JOURNAL OF HORTICULTURAL SCIENCES

Volume 15

December 2020

Number 2

Conserving Honey Bees with Forage Plant Mexican Creeper - Antigonon leptopus

Society for Promotion of Horticulture ICAR - Indian Institute of Horticultural Research, Bengaluru - 560 089

JOURNAL OF HORTICULTURAL SCIENCES

(Founded in 2005 by the Society for Promotion of Horticulture, Bengaluru, India) Email : chiefeditor.jhs@gmail.com Webpage : https://jhs.iihr.res.in/index.php/jhs

Editor-in-Chief

Dr. S. Sriram

Editors Dr. K. Himabindu Dr. G. Senthilkumaran Dr. Tejaswini Prakash Dr. M. Manamohan

Dr. Anil Kumar Nair Dr. J. Satisha Dr. P. Venkata Rami Reddy Dr. I.M. Doreyappa Gowda

Dr. R.H. Laxman Dr. G.C. Sathisha

Editorial Advisory Board

International Editorial Advisory Board

Dr. Nanthi S. Bolan, Australia Dr. Rod Drew, Australia Dr. J. Mithila, USA Dr. Claus Helmut Franz Orth, South Africa Dr. Ilan Paran, Israel Dr. Gi-Cheol Song, Republic of Korea Dr. Jill Stanley, New Zealand Dr. Palitha Weerakkody, Sri Lanka

National Editorial Advisory Board Dr. S. D. Shikhamany Dr. V. A. Parthasarathy Dr. K. V. Peter Dr. Sisir K. Mitra Dr. S.K. Tikoo Dr. Seetharam Annadana Dr. A. Krishnamoorthy Dr. Leela Sahijram

SOCIETY FOR PROMOTION OF HORTICULTURE (REGD.)

Email: sphiihr2005@gmail.com Website: www.sphindia.org

Executive Council - 2020

President	: Dr. M.R. Dinesh	Members :	Dr. T.S. Aghora
Vice Presidents	: Dr. G. S. Prakash Dr. T.N. Shivananda		Dr. K.S. Shivashankara Dr. Prakash Patil Dr. H. S. Oberoi
General Secretary	: Dr. C. Aswath		Dr. C.K. Narayana Dr. B. Narayanaswamy
Editor-in-Chief	: Dr. S. Sriram		Dr. B. Hemla Naik
Treasurer	: Dr. D.V. Sudhakar Rao		Dr. L.N. Mahawer Dr. Sanjay Kumar Singh
Joint Secretaries	: Dr. P.C. Tripathi Dr. T.H. Singh		Dr. S.K. Mitra Dr. S. Hazarika Dr. Gobind Acharya

This Journal is abstracted in CABI, Current Contents, AGRIS, Indian Science Abstracts, Scopus, DOAJ and Redalyc. It is a participant of AmeliCA.

Request for membership subscriptions along with cheque/DD drawn in favour of Society for Promotion of Horticulture, Bengaluru may be sent to General Secretary, Society for Promotion of Horticulture, Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru - 560 089, India. All members except student members and subscribers get all publications of SPH free of cost. Any correspondence other than editorial may be addressed to General Secretary, Society for Promotion of Horticulture, Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru - 560 089, India.

Advertising space in the journal is available. For information and rates, please contact General Secretary. SPH. IIHR

Bengaluru - 560 089, India. Advertising material should cater to the interest of researchers, subscribers, etc. who are involved in promotion of horticulture. Publication of advertisement is not an endorsement or approval, expressed or implied by the SPH or the editors of any service, product or claim made by the manufacturer.

Coverpage Courtesy : Rami Reddy P.V., P.No. 225

ble. For mormation and rates, please contact General Secretary, 51 H, milk,			
SUBSCRIPTION RATES			
Patron	₹ 20,000		
Life member	₹ 5,000		
Annual Member	₹ 1,000 / US \$ 100 (US \$ 50 for SAARC countries)		
Student Member	₹ 500		
Student Life Memeber	:₹ 3,000		
Annual Subscription	₹ 1,500 / US \$ 100 (US \$ 60 for SAARC countries)		
	(for institutions)		
Enrolment Fee	₹ 200 / US \$ 5 (Additional for all types of Membership)		

NAAS rating of this journal is 3.43. JHS is now available online. Authors have to submit manuscripts using the link : https://jhs.iihr.res.in/index.php/jhs

Technical Assistance : Dr. Sridhar Gutam, Thippeswamy S. and Pramida A.

JOURNAL OF HORTICULTURAL SCIENCES

Volume 15	Number 2	December 2020
	C O N T E N T S	
In this Issue		i-ii
Review		
Biodiversity of tropical fr Sankaran M. and Dinesh M.	uits and their conservation in India .R.	107-126
An overview of canopy m Adiga D.J., Veena G.L., The	nanagement in cashew (<i>Anacardium occidentale</i> ondaiman V. and Babli M.	L.) 127-135
Original Research in	Papers	
attributes in plastic house	shaka A., Jandong E., Adamu J.T., Adekoya M.,	136-146
IIHRG-7 (IC620379) and Fusarium wilt resistance	on of novel gladiolus hybrid selections IIHRG-11 (IC620380) for flower quality and gi S.S., Aswath C., Dhananjaya M.V., n N.	147-152
with special reference to H	alt of phosphonic acid in Nagpur mandarin Phytophthora management Sadawarte A.K. and Bhonde S.R.	153-160
fruit characteristics of 400	(<i>Mangifera indica</i> L.) based on) genotypes Gowda D.C.S. and Venugopalan R.	161-172
Standardization of nitrogen <i>Chrysanthemum morifoliun</i> Tanya Thakur		173-176
Dendrobium cv. Singapore	tients on growth, flowering and quality of white Muralidhara, B.M., Awcharae C.M. and Singh D.R.	177-182
Palynological investigation Ganga M., Lakshmi J., Mani		183-190

Effect of putrescine and benzyl adenine on growth, flowering and post-harvest 191-196 keeping quality parameters in chrysanthemum (Chrysanthemum morifolium ramat) Taranjit Singh and Madhu Bala Studies on bioavailability of iron from fe-fortified commercial edible mushroom 197-206 Hypsizygusulmarius and standardization of its delivery system for human nutrition Pandey M., Gowda N.K.S., Satisha G.C., Azeez S., Chandrashekara C., Zamil M. and Roy T.K. Amino acid profile of eighteen isolate of different edible macrofungal species 207-220 Azeez S., Pandey M., Jasmin M.R., Rachitha R., Satisha G.C., Roy T.K. Chandrashekara C. and Shivashankara K.S. Short Communications A promising new tamarind selection-lakshamana : Linking biodiversity 221-224 with livelihood Kanupriya C., Karunakaran G. and Singh P. Mexican creeper, Antigonon leptopus Hook. and Arn : An effective 225-228 bee forage plant to conserve honey bee Rami Reddy P.V. First report on honeydew excretion by the melon thrips, *Thrips palmi* 229-232 karny (Thysanoptera : Thripidae) and its biochemical analysis Aravintharaj R., Asokan R. and Roy T.K. Influence of potting mixture on growth and economics of stone graft of 233-237 mango cv. alphonso Lad O.A., Kulkarni M.M., Ragaji S.G., Gavankar M.S., Burondkar M.M., Gokhale N.B.

Pawar C.D., Khandekar R.G., Kshirsagar P.J. and Desai V.S.

In this issue...

Hearty New Year Greetings from our Editorial Team to all the readers of JHS!

As the world is slowly coming out of glitches of pandemic, there is no other better way than celebrating 2021 as Year of Fruits and Vegetables as announced by United Nations Assembly to welcome the new year and recognize the importance of nutrition for better health. Fruits and Vegetables ensure the Nutritional Security to humankind. They play key role in addressing the malnutrition that is a major concern. We are proud that JHS creatins awareness of importance of fruits and vegetables by publishing the recent developments in research with respect to these crops.

Diversity of fruit crops and genetic resources available with respect to fruit crops are important for developing better fruit crop varieties. **Sankaran and Dinesh** have reviewed the "Biodiveristy of Fruit Crops in India" in a very comprehensive way. There is diversity in Jasmine species. **Ganga et al.** carried out the palynological investigations and recorded the variability in pollen morphology in different species of Jasmine by documentating images using scanning electron microscope. Biodiversity can be linked to livelihood also. One such success story with tamarind selection 'Lakhamna' is being reported by **Kanupriya et al.** This tamarind selection has been identified from participatory breeding programme. It has a better pod characters and more preferred by consumers.

Protected cultivation has seen greater momentum in last two decades. Adeniji et al. identified the best varieties of tomato for polyhouse cultivation in Nigeria. Rao et al. selected two gladiolus hybrid selections IIHRG-7 and IIHRG-11 with red purple and red coloured flowers respectively. These hybrids have resistance to Fusarium wilt and suitable for cut flower and flower arrangement purposes. Sankaran et al. analysed the variance for 6 quantitative and 30 qualitative traits in mango in 400 genotypes and identified 18 clusters. Selected genotypes from specific clusters can be used in hybridization programme.

The production aspects are important in perennial crops. It is crop management that needs to be prioritized for enhanced yield. Adiga et al. have reviewed the research work carried in "Canopy Management in Cashew", providing the wholistic view of cultural operations to have a better crop. Use of soilless medium in nursery industry is gaining importance. Best suited potting mixture for mango stone graft of cv. Alphonso has been identified by Lad et al. They found that cocopeat + leaf manure + compost (1:1:2) as pot mixture provided better plant growth.

Growing Chrysanthemum in pots is practiced in home and terrace gardens. The cultivar Kikiobiory is well suited for this purpose. **Thakur** has studied the nitrogen requirement for this cultivar and has come out with the recommendation of 300 mg of N per pot applied

twice in September and October in Punjab for best results. In another study, **Singh and Bala** confirmed that use of benzyl adenine at 200 ppm helped in extended vase life of Chrysanthemum morifolium flowers. **Nair et al.** recorded that foliar spray of 30:20:20 NPK at weekly interval recorded more number of flowers of Dendrobium cv. Singapore White with significantly longer spikes.

Crop production is directly influenced by pollinators. Decline in honey bee population is a serious concern and to conserve the pollinators community approach through ecosystem services is required. **Rami Reddy** reports the benefits of having ornamental plant Mexican Creeper (Antigonon leptopus) as forage plant. This creeper attracted all the four species of honey bees studied. This creeper can be used as bioindicator of honey bee population.

Aravindaraj et al. have reported the honey dew secretion by Thrips palmi and analysed the composition of it. They had identified different sugars present in the honey dew secretion of Thrips. Thrips not only cause direct damage but act as vectors of many plant viruses. Management of diseases in perennial crops is a challenge. Phytophthora incited root infection in citrus needs concerted efforts. Ingle et al. have demonstrated that use of potassium salt of phosphonic acid could help in management of Phytophthora root rot in Nagpur Mandarin.

Mushrooms can fill the gaps in nutritional security as they are rich in nutritive value. Iron deficiency is important issue to be addressed. Iron fortified oyster mushroom products have been developed by **Pandey et al.** The bioavailability of iron from Arka Mushroom Fe-Fortified Rasam Powder has been confirmed. In another study, the amino acid profile of 18 isolates of oyster mushroom species belonging to 4 species have been documented by **Azeez et al.** Quantification of essential and non-essential amino acids has been reported. Nutritionally superior isolates can be selected from these isolates.

The editorial team of JHS expresses the sincere efforts of reviewers who really complement the publication processes. All scientists and scholars can utilize the open access of JHS. Recently FAO has made JHS available through AGRIS. It is indexed by Redalyc, CABI_Hort and Scopus. All subscribers, scientists and scholars are requested to continue their support in publishing quality information in **Journal of Horticultural Sciences**.

S. Sriram Editor in Chief

Short Communication

Mexican creeper, *Antigonon leptopus* hook. and arn : An effective bee forage plant to conserve honey bees

Rami Reddy P.V.

Division of Crop Protection ICAR-Indian Institute of Horticultural Research Hesaraghatta Lake, Bengaluru – 560 089, Karnataka, India *Corresponding author Email : pvreddy2011@gmail.com

ABSTRACT

Decline in honey bee populations has become a matter of concern and their conservation is very essential to sustain essential ecosystem services. They provide making available continuous supply of floral resources is of immense value in conserving honey bees. The effectiveness of an ornamental creeper, *Antigonon leptopus* Hook. & Arn as a sustainable bee forage plant was evaluated. It attracts four major native species of honey bees viz., *Apis cerana*, *A. florea*, *A. dorsata* and *Tetragonula iridipennis*. The wild little bee, *A. florea* was the most dominant forager followed by the Indian bee, *A. cerana*. The plant is amenable for easy multiplication through seeds as well as cuttings and meets both aesthetic and ecological needs. Using *Antigonon*, different studies related to honey bees like assessing species diversity, foraging behaviour, temperature driven shifts etc. can be carried out. Popularising perennial bee flora like *Antigonon* would help in conserving honey bees in both natural and urban habitats. Since *Antigonon* attracts all species of honey bees throughout the year, it could be utilized as a potential bioindicator of honey bee populations in a given environment.

Keywords: Antigonon, Apis spp., Bee flora, Honey bees and Ornamental creeper

Uninterrupted availability of pollen and nectar sources is essential for sustaining honey bee colonies and to take maximum advantage of their ecosystem services like pollination and honey production. Destruction of natural habitats and lack of adequate floral resources have led to significant decline in bee populations both in wild and agro ecosystems. As per an estimate, there was about 40% decline in honey bee populations in India during the last 25 years (Gallai et al. 2009). With the advent of intensive agriculture characterized by mono-cropping, clean cultivation and large-scale use of pesticides and ever growing urbanisation, honey bees are deprived of adequate foraging plants as well as congenial nesting sites (Reddy et al. 2012). Decline in honey bee populations results in poor pollination and reduced productivity of several food crops including fruits, vegetable and oil seeds as majority of them are dependent on honey bees for pollination. In order to conserve and sustain both wild and managed pollinator populations in cropping as well as urban and peri-urban ecosystems, it is imperative

to have bee flora which could provide nectar and pollen and help bees survive during off-season. A large number of flowering plants comprising herbs, shrubs, creepers and trees are credited as bee foraging plants. However, majority of them either have very short blossom period or are not adaptable to wider agroclimatic conditions. Under such circumstances, an ideal bee forage plant is the one which flowers almost throughout the year and produces copious amounts of nectar. At the same time, it should not compete with agriculturally important plants for land and other resources. Having an aesthetically pleasing blossom would be an added advantage. Such bee forage plants can be grown in open fields as well as in urban habitats like parks, boundary walls of institutions or within individual house premises.

This paper reports the efficacy of *Antigonon leptopus* Hook. & Arn, a creeper, (Family: Polygonesiae) as one such plant species which attracts a large number of honey bees besides other beneficial

insects. Commonly called Coral vine or Mexican creeper or bee bush, A. leptopus is a climber, native to Central America. It produces indeterminate axillary racemes of attractive pink flowers of 20-25 mm diameter and blossoms almost throughout the year. Flowers are an abundant source of nectar and pollen to honey bees. Each flower is estimated to produce 1-1.5 µL of nectar with 26-28% sugar and 0.025-0.036 mg of pollen and attracts a wide range of floral visitors mainly social bees (Raju et al., 2001; Abrol, 2003). There is also a variant of the same species which produces white flowers but occurs at a low frequency. The plant is also known to possess a wide range of phytochemicals like alkaloids, phenolic compounds, saponins, triterpenoids and glycosides in different parts and is valued for its medicinal properties (Rakshit and Raghavendra, 2018).

Antigonon leptopus can be propagated through seeds as well as semi-hard wood cuttings. The dual reproductive behavior of *A. leptopus* is considered as an adaptation for successful survival in tropical environments (Raju *et al.*, 2001). Our experience shows seeds to be a better means of multiplication. The germination rate was fairly high (80-85%). Seeds were sown in pro trays and a month-old seedlings were planted along the boundary wall of the experimental field of ICAR-Indian Institute of Horticultural Research (ICAR-IIHR), Hesaraghatta, Bengaluru (Fig. 1).

Fig. 1. *Antigonon* creeper grown on the compound wall of IIHR, Bengaluru

The success rate of establishment was more than 90% and seedlings reached flowering stage within five to six months after planting. The plants do not require any special attention except for 3-4 irrigations in

summer months in the first year. The *Antigonon* creepers planted at ICAR-IIHR as well as those in a nearby wild habitat were continuously monitored for flowering and honey bee activity for a year. The duration of blooming and species diversity and abundance were recorded. It was observed that the creepers were in peak flowering for 8-10 months with a relatively lower flower density during December – February.

At ICAR-IIHR campus in Hesaraghatta and surrounding places near Bengaluru (13.13° N, 77.47°E), four species of honey bees viz., Indian honey bee, Apis cerana indica Fab., little bee, A. florea Fab., rock bee, A. dorsata Fab. and stingless bee, Tetragonula iridipennis Smith were found foraging on Antigonon flowers throughout the year (Fig. 2). The proportion of different species foraging at a given time was calculated by visually counting different species from 10 plants during peak foraging hours. Among all insects visited flowers of Antigonon, honey bees constituted 89.09 per cent while all other insects together (butterflies, moths, wasps, syrphids, calliphorids and ants) constituted the remaining 10.91 per cent. Within four species of honey bees foraged on Antigonon, A. florea was the most dominant forager (constituting 34.06% of total foragers) followed by A. cerana (27.18%), A. dorsata (21.34%) and T. iridipennis (5.51%). Diurnal variations in foraging activity of different species indicate that though bees were found visiting flowers throughout the day, there were significant variations in the number of worker bees foraging at different periods of the day. The major peak activity was recorded between 6.00 - 10.00 AM followed by a minor peak between 4.00 and 6.00PM. Among three Apis species, the wild rock bee was found to maintain relative consistency throughout the day with least variations in their numbers while the foraging activity of other two species had significantly come down during afternoon hours till evening. This is an indication of their sensitivity to higher temperatures. In a related study by Reddy et al. (2015), increase in maximum temperature was reported to adversely affect the foraging activity of A. cerana.

The major advantage of the creeper is that it flowers throughout the year especially during rainy season (June – September) which is considered as dearth period for honey bees and when desertion rate is high. To save colonies, apiarists generally resort to feed the colonies with sugar syrup and *Antigonon* could

J. Hortl. Sci. Vol. 15(2) 225-228 : 2020

Little bee (*Apis florea*)

Indian bee (Apis cerana indica)

Rock bee (Apis dorsata)

Stingless bee (Tetragonula iridipennis)

Fig 2. Different species of honey bees foraging on Antigonon flowers

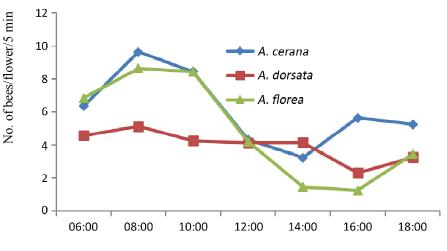


Fig 1. Diurnal variations in the foraging activity of three Apis species of honey bees on Antigonon flowers

help in saving cost and time of sugar feeding. Pruning once a year helps in preventing creeper from over growing and retaining aesthetic value. Planting of bee plants is all the more important in urban localities as it is a common sight to find bees dying while trying to feed on sweet liquid substances like soft drinks and leftover tea or coffee in paper cups. A study by Chandrasekharan et al. (2011) established the detrimental effect of these factors on honey bees in the absence of sufficient floral resources. The Mexican creeper not only adds beauty to premises but also helps in sustaining beneficial insect diversity in general and honey bees in particular. The Mexican creeper is also credited as a beneficial plant attractive to parasitoids of oil palm pests and is preferred to be planted around oil palm plantations (Kamarudin and Arshad, 2016).

ACKNOWLEDGMENTS

Author extends sincere thanks to Dr. M. R. Dinesh, Director, ICAR - Indian Institute of Horticultural Research, Bengaluru for Based on data related to species diversity and flowering duration recorded, it could be possible that *Antigonon* creeper could also be used as a bioindicator to monitor honey bee populations and species diversity in a particular location. This can also be used to conduct certain specific studies like fluctuations in bee numbers in relation to seasonal and diurnal variations, temperature influenced shifts in foraging behavior and species-specific foraging behavior. For instance, Gross et al. (2019) used *A. leptopus* to study the interspecific interactions and aggression pattern during foraging of *A. cerana* and *A. mellifera*. Hence *A. leptopus* can be planted and popularized in different landscapes wherever possible to conserve and sustain honey bees.

encouragement, support and providing necessary facilities. Thanks are also due to Mr. Venkatesh, T. L and Mr. Lakshminarayana for their assistance in field maintenance.

REFERENCES

- Abrol, D. 2003. Antigonon leptopus. Bee World. 84: 86-87.
- Chandrasekaran, S., Nagendran, N.A., Krishnakutty, N., Pandiaraja, D., Saravanan, S., Kamaladharsan, N., and Balasubramania B. 2011. Disposed tea cups and declining bees, *Curr. Sci.* **101**(10): 1262.
- Gross, C. L., Whitehead, J. D., Mackay, K. D., Andrew, N. R. and Paini, D. 2019. Interactions between two species of recently sympatric invasive honey bees: A *cerana* induces aggression in *A. mellifera. Biol. Invasions*, **21** (1509): 1-10.
- Kamarudin, N. and Arshad, O. 2016. Diversity and activity of insect natural enemies of the bagworm (Lepidoptera: Psychidae) within an oil palm plantation in Perak, Malaysia. *J. Oil Palm Res.* **228**: 296–307.
- Raju, A. J. S., Raju, V. K., Victor, P and Naidu, S. A. 2001. Floral ecology, breeding system and

pollination in Antigonon leptopus L. (Polygonaceae). Plant Species Biol. 16:159– 164.

- Rakshit, K. T. R. and Raghavendra, H. I. 2018. Medicinal uses, phytochemistry and pharmacological activities of *Antigonon leptopus* Hook. and Arn. (Polygonaceae): A Review. J. Chemical Pharmacol. Res. 10(2): 103–110.
- Reddy, P. V. R., Rashmi, T. and Verghese, A. 2015. Foraging activity of Indian honey bee, *Apis cerana* Fab. (Hymenoptera: Apidae) in relation to ambient climate variables under tropical conditions in South India. *J. Envi. Biol.* **36** (3): 577–581.
- Reddy, P. V. R., Verghese, A. and Rajan, V. 2012. Potential impact of climate change on honeybees (*Apis* spp.) and their pollination services. *Pest Managmt. Horti. Ecosyst.* 18 (2):121–127.

(Received on 3.11.2020 and Accepted on 28.12.2020)

INFORMATION TO CONTRIBUTORS

Journal of Horticultural Sciences, an international journal, is the official publication of **Society for Promotion of Horticulture** (**SPH**). It covers basic and applied aspect of original research on all branches of horticulture and other cognate disciplines, which promotes horticulture in its broadest sense. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industrial developments and extension findings. The area of research include evaluation of germplasm, breeding, agronomic practices, physiology, biochemistry, biotechnology, soils and plant nutrition, plant protection, weed control, pesticide residue, post harvest technology, economics, extension, farm machinery and mechanization, etc. which facilitate in the growth and expansion of horticulture. The journal is published twice a year, in June and December.

The Journal of Horticultural Sciences (JHS) publishes critical reviews, research papers and short communications. Three copies of the manuscript and an electronic form (CD, MS Word) should be submitted to the Chief Editor, JHS, SPH, Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bangalore-560 089. The manuscript should preferably pertain to the research work carried out during the last five years. Author(s) must certify that the manuscript (s) has/have not been sent elsewhere for publication. All the authors have to become the members of SPH when a paper is accepted for publication. All papers will be refereed. Short communications on significant research findings, new record / technology are welcome. Besides invited review papers, scientists with vast experience on a particular field of research can also submit review papers which will be referred. Decision of the Chief Editor / Editorial board is final. Authors are permitted to photocopy their article for non-commercial and scientific purpose. No reprints shall be provided gratis. Acceptance of manuscript for publication in JHS shall automatically mean transfer of copyright to the SPH. The chief editor/ Editorial board assumes no responsibility for the statements, opinion or facts expressed in the journal, which rests entirely with the author(s) thereof. Mention of a pesticide or a commercial or proprietary product does not constitute an endorsement or recommendation for the use.

Title: The title of the article should be bold and in running form. Use the font Times New Roman (14 point).Botanical / scientific names should be italicized. Author name(s) should be in running and bold with full address of the first author including e-mail address (it is mandatory as future correspondence will be only through e-mail). The address of other author(s), if different from the first author, should be given as footnotes and indicated by consecutive superscript numbers. A brief running title should be provided on a separate sheet.

Abstract: The abstract should not exceed 200 words. It should be suitable for indexing and publication in abstracting journal. Very pertinent keywords may be furnished. **Text:** The text should be typed in double space on one side of good quality paper (21 x 29 cm) with 3cm margin on all sides **without justifying the text** and in clear and concise English. Use the font Times New Roman (12 point). The paper should be divided into subheadings (placed on the left margin and in upper case) such as Introduction, Material and Methods, Results and Discussion, Acknowledgements, and References. Units and abbreviations should be in metric (SI) system. It is desirable that authors take due care on clarity and brevity of the paper. The length of the paper should not exceed 2500 words.

Tables/ Illustrations/ Photographs: Each table should be on a separate sheet with a short title at the end of the paper, numbered in the order in which it appears in the text. The data reported must be subjected to appropriate statistical analysis. The illustrations should be relevant to the research findings and should not be repeating of data presented in the table. Only very good photographs, mounted on hard paper to avoid folding, given on a separate sheet of paper with title, which are reproducible, will be accepted. Data to be presented in graphical form should be sent on quality glossy contrast paper without folding.

References: References should be cited in the text in the form of (Anon., 1999; Prakash, 2002; Krishnamoorthy and Mani, 2004). The term *et al* should be used when there are more than two authors. The letters, a,b,c,... should be used following the year, to distinguish between two or more papers by the same author(s) in one year. References at the end of the text should be given in the following form:

Shikhamany, S. D. and Satyanarayana, G. 1973. A study on the association of leaf nutrient contents with poor yields in Anab. E.shahi grape (*Vitis vinifera* L.). *Ind. J. Hort.*, **30**: 376 - 380

Panse, V. G. and Sukhatme, P. V. 1978. Statistical methods for Agricultural workers. ICAR, New Delhi, p 108.

Srinivas, K. 1987. Response of watermelon (*Citrullus lanatus* Thunb. Musf) to drip and furrow irrigation under different nitrogen and plant population levels. Ph.D thesis, UAS, Bangalore

Mehta, N. K. and Sharma, S. D. 1986. Studies on flowering and fruit retention in some cultivars of peach (*Prunus persica* Batch). In: Advances in Research on Temperate Fruits. *Proc. Nat'l. Symp. Temp. Fruits*, Solan (India), Dr. Y. S. Parmar Univ. Hort. and Forestry, pp 37-42

Krishnamoorthy, A. and Mani, M. 2000. Biological Control of Pests of Vegetable Crops.p367-78. In: Biocontrol Potential and its exploitation in sustainable Agriculture. Vol. 2: Insect Pests. Upadhyaay, R. K. Mukerji, K. G. and Chamola, B.P. (cd.). Kluwer Academic / Plenum Publishers, New York

Cover photo (s) shall be included at the discretion of Editor. Authors may submit photographs/figures/diagrams for cover page while submitting the manuscript.

AUTHOR INDEX - VOL. 15 (1&2) 2020

Name	Page	Name	Page
Α		Gavankar, M. S.	233
Adamu, J.T.	136	Gokhale, N. B.	233
Adekoya, M.	136	Gowda D. C. S.	161
Adeniji, O.T.	136	Gowda, N. K. S.	197
Aghora T.S.	62	Ι	
Ahamed N.	17	Ingle Y. V.	153
Aravintharaj, R.	229	Ishaka, A.	136
Aremu, C.A.	136	J	
Ashok Kumar J.	45	Jadhav S.B.	67
Asokan, R.	229	Janakiram, T.	147
Aswath C.	93	Jandong, E.	136
Aswath, C.	147	Jasmin M. R.	207
Awcharae, C. M.	177	Jessy Mol K.K.	52
Azeez, S.	197, 207	Κ	
В		Kalaivanan D.	9
Babli, M.	127	Kanupriya, C.	221
Bala, M.	191	Karunakaran, G.	221
Bhatt R.M.	62	Katwate S.M.	67
Bhonde, S. R.	153	Khandekar, R. G.	233
Burondkar, M. M.	233	Kshirsagar, P. J.	233
С		Kulkarni, M. M.	233
	01	Kumar D.	17
Chandran, N. K.	81	Kumar, R.	147
Chandrashekara C.	197, 207	L	
D		Lad, O. A.	233
Desai, V. S.	233	Lakshmana Reddy D.C	52
Dhananjaya, M. V.	147	Lakshmi, J.	183
Dinakara Adiga, J.	127	Laxman R.H.	35
Dinesh, M. R.	107, 161	Μ	
G		Madhavi Reddy K	52
	9	Manivannan, N.	183
GaneshamurthyA.N.	-	Manjunath B.L.,	35
Ganga, M.	183		

Name	Page	Name	Page
Manoj Y.B.	52	Sankar V	177
Meena H.R.	72	Sankaran, M.	107, 161
Mohan N.	62	Satisha G.C.	197, 207
Muralidhara, B. M	177	Shejal A. Porob	97
Ν		Shilpa Pandurangaiah,	27
	25	Shivashankar K.S.	27
Nair A.K.	35	Shivashankara, K. S.	207
Negi, S. S.	147	Singh D. R.	177
P		Singh S.R.	17
Paithankar, D. H.	153	Singh, P.	221
Pandey, M.	197, 207	Singh, T.	191
Pawar, C. D.	233	Somasundaram J.	72
Priya Devi S	45,97	Sriram S.	81
-	-,-,-	Srivastava K.K.	17
R		Sudhakar Rao D.V.	27
Rachitha R.	207	Sujatha A. Nair	177
Radha T.K.	72	Susmita C.	62
Ragaji, S. G.	233	Т	
Raghu B.R.	1	Tanya Thakur	173
Raghupathi H.B.	9	Tejaswini Prakash	81
Rajamani, K.	183	Tenebe, A.V.	136
Rajiv Kumar	93	Thangam M	45,97
Ramachandran, N.	147	Thondaiman, V.	127
Ramachandrudu K	45		127
Rami Reddy, P. V.	225	V	
Rao, T. M.,	147	Veena, G.L.	127
Rashmi I.	72	Venugopalan, R.	161
Ravishankar K.V	27	Vichare S.V	67
Roy, T. K.	197, 207, 229	Y	
Rupa T.R	9		17
S		Yousuf S.	17
Sadashiva A.T.	27	Z	
Sadawarte, A. K.	153	Zamil, M.	207
Safeena S.A.	45	Zamzam, M.A.	136

SUBJECT INDEX - VOL. 15 (1&2) 2020

Name	Page	Name	Page
Α		Foot rot	152
Alphonso	233	Free amino acids	207
Amino acid score	207	Fruit development	97
Antigonon	225	Fruit trees	9
Anti-senescence compound	191	Fruit quality	136
Apis spp	225	Fruit shape	136
Arka Mushroom Rasam	197	Fruit yield	136
В		Fruits	107
B:C ratio	233	Fusarium wilt	147
Bee flora	255	G	
Bioavailability	197	Garden pea	62
Biplot analysis	161	GCV	161
Bound amino acids	207	Genetic diversity	17
Breeding	62	Genetic analysis	161
Bulb	67	Genetic divergence	45
	07	Genotype by environment	136
C		Gerbera	93
Canopy management	127	Germplasm	1,107
Carotene	27	GIS	107
Carotenoid	27	Gladiolus	147
CGMS	52	Goa	97
Character correlation	136	Groundwater depletion	9
Chrysanthemum	173, 191	Growth	67
Conservation	107	Growth parameters	233
Copper	72	Gummosis	152
Correlation coefficient	45	Н	
Curry leaves	1 177	Heritability	161
Cut flower production Cut-flower	93	High temperature	62
	95	Honey bees	02 225
D		Honeydew	229
Delayed flowering	191	Hot pepper	52
Dendrobium	177	Hybrid	52 67
Distribution	1	Hypsizygus ulmarius	197
Diversity	1		197
Drought	9	I	
Ε		In situ	107
Early summer	62	Iron	72
Evaluation	93, 147	Iron fortified	197
Ex situ	107	J	
F		Jasminum spp	183
Flower	67	Κ	
Flowering	147	Kikiobiory	173

Name Page Na		Name	Page
L		Pruning	127
LC-MS-MS	229	Pulp recovery	221
Leaf analysis	72	Q	
Lycopene	27	Quality	177
	2,	Quantitative character	45
M		R	
Manganese	72		01
Mango	161,233	Resistance Gene Analogues (RGA)	81
Marker Assisted Selection	52 72	Rootstocks	127
Micronutrient deficiency Mitochondria	72 52	Rose	81
Morphotypes	52 1	S	
Mushrooms	197	Sapota	72
	197	Scheduling irrigation	35
Ν		Selection	221
Nagpur mandarin	152	Single linkage cluster analysis	17
Nitrogen	173	Single type tuberose	67
Novel hybrids	93	Soil volume wetting	35
Nucleotide Binding Site-Leucine	81	Soilless media	233
Rich Repeats (NBS-LRR)		Solanum lycopersicum	136
Nutrients	177	Spacing	35
Nutrition	207	Standardization	173
0		Stress tolerance	62
Onion	17	Sugars	229
Orchid	177	Т	
ORF	52	Tamarind	221
Ornamental creeper	225	Thrips palmi	229
Р		Tomato	27
-	102	Training	127
Palynology	183	Tropical	107
Papaya yield	35 127	V	
PBZ	127		
PCV Peak water	161 9	Variability	136
	9	Varieties	107
Perennial crops Phytophthora	9 152	Vase life	147, 191
Pink types	132 97	Vegetable cowpea	45
Planting geometry	127	W	
Podosphaera pannosa	81	Water use efficiency	35
Policy issue	9	Wax apple	97
Pollen germination	183	White types	97
Pollen morphology	183	Wild species	107
Polyhouse	93,136	Y	
Potassium salt of phosphonic acid (PS	<i>,</i>		
Potted plants	173	Yield	221
Powdery mildew	81	Ζ	
Principal component analysis	17	Zinc	72
1 1 2			

STATEMENT OF OWNERSHIP AND OTHER PARTICULARS ABOUT JOURNAL OF HORTICULTURAL SCIENCES

(Form IV)

Place of Publication	:	Bengaluru
Periodicity of publication	:	Half-yearly
Printer's Name	:	Mr. Ravikumar, B.A.
Nationality	:	Indian
Address	:	Resolution Print Media #131, 6 th Main, Meenakshinagar Kamakshipalya, Bengaluru - 560 079.
Publisher's Name	:	Society for Promotion of Horticulture
Address	:	ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake P.O. Bengaluru - 560 089
Editor-in-Chief	:	Dr. S. Sriram
Nationality	:	Indian
Address	:	ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake P.O. Bengaluru - 560 089.
Name and addresses of individuals who own the journal and partners or are share- holders holding more than one per cent of the total capital	:	Society for Promotion of Horticulture ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake P.O. Bengaluru - 560 089.

I, Dr. S. Sriram, hereby declare that the particulars given above are true to the best of my knowledge and belief.

Sd/-(S. Sriram) Editor-in-Chief

June 30, 2020

SOCIETY FOR PROMOTION OF HORTICULTURE

ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake Post, Bengaluru-560 089, India sphiihr2005@gmail.com/chiefeditor.jhs@gmail.com Website : https://sphindia.org

ENROLMENT FORM

Name in full (in block letters) Dr./Mrs./Mr./Ms.	:
Designation	:
Address for communication	:
Phone No.	:
E-mail ID	:
Type of membership	: Patron / Life member / Annual member / Student member*
Payment	:
Demand Draft No. / Date	:
Demand Draft No. / Date Bank	:
	: : :

Membership fee structure :

Type of membership	Membership amount	Enrolment fee	Total membership amount payable by Demand Draft (₹)
Patron	20,000/-	200/-	20,200/-
Life Member	5,000/-	200/-	5,200/-
Annual Member (India)	1,000/-	200/-	1,200/-
i. For SAARC authors	US \$ 100	US \$ 5	US \$ 105
ii. For SAARC countries	US \$ 50	US \$ 5	US \$ 55
Student member*	500/-	200/-	700/-

*The application of student members must be certified by their Head of dept. or equivalent and the student member shall not receive a copy of the journal.

Please send the duly filled-in enrolment form along with Demand Draft drawn in favour of Society for Promotion of Horticulture, by post to General Secretary, Society for Promotion of Horticulture ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru - 560 089.

ACKNOWLEDGEMENTS

The editorial team acknowledges the services of the following reviewers

Dr. Shylesha A.N. Principal Scientist, ICAR-NBAIR, Bengaluru

> **Dr. Ashwath Narayan** Associate Professor, UAS, Raichur

Dr. Mohan C. Principal Scientist, ICAR-CTCRI, Trivandrum

Dr. Chavalli Sarada Associate Professor, YSRHU, Guntur

Dr. Dinesh R. Principal Scientist, ICAR-IISR, Calicut

Dr. Kalaivanan D. Scientist, ICAR-IIHR, Bengaluru

Dr. Sudhakar Rao D.V. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Fakrudin B. Professor, College of Horticulture, UHS, Bengaluru

Dr. Hebbar K.B. Principal Scientist, ICAR-CPCRI, Kasaragod

Dr. Hima Bindu Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Satisha J. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Krishnamurthy K.S. Principal Scientist, ICAR-CPCRI, Kasaragod

Dr. Kundan Kishore Principal Scientist, CHES (ICAR-IIHR), Bhubaneswar

> **Dr. Sankaran M.** Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Madhu Bala Associate Professor, PAU, Ludhiana

Dr. Nandeesha P. Senior Scientist, ICAR-IIHR, Bengaluru

Dr. Venkatarami Reddy P. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Prakash Tripathi Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Prasad R.D. Principal Scientist, ICAR-IIOR, Hyderabad

Dr. Rajashekaran P.E. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Rajiv Kumar Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Ravindran Chandran Horticulturist, TNAU, Coimbatore

Dr. Ramani S. Former Project Coordinator, AICRP on Honey Bees and Pollinator, Bengaluru

> **Dr. Veena S.S.** Principal Scientist, ICAR-CTCRI, Trivandrum

> > **Dr. Smaranika Mishra** Scientist, ICAR-IIHR, Bengaluru

Dr. Sujatha A. Nair Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Tejaswini Prakash Principal Scientist, ICAR-IIHR, Bengaluru

> **Dr. Usha Bharathi T.** Scientist, ICAR-IIHR, Bengaluru

Dr. Sridhar V. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Srinivasan V. Principal Scientist, ICAR-IISR, Calicut

Sd/-

(**S. Sriram**) Editor-in-Chief

New Varieties/ Technologies of ICAR-IIHR

New Water Melon - Arka Shyama variety

Arka Red - New Gerbera variety

Leaf curl resistant chilli varieties Arka Tejaswi, Arka Saanvi and Arka Tanvi

Arka Abhi

Arka Shuba

New Varieties/ Technologies of ICAR-IIHR

Arka Herbiwash - Safe way of removing pesticide residues

Arka Bharath - New teasel gourd variety

Journal of Horticultural Sciences is indexed by the following abstracting and indexing services

Article published in Journal of Horticultural Sciences are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

