 14], it could be a key player in COVID-19 

pathogenesis. The cytokine storm and ferritin lead to acute 

respiratory distress syndrome (ARDS) [16]. In this context, 

there are reports after postmortem analysis that SARS-CoV-2 

does not determine pneumonia or ARDS per se; instead, free 

iron leads to oxidative damage, inflammation, and cellular and 

organ damage [11]. That could be the explanation why in 

COVID-19 patients, extremely high levels of serum ferritins 

(that signal or even trigger inflammation) were observed in 

severe forms of infection, along with the occurrence of 

complications and correlated with a poor prognostic and 

survival. Additional mechanisms to explain why a preexisting 

inflammatory status (as reported in patients with essential 

comorbidities) has an increased risk of SARS-CoV-2 infection 

could intervene. Inflammatory stimuli and reactive oxygen 

species (the result of increased levels of iron released from 

cells) lead to an activation of key enzymes for viral infectivities, 

such as ADAM-17 or even of ACE2, that could intervene as an 

activating enzyme for the SARS-CoV-2 as well, as 

hypothesized in a recent study [71-74]. ADAM-17, also known 

as TACE, is known to activate membrane ACE2, a process 

important for viral infectivity; also, it can act as an activator 

enzyme for the SARS-CoV-2 as well, with putative cleavage of 

the spike protein required for viral fusion to the host cells [71-

74]. 

 

Future perspectives 

In this context, considering that ferritin is one of the least 

understood molecules in disease, more research would be 

needed: to establish whether ferritin can act as a triggering 

factor for infections and other diseases or whether its increased 

levels are only a consequence. In this concern, international, 

large-scale multicentric research should be performed to link 

the serum ferritin and iron levels in various diseases and the risk 

of SARS-CoV-2 infectivity/risk of developing more severe 

forms of infection. However, such research is hindered by the 

difficulties in iron quantification in the serum and at 

intercellular levels. Also, more in vitro studies should be 

performed; macrophages and other cells, in various 

environmental conditions, should be exposed to different 

ferritin levels/ different types of ferritins, and the levels and 

types of released cytokines are measured afterward. In COVID-

19, a new question should be raised supplementary: whether 

ferritin does not indirectly/directly affect the expression and 

functionality of the membrane ACE2 receptors. This question 

appears of significance as in severe COVID-19 patients, 

hyperferritinemia (along with other serum pro-inflammatory 

markers) can be seen but paralleled by an increase in the serum 

enzymatic activity of ACE2 [52]. Understanding the 

hyperferritinemia significance in COVID-19 patients with 

significant comorbidities gains considerable significance. Such 

an understanding would be useful in designing prevention 

strategies for the patients' categories at increased risk of severe 

forms of disease and in treating such patients more efficiently. 

At the same time, the design and implementation of specific 

preventive strategies for the patients at risk are essential, as it 

was shown that we could not control pandemics only through 

measures of isolation and quarantine, especially when dealing 

with a virus that can reappear in successive waves across the 

globe, due to its impressive registry of mutations [75-78]. 

Suppose we accept the ferritin causal roles in infections like 

COVID-19. In that case, we could intervene with iron chelators 

(deferoxamine, deferasirox, deferiprone, or the natural 

lactoferrin) and antioxidants at the initial stages/in the course of 
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the infection to limit the progress and the severity of the 

disease.  Some authors already propose an attitude to fight 

cancer progression and severe infections, such as AIDS and 

COVID-19 [9-11]. In COVID-19, iron chelators could even 

prevent the SARS-CoV-2 from binding to its cellular receptors, 

as described by some authors [11].  One explanation for this 

effect could be that the iron chelators bind the virus; the other is 

that the chelators bind the viral membrane receptors. Also, 

lactoferrin binds to heparan sulfate proteoglycans that appear 

essential for SARS-CoV-2 binding to the ACE2 receptors. It 

appears that lactoferrin could also repress intracellular viral 

replication (11). We could also exploit the bio-ferritin 

nanocages to deliver enhanced therapies for COVID-19 

patients, as envisioned already for cancer therapy [6]. Such an 

example would be Artemisia-derived drugs, used to treat 

malaria and considered in treating SARS-CoV-2 infected 

patients. Artesunate can increase the lysosomal degradation of 

intracellular ferritin with the release of free iron and oxidative 

stress, leading to the death of the infected cells (therapeutic 

induction of ferroptosis) [6, 79, 80]. Therefore, there is a clear 

need for more research to enable knowledge on the exact link 

between preexisting patient comorbidities, serum ferritin levels, 

and COVID-19. Such a discovery would make possible a better 

prediction and prevention of SARS-CoV-2 infectivity, based on 

a clinically generally available determination of serum ferritin 

levels. A single aspect regarding ferritin and disease can be 

ascertained for now: nothing is for sure yet. Until better 

knowledge is achieved, valuable information, however, 

emerges: the usefulness of ferritin levels in predicting the 

course of COVID-19 and other diseases. 

 

Abbreviation  

SARS-Cov-2: Severe Acute Respiratory Syndrome Coronavirus 

2; COVID-19: The Coronavirus Disease 19; ACE2: 

Angiotensin-Converting Enzyme 2; ADAM 17: Disintegrin 

And Metalloprotease 17 (ADAM-17), Also Known As TACE 

(Tumor Necrosis Factor-Α-Converting Enzyme); RNA: 

Ribonucleic Acid; DNA: Deoxyribonucleic Acid; L-Ferritin: 

Light Ferritin; H-Ferritin:  Heavy Ferritin; Fe2+: Ferrous Ions; 

Fe3+: Ferric Ions; IL: Interleukin; IL-1: Interleukin 1; IL-6: 

Interleukin 6; IL-10: Interleukin 10; TNF-Alpha: Tumor-

Necrosis Factor Alpha; IFN-Gamma: Interferon Gamma; NF-

Kb: Nuclear Factor Kappa-B;  IRP 1 And 2: Iron Regulatory 

Proteins 1 And 2; IRE: Iron Response Elements; HCV: 

Hepatitis C Virus; HIV: Human Immunodeficiency Virus; 

LDH: Lactate Dehydrogenase; ESR: Erythrocyte Sedimentation 

Rate; ICU: Intensive Care Unit; JNK: C-Jun N-Terminal Kinase 

Pathway; ERK: Extracellular Signal‑Regulated Kinase 

Pathway; MAPK Pathway: Mitogen-Activated Protein Kinase 

Pathway; ARDS: Acute Respiratory Distress Syndrome; AIDS: 

Acquired Immunodeficiency Syndrome.. 
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