JOURNAL OF HORTICULTURAL SCIENCES

Volume 15

December 2020

Number 2

Conserving Honey Bees with Forage Plant Mexican Creeper - Antigonon leptopus

Society for Promotion of Horticulture ICAR - Indian Institute of Horticultural Research, Bengaluru - 560 089

JOURNAL OF HORTICULTURAL SCIENCES

(Founded in 2005 by the Society for Promotion of Horticulture, Bengaluru, India) Email : chiefeditor.jhs@gmail.com Webpage : https://jhs.iihr.res.in/index.php/jhs

Editor-in-Chief

Dr. S. Sriram

Editors Dr. K. Himabindu Dr. G. Senthilkumaran Dr. Tejaswini Prakash Dr. M. Manamohan

Dr. Anil Kumar Nair Dr. J. Satisha Dr. P. Venkata Rami Reddy Dr. I.M. Doreyappa Gowda

Dr. R.H. Laxman Dr. G.C. Sathisha

Editorial Advisory Board

International Editorial Advisory Board

Dr. Nanthi S. Bolan, Australia Dr. Rod Drew, Australia Dr. J. Mithila, USA Dr. Claus Helmut Franz Orth, South Africa Dr. Ilan Paran, Israel Dr. Gi-Cheol Song, Republic of Korea Dr. Jill Stanley, New Zealand Dr. Palitha Weerakkody, Sri Lanka

National Editorial Advisory Board Dr. S. D. Shikhamany Dr. V. A. Parthasarathy Dr. K. V. Peter Dr. Sisir K. Mitra Dr. S.K. Tikoo Dr. Seetharam Annadana Dr. A. Krishnamoorthy Dr. Leela Sahijram

SOCIETY FOR PROMOTION OF HORTICULTURE (REGD.)

Email: sphiihr2005@gmail.com Website: www.sphindia.org

Executive Council - 2020

President	: Dr. M.R. Dinesh	Members :	Dr. T.S. Aghora
Vice Presidents	: Dr. G. S. Prakash Dr. T.N. Shivananda		Dr. K.S. Shivashankara Dr. Prakash Patil Dr. H. S. Oberoi
General Secretary	: Dr. C. Aswath		Dr. C.K. Narayana Dr. B. Narayanaswamy
Editor-in-Chief	: Dr. S. Sriram		Dr. B. Hemla Naik
Treasurer	: Dr. D.V. Sudhakar Rao		Dr. L.N. Mahawer Dr. Sanjay Kumar Singh
Joint Secretaries	: Dr. P.C. Tripathi Dr. T.H. Singh		Dr. S.K. Mitra Dr. S. Hazarika Dr. Gobind Acharya

This Journal is abstracted in CABI, Current Contents, AGRIS, Indian Science Abstracts, Scopus, DOAJ and Redalyc. It is a participant of AmeliCA.

Request for membership subscriptions along with cheque/DD drawn in favour of Society for Promotion of Horticulture, Bengaluru may be sent to General Secretary, Society for Promotion of Horticulture, Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru - 560 089, India. All members except student members and subscribers get all publications of SPH free of cost. Any correspondence other than editorial may be addressed to General Secretary, Society for Promotion of Horticulture, Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru - 560 089, India.

Advertising space in the journal is available. For information and rates, please contact General Secretary. SPH. IIHR

Bengaluru - 560 089, India. Advertising material should cater to the interest of researchers, subscribers, etc. who are involved in promotion of horticulture. Publication of advertisement is not an endorsement or approval, expressed or implied by the SPH or the editors of any service, product or claim made by the manufacturer.

Coverpage Courtesy : Rami Reddy P.V., P.No. 225

iole. Por information a	nu raies, please contact General Secretary, 51 11, 1111K,
	SUBSCRIPTION RATES
Patron	₹ 20,000
Life member	₹ 5,000
Annual Member	₹ 1,000 / US \$ 100 (US \$ 50 for SAARC countries)
Student Member	₹ 500
Student Life Memeber	:₹ 3,000
Annual Subscription	₹ 1,500 / US \$ 100 (US \$ 60 for SAARC countries)
	(for institutions)
Enrolment Fee	₹ 200 / US \$ 5 (Additional for all types of Membership)

NAAS rating of this journal is 3.43. JHS is now available online. Authors have to submit manuscripts using the link : https://jhs.iihr.res.in/index.php/jhs

Technical Assistance : Dr. Sridhar Gutam, Thippeswamy S. and Pramida A.

JOURNAL OF HORTICULTURAL SCIENCES

Volume 15	Number 2	December 2020
	C O N T E N T S	
In this Issue		i-ii
Review		
Biodiversity of tropical fro Sankaran M. and Dinesh M.	uits and their conservation in India R.	107-126
An overview of canopy m Adiga D.J., Veena G.L., Tho	nanagement in cashew (<i>Anacardium occidentale</i> ondaiman V. and Babli M.	L.) 127-135
Original Research in	Papers	
attributes in plastic house	haka A., Jandong E., Adamu J.T., Adekoya M.,	136-146
IIHRG-7 (IC620379) and I <i>Fusarium</i> wilt resistance	on of novel gladiolus hybrid selections IIHRG-11 (IC620380) for flower quality and gi S.S., Aswath C., Dhananjaya M.V., n N.	147-152
with special reference to F	It of phosphonic acid in Nagpur mandarin <i>Phytophthora</i> management Sadawarte A.K. and Bhonde S.R.	153-160
fruit characteristics of 400	(<i>Mangifera indica</i> L.) based on) genotypes Gowda D.C.S. and Venugopalan R.	161-172
Standardization of nitrogen <i>Chrysanthemum morifoliun</i> Tanya Thakur		173-176
Dendrobium cv. Singapore	ients on growth, flowering and quality of white Muralidhara, B.M., Awcharae C.M. and Singh D.R.	177-182
Palynological investigations Ganga M., Lakshmi J., Mani ^y		183-190

Effect of putrescine and benzyl adenine on growth, flowering and post-harvest 191-196 keeping quality parameters in chrysanthemum (Chrysanthemum morifolium ramat) Taranjit Singh and Madhu Bala Studies on bioavailability of iron from fe-fortified commercial edible mushroom 197-206 Hypsizygusulmarius and standardization of its delivery system for human nutrition Pandey M., Gowda N.K.S., Satisha G.C., Azeez S., Chandrashekara C., Zamil M. and Roy T.K. Amino acid profile of eighteen isolate of different edible macrofungal species 207-220 Azeez S., Pandey M., Jasmin M.R., Rachitha R., Satisha G.C., Roy T.K. Chandrashekara C. and Shivashankara K.S. Short Communications A promising new tamarind selection-lakshamana : Linking biodiversity 221-224 with livelihood Kanupriya C., Karunakaran G. and Singh P. Mexican creeper, Antigonon leptopus Hook. and Arn : An effective 225-228 bee forage plant to conserve honey bee Rami Reddy P.V. First report on honeydew excretion by the melon thrips, *Thrips palmi* 229-232 karny (Thysanoptera : Thripidae) and its biochemical analysis Aravintharaj R., Asokan R. and Roy T.K. Influence of potting mixture on growth and economics of stone graft of 233-237 mango cv. alphonso Lad O.A., Kulkarni M.M., Ragaji S.G., Gavankar M.S., Burondkar M.M., Gokhale N.B.

Pawar C.D., Khandekar R.G., Kshirsagar P.J. and Desai V.S.

In this issue...

Hearty New Year Greetings from our Editorial Team to all the readers of JHS!

As the world is slowly coming out of glitches of pandemic, there is no other better way than celebrating 2021 as Year of Fruits and Vegetables as announced by United Nations Assembly to welcome the new year and recognize the importance of nutrition for better health. Fruits and Vegetables ensure the Nutritional Security to humankind. They play key role in addressing the malnutrition that is a major concern. We are proud that JHS creatins awareness of importance of fruits and vegetables by publishing the recent developments in research with respect to these crops.

Diversity of fruit crops and genetic resources available with respect to fruit crops are important for developing better fruit crop varieties. **Sankaran and Dinesh** have reviewed the "Biodiveristy of Fruit Crops in India" in a very comprehensive way. There is diversity in Jasmine species. **Ganga et al.** carried out the palynological investigations and recorded the variability in pollen morphology in different species of Jasmine by documentating images using scanning electron microscope. Biodiversity can be linked to livelihood also. One such success story with tamarind selection 'Lakhamna' is being reported by **Kanupriya et al.** This tamarind selection has been identified from participatory breeding programme. It has a better pod characters and more preferred by consumers.

Protected cultivation has seen greater momentum in last two decades. Adeniji et al. identified the best varieties of tomato for polyhouse cultivation in Nigeria. Rao et al. selected two gladiolus hybrid selections IIHRG-7 and IIHRG-11 with red purple and red coloured flowers respectively. These hybrids have resistance to Fusarium wilt and suitable for cut flower and flower arrangement purposes. Sankaran et al. analysed the variance for 6 quantitative and 30 qualitative traits in mango in 400 genotypes and identified 18 clusters. Selected genotypes from specific clusters can be used in hybridization programme.

The production aspects are important in perennial crops. It is crop management that needs to be prioritized for enhanced yield. Adiga et al. have reviewed the research work carried in "Canopy Management in Cashew", providing the wholistic view of cultural operations to have a better crop. Use of soilless medium in nursery industry is gaining importance. Best suited potting mixture for mango stone graft of cv. Alphonso has been identified by Lad et al. They found that cocopeat + leaf manure + compost (1:1:2) as pot mixture provided better plant growth.

Growing Chrysanthemum in pots is practiced in home and terrace gardens. The cultivar Kikiobiory is well suited for this purpose. **Thakur** has studied the nitrogen requirement for this cultivar and has come out with the recommendation of 300 mg of N per pot applied

twice in September and October in Punjab for best results. In another study, **Singh and Bala** confirmed that use of benzyl adenine at 200 ppm helped in extended vase life of Chrysanthemum morifolium flowers. **Nair et al.** recorded that foliar spray of 30:20:20 NPK at weekly interval recorded more number of flowers of Dendrobium cv. Singapore White with significantly longer spikes.

Crop production is directly influenced by pollinators. Decline in honey bee population is a serious concern and to conserve the pollinators community approach through ecosystem services is required. **Rami Reddy** reports the benefits of having ornamental plant Mexican Creeper (Antigonon leptopus) as forage plant. This creeper attracted all the four species of honey bees studied. This creeper can be used as bioindicator of honey bee population.

Aravindaraj et al. have reported the honey dew secretion by Thrips palmi and analysed the composition of it. They had identified different sugars present in the honey dew secretion of Thrips. Thrips not only cause direct damage but act as vectors of many plant viruses. Management of diseases in perennial crops is a challenge. Phytophthora incited root infection in citrus needs concerted efforts. Ingle et al. have demonstrated that use of potassium salt of phosphonic acid could help in management of Phytophthora root rot in Nagpur Mandarin.

Mushrooms can fill the gaps in nutritional security as they are rich in nutritive value. Iron deficiency is important issue to be addressed. Iron fortified oyster mushroom products have been developed by **Pandey et al.** The bioavailability of iron from Arka Mushroom Fe-Fortified Rasam Powder has been confirmed. In another study, the amino acid profile of 18 isolates of oyster mushroom species belonging to 4 species have been documented by **Azeez et al.** Quantification of essential and non-essential amino acids has been reported. Nutritionally superior isolates can be selected from these isolates.

The editorial team of JHS expresses the sincere efforts of reviewers who really complement the publication processes. All scientists and scholars can utilize the open access of JHS. Recently FAO has made JHS available through AGRIS. It is indexed by Redalyc, CABI_Hort and Scopus. All subscribers, scientists and scholars are requested to continue their support in publishing quality information in **Journal of Horticultural Sciences**.

S. Sriram Editor in Chief

Original Research Paper

Effect of putrescine and benzyl adenine on growth, flowering and post-harvest keeping quality parameters in chrysanthemum (*Chrysanthemum morifolium* Ramat.)

Taranjit Singh and Madhu Bala*

Punjab Agricultural University, Ludhiana, Punjab - 141 004 *Corresponding author Email : madhu-flori@pau.edu

ABSTRACT

The experiment was conducted with the objective to study the effect of different antisenescence compounds like putrescine and benzyl adenine (BA) on vegetative, floral and post-harvest keeping quality of chrysanthemum cv. Punjab Shyamli. The experiment was conducted in randomized block design (RBD) and replicated thrice. Putrescine (@ 50, 100 and 150 ppm) and benzyl-adenine (@ 100, 150 and 200 ppm) were sprayed twice on cv. Punjab Shyamli (spray type and pompon) at bud initiation stage and at fully developed flower buds. Control plants were sprayed with normal water. Floral parameters were delayed and vase life of cut stems was enhanced by benzyl adenine @ 200 ppm. The maximum delay of flower opening stage (116.33 days), number of sprays (5.00) and vase life (27.22 days) was obtained with benzyl-adenine @ 200 ppm treatment. Flower diameter was 4.53 cm with benzyl-adenine @ 200 ppm compared to 2.87 cm in control.

Key words: Anti-senescence compound, Chrysanthemum, Delayed flowering and Vase life

INTRODUCTION

Chrysanthemum (Chrysanthemum morifolium Ramat.) belonging to family Asteraceae is one of the most beautiful leading commercial flowering plants grown for its diverse uses including cut flower, loose flower for making garlands, floral ornaments, hair decoration as well as for pot culture and also in garden decoration as bedding plant (Joshi et al., 2010). Chrysanthemum is gaining tremendous popularity among floriculture products in the recent times due to wide range of flower colours, diverse forms and their excellent keeping quality. The word chrysanthemum is derived from two Greek words *chrysos* referring to gold and *anthemon* or 'anthos' referring to flower (Anderson, 1987). It is believed to be native to the Northern hemisphere chiefly Europe and Asia and it is believed to have originated in China (Bose et al., 2002).

Chrysanthemum ranks 3rd in the international flower market next to roses and carnation in terms of both production volume and trading and it also ranks 5th amongst the potted flowering plants in the world flower market (Anonymous, 2017a). In India, the

chrysanthemum is commercially cultivated in the states of Karnataka, West Bengal, Tamil Nadu, Madhya Pradesh and Himachal Pradesh on an area of 20.55 thousand ha with about 184.31 thousand MT production of loose flower and 14.64 thousand MT of cut flower (Anonymous, 2017b).

The use of plant growth regulators is becoming a very common practice in agricultural crops. Plant growth regulators act as either inhibiting or promoting agents to govern the plant growth depending upon the concentration of the dose and internal plant characteristics on which these are applied. The application of benzyl adenine and gibberellic acid has been reported to accelerate blooming and increase in number of flowers in lilium (Kioshi, 2003). Application of benzyl adenine resulted in increased length of blooming stem, flower diameter, number of flowers and accelerated blooming in narcissus flowers (Nakhaee *et al.*, 2009). Parameters like weight of a leaf, number of leaves, leaf surface and diameter of stem have also been improved with benzyl adenine in croton plant (Ibrahim et al., 2010). Increased post-

harvest keeping quality of anthurium flowers and miniature roses and increase in rate of water absorption have also been reported (Serek and Anderson 1993, Paull and Chantrachit, 2001). Exogenous application of putrescine in many plant species has also been reported that resulted in reduction in loss of chlorophyll and thus delay aging of leaves (Lee *et al.*, 1997). This effect may be related to the inhibition of peroxidase activity (Ma *et al.*,1996). The main objective of this study was to standardize optimum concentrations of putrescine and benzyl adenine (BA) in chrysanthemum for improvement of growth, flowering and post-harvest keeping quality parameters.

MATERIAL AND METHODS

The study was conducted at the Research Farm, Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, during the year 2016-17 to study the effect of putrescine and benzyl adenine (BA) on vegetative, floral and post-harvest keeping quality parameters of chrysanthemum cv. 'Punjab Shyamli'. It is a pompon-type variety having purple flowers with deep purple, suitable for cut flower production. Healthy terminal stem cuttings (5-7 cm) free from any disease or insect pest symptoms were prepared in the month of July and planted in plug trays filled with burnt rice husk as rooting medium. New roots developed 15-20 days after planting and rooted cuttings were transplanted in the field in the first week of August. Cultural operations like weeding, irrigation and management of insect pest and diseases were performed as per recommended package of practices of Punjab Agricultural University, Ludhiana. Staking was done by using sticks to keep the plants erect and maintain the proper shape of plant and bloom. The experiment consisted of seven treatments viz. putrescine (@ 50, 100 and 150 ppm) and benzyl adenine (@ 100, 150 and 200 ppm) along with control. Foliar spray of growth regulator concentrations was done twice, first at bud initiation stage and the other when flower buds developed completely along with control plants that were spraved with normal water. The observations on various growth and flowering parameters like plant height stem girth, internodal length, leaf chlorophyll content (SPAD), plant spread, days to bud appearance, days to colour showing stage, days to flower opening, flower diameter, duration of flowering, peduncle length, number of branches per plant, length of cut stem, vase life, final flower diameter in vase, days to initiation of flower senescence, days to complete senescence, days to initiation of leaf yellowing and total water absorbed by cut stem. The experiment was conducted in randomized block design (RBD) with seven treatments with three replications per treatment. Data was subjected to statistical analysis by using CPCS-1, software developed by Department of Mathematics and Statistics, Punjab Agricultural University (Ludhiana). The treatment comparisons were made at 5% level of significance.

RESULTS AND DISCUSSION

Foliar sprays with different concentrations of putrescine and benzyl adenine on chrysanthemum cv. Punjab Shyamli did not show any significant effect on various vegetative parameters (Table 1).

Treatments	Plant height (cm)	Stem girth (cm)	Internodal length (cm)	SPAD	Plant spread (cm)
Control	53.73	0.61	4.60	66.07	20.94
Putrescine @ 50 ppm	54.00	0.57	2.99	72.88	24.61
Putrescine @ 100 ppm	52.27	0.61	3.69	69.28	20.99
Putrescine @ 150 ppm	55.80	0.67	3.55	72.37	21.49
Benzyl adenine @ 100 ppm	59.40	0.63	4.21	67.01	22.66
Benzyl adenine @ 150ppm	54.60	0.57	4.43	72.98	24.61
Benzyl adenine @ 200 ppm	58.60	0.65	3.95	77.90	25.27
CD (P=0.05) SEm±	NS 0.99	NS 0.01	NS 0.21	NS 1.54	NS 0.70

 Table 1. Effect of different growth regulators on vegetative growth parameters of chrysanthemum cv. Punjab Shyamli

The data on number of days taken to bud appearance, days to flower opening, flowering duration, number of sprays per plant, peduncle length, flower diameter and length of cut stem is presented in Table 2. Results revealed that spray of BA @ 150 ppm and 200 ppm significantly delayed the flower bud appearance as compared to control and other treatments. The minimum numbers of days (87.33 days) were taken by control plants for flower bud appearance. Hence,

increase in concentration of putrescine and BA delayed the bud formation in chrysanthemum cv. 'Punjab Shyamli'. It has been reported that nutritional and climatic conditions during the growing period also play a major role to determine the flowering characteristics of plants (Boodley, 1975). Increase in number of days taken to bud appearance in Lilium cv. 'Tiger' by foliar spray of BA @ 50 ppm has also been reported earlier (Attiya *et al.*, 2015).

Treatments	Days to bud appearance	Days to colour showing stage	Days to flowe- ring	Flowe- ring duration (days)	Number of branches/ plant	Peduncle length (cm)	Flower diameter (cm)	Length of cut stem (cm)
Control	87.33	94.33	101.67	29.13	3.73	7.54	2.87	46.40
Putrescine @ 50 ppm	88.00	95.00	103.33	28.00	3.87	7.82	3.11	48.53
Putrescine @ 100 ppm	91.33	96.33	104.67	27.40	4.20	7.57	3.92	49.61
Putrescine @ 150 ppm	92.00	98.33	107.33	27.93	4.53	7.97	3.97	51.48
Benzyl adenine @ 100 ppm	n 91.33	99.67	109.67	28.93	4.13	8.95	4.10	53.12
Benzyl adenine @ 150 ppm	n 93.33	100.67	112.67	26.80	4.53	8.49	4.23	54.99
Benzyl adenine @ 200	97.67	105.67	116.33	24.53	5.00	8.24	4.53	56.99
CD (P=0.05)	4.24	1.89	1.87	1.21	0.34	NS	0.13	1.41
SEm±	1.94	0.86	0.87	0.55	0.16	0.31	0.06	0.65

 Table 2. Effect of different growth regulators on flowering parameters of chrysanthemum cv. Punjab Shyamli

The maximum number of days to colour showing stage (105.67 days) was observed in treatment with BA @ 200 ppm, followed by BA a 150 ppm with 100.67 days for colour showing stage. The least number of days to colour showing stage (94.33 days) was observed control. Days taken to bud appearance and colour showing stage also determine the earliness or late flowering of any cultivar thus, both habits are helpful in regulating the availability of flowers for longer period in the flower market reported by Behera et al. (2002). The maximum delayed flowering for 116.33 days was recorded in treatment where plants were sprayed with BA @ 200 ppm, whereas the earliest flowering was recorded in control (101.67 days). Similar to our study, delayed flowering has been reported by the application of BA in salvia and lilium crops earlier (Carey et al., 2013).

Among different concentrations of putrescine and BA, the longest duration of flowering (29.13 days) was obtained in control plants followed by plants treated with BA @ 100 ppm with 28.93 days flowering

duration. The minimum duration of flowering (24.53 days) was obtained in treatment comprising of BA @ 200 ppm. Blooming period of flower is an essential criteria for selection of flowering cultivars. Flowering duration is helpful to determine the availability of flowers for a longer time period. Early senescence of tulip flowers, when treated with higher concentrations of BA has also been reported by Kim and Miller (2008). It may be due to increased localization of the cytokinins within the gynoecium which results in early senescence of flower petals. Similar to our findings, results have also been reported in carnation by various workers (Woodson and Brandt, 1991). The maximum number of sprays per plant (5.00) was obtained with BA @ 200 ppm as compared to control (3.73). Besides this, putrescine (a) 150 ppm and BA (a) 150 ppm treatments were at par with each other having 4.53 sprays per plant in both the treatments. Similar to our research finding, effect of BA on increase in growth characters has also been reported by Asgari et al. (2014). The data showed that plant growth regulators did not affect

peduncle length of plants significantly. The maximum flower diameter (4.53 cm) was recorded with treatment BA @ 200 ppm followed by BA@150 ppm with 4.23 cm flower diameter and BA@100 ppm (4.10 cm). The lowest flower diameter (2.87 cm) was reported in control where plants were sprayed with water only. Similar to our findings, flower diameter was increased with BA @ 500 ppm as reported by Asgari et al. (2014) in narcissus and Al-Hasnawi (2011) in chrysanthemum. The longest stem length (56.99 cm) was obtained with BA @ 200 ppm BA as compared to control where stem length of 46.40 cm was obtained. There was significant increase in the cut stem length at all levels of putrescine and BA over control. Similarly, benzyl adenine (BA) increased stem length in salvia and tuberose as reported earlier (Kheiry, 2006; Carey et al, 2013).

The data on the effect of plant growth regulators on vase life of cut flower in distilled water at room temperature after harvest, water absorbed by cut stem, days to initiation of flower senescence, days to complete senescence and final flower diameter are presented in Table 3. It is clear from the results that different concentrations of putrescine and BA significantly improved the freshness of flower over control. BA @200 ppm significantly improved vase life of cut stems up to 27.22 days, followed by BA @150 ppm (26.45 days) and BA @ 100 ppm (24.44 days) . The minimum vase life (18.11 days) was recorded in control. The reason might be due to the

increased protein content in petals or might be due to the ability of plant growth regulators to reduce and delay the production of endogenous ethylene hormone (Lukaszewska, 1994). Similarly, increased vase life with the application of BA (a) 150 and 300 ppm has also been reported earlier in gerbera (Chavan et al., 2012). The maximum water absorption (29.44 ml) was observed in cut flowers taken from the plots where plants were sprayed with BA @ 200 ppm followed by BA @ 150 ppm (25.78 ml). The least water absorption (11.89 ml) was observed in cut stems taken from control. In general, water absorption is closely related with persistency of flowers and any factor that improves water absorption rate would be effective. Similarly, results have also been recorded by Nagarja et al., (1999) in tuberose. The cut stems showed sign of senescence in control after 15.89 days where no growth regulator was sprayed on plants at the time of growth phase. Cut flowers harvested from the plants treated with BA @ 200 ppm showed delay in flower senescence up to 29.78 days, followed by BA @ 150 ppm (28.56 days) and BA @100 ppm (26.89 days). The reason might be that cytokinins are responsible for reduction in ethylene sensitivity of plants that delayed flower senescence (Serek et al., 1994). Leaf yellowing is an important factor triggering leaf senescence in plants, the oldest leaves at the bottom of a canopy enter senescence earlier than the upper leaves. In this study, no sign of vellowing of leaves in cut stems of chrysanthemum cv. Punjab

Treatments	Vase life (days)	Water absorbed (ml)	Days to initiation of flower senescence	Days to complete flower senescence	Final flower diameter (cm)
Control	18.11	11.89	15.89	21.00	3.63
Putrescine @ 50 ppm	20.56	14.11	17.89	22.33	4.00
Putrescine @ 100 ppm	21.89	16.11	19.00	23.89	4.35
Putrescine @ 150 ppm	22.11	19.55	19.33	24.67	4.72
Benzyl adenine @ 100 ppm	24.44	19.67	21.89	26.89	4.85
Benzyl adenine @ 150 ppm	26.45	25.78	23.55	28.56	5.25
Benzyl adenine @ 200 ppm	27.22	29.44	24.78	29.78	5.75
CD (P=0.05)	1.51	2.52	1.59	1.01	0.35
SEm±	0.69	1.16	0.73	0.46	0.16

 Table 3. Effect of different growth regulators on post-harvest keeping quality parameters of chrysanthemum cv. Punjab Shyamli

Shyamli was seen till the termination of their vase life. Hence, it can be inferred that putrescine and benzyl adenine (BA) delayed the leaf yellowing of cut stems as reported by (Singh and Bala, 2018) in addition to the important roles of the cytokinins and its derivatives in controlling and stimulating cell division, inhibition of leaf senescence.

REFERENCES

- Anderson, R. L. 1987. Reclassification of genus chrysanthemum. *Hortic. Sci.*, **22**: 313
- Anonymous, 2017a. Area and production of chrysanthemum. http://www.indiastat.com
- Anonymous, 2017b. Area and production of chrysanthemum. http://www.indiastat.com
- Al-Hasnawi, A. N. H. 2011. Effect of benzyl adenine and chelated magnesium spraying on growth and flowering of *Chrysanthemum hortorum* Hort. M.Sc. Thesis. University of Kufa, Iraq
- Asgari. S., Moradi, H. and Afshari, H. 2014. Evaluation of some physiological and morphological characteristics of *Narcissus tazatta* under BA treatment and nanopotassium fertilizer. J. Chem. Health Risks, 4: 63-70
- Attiya, H. J., Naji, D. A. and Askar, H. M. 2015. Effect of plant growth regulators (IBA, BA, and CCC) on some flowering characters of three hybrid lily cultivars of (*Lilium spp. L.*) *Iraqi. J. Sci.*, 56: 3107-13
- Behera, T. K., Sirohi, P. S. and Pal, A. 2002.
 Assessment of chrysanthemum germplasm for commercial cultivation under Delhi condition. *J. Ornam. Hortic,*. 5: 11-14
- Boodley, J. W. 1975. Plant nutrition and flower quality. *Hortic. Sci.*, **10**: 41-48
- Bose, T. K., Yadav, L. P. and Pal, P. 2002. *Commercial Floriculture*. ed 2, pp 463-602. Naya Prokash, Kolkata
- Carey, D. J., Fair, B. A., Buhler, W., McCall, I. and Whipker, B. E. 2013. Growth control and flower promotion of Salvia with benzyl adenine foliar sprays. J. Applied Horti., 15: 87-90
- Chavan, M. C., Patel, R. B., Chawla, S. L., Dhaduk, B. K. and Sahare, H. A. 2012.

The research findings of this study depicted that foliar spray of benzyl adenine (BA) @ 200 ppm (BA) twice i.e., at bud initiation stage and when flower buds were fully developed was found to be the effective treatment in improving the floral parameters and enhancing the vase life of the cut stems of chrysanthemum cv. Punjab Shyamli.

> Effect of plant growth regulators on growth and flowering of Gerbera (*Gerbera jamesonii*) under polyhouse. J. Ornam. Hortic., 15: 238-42

- Ibrahim, S. M., Taha, L. S. and Farahat, M. M. 2010. Vegetative growth and chemical constituents of croton plants as affected by foliar application of benzyl adenine and gibberellic acid. J. American Sci., 6: 126-30
- Joshi, M., Verma, L. R. and Masu, M. M. 2010. Performance of different varieties of chrysanthemum in respect of growth, flowering and flower yield under north Gujarat condition. *The Asian J Hort.*, **4**: 292-94
- Kheiry, A. 2006. Effects of GA₃ and 6-BA on the quality and essence of tuberose. M.Sc. Thesis, University of Tehran, Iran
- Kim, H. and Miller, W. B. 2008. Effects of GA₄₊₇ and benzyl adenine application on post-production quality of 'Seadov' pot tulip flowers. *Post-harvest Biol. and Techn.*, 47: 416-21
- Kioshi, O. 2003. Effect of gibberellins and benzyladenine on dormancy and flowering of *Lilium specrosum*. Kanagaw a Horticultural Experimental Station. Ninomiya, Nakagum, Kanagawa, p. 259-61
- Lee, M. N., Lee, S. H. and Park, K. Y. 1997. Effect of spermine on ethylene biosynthesis in cut carnation (*Dianthus caryophyllus* L.) flowers during senescence. J. Pl. Physio., 151: 68-73
- Lukaszewska, A. J., Bianco, J., Barthe, P. and Page-Degivry, M. T. 1994. Endogenous cytokinins in rose petals and the effect of exogenously applied cytokinins on flower senescence. *Pl. Growth Regul.*, 14: 119-26.

- Ma, J. Y., Zhou, R. and Cheng, B. S. 1996. Effect of spermine on the peroxidase activity of detached wheat leaves. J Shandang Agric Univ., 27: 176-80
- Nagarja, G. S., Gowda, J. V. N. and Farooqui, A. 1999. Effects of growth regulators on growth and flowering of Tuberosa cv. Single Karnataka. J. Agric. Sci., **12**: 236-38
- Nakhaee, F., Khalighi, A., Naseri, M. and Abroomand, P. 2009. Effect of plant growth regulators on morphological traits and essential amaryllis (*Narcissus tazetta* L.). J. Sustainable Agric., 4: 47-59
- Paull, R. E. and Chantrachit, T. 2001. Benzyl adenine and the vase life of tropical ornamentals. *Post-harvest Biol. Tech.*, 21: 303-10

- Serek, M. and Andersen, A S. 1993. AOA and BA influence on floral development and longevity of potted 'victory parade' miniature rose. *Hort Sci.*, **28**: 1039-40
- Serek, M., Jones, R. B., Reid, M. S. 1994. Role of ethylene in opening and senescence of *Gladiolus* sp. flowers. J. Americ. Soc. Hortic. Sci., 119: 1014-19
- Singh, T. and Bala. M. 2018. Effect of foliar spray of benzyl adenine, gibberellic acid and putrescine on post-harvest keeping quality of chrysanthemum. *Agric. Res. J.*, **55** (2): 386-88
- Woodson, W., Brandt, A. 1991. Role of the gynoecium in cytokinin-induced carnation petal senescence. J. American Soc. Hort. Sci., 116: 676-79

(Received on 04.11.2020 and Accepted on 24.12.2020)

INFORMATION TO CONTRIBUTORS

Journal of Horticultural Sciences, an international journal, is the official publication of **Society for Promotion of Horticulture** (**SPH**). It covers basic and applied aspect of original research on all branches of horticulture and other cognate disciplines, which promotes horticulture in its broadest sense. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industrial developments and extension findings. The area of research include evaluation of germplasm, breeding, agronomic practices, physiology, biochemistry, biotechnology, soils and plant nutrition, plant protection, weed control, pesticide residue, post harvest technology, economics, extension, farm machinery and mechanization, etc. which facilitate in the growth and expansion of horticulture. The journal is published twice a year, in June and December.

The Journal of Horticultural Sciences (JHS) publishes critical reviews, research papers and short communications. Three copies of the manuscript and an electronic form (CD, MS Word) should be submitted to the Chief Editor, JHS, SPH, Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bangalore-560 089. The manuscript should preferably pertain to the research work carried out during the last five years. Author(s) must certify that the manuscript (s) has/have not been sent elsewhere for publication. All the authors have to become the members of SPH when a paper is accepted for publication. All papers will be refereed. Short communications on significant research findings, new record / technology are welcome. Besides invited review papers, scientists with vast experience on a particular field of research can also submit review papers which will be referred. Decision of the Chief Editor / Editorial board is final. Authors are permitted to photocopy their article for non-commercial and scientific purpose. No reprints shall be provided gratis. Acceptance of manuscript for publication in JHS shall automatically mean transfer of copyright to the SPH. The chief editor/ Editorial board assumes no responsibility for the statements, opinion or facts expressed in the journal, which rests entirely with the author(s) thereof. Mention of a pesticide or a commercial or proprietary product does not constitute an endorsement or recommendation for the use.

Title: The title of the article should be bold and in running form. Use the font Times New Roman (14 point).Botanical / scientific names should be italicized. Author name(s) should be in running and bold with full address of the first author including e-mail address (it is mandatory as future correspondence will be only through e-mail). The address of other author(s), if different from the first author, should be given as footnotes and indicated by consecutive superscript numbers. A brief running title should be provided on a separate sheet.

Abstract: The abstract should not exceed 200 words. It should be suitable for indexing and publication in abstracting journal. Very pertinent keywords may be furnished. **Text:** The text should be typed in double space on one side of good quality paper (21 x 29 cm) with 3cm margin on all sides **without justifying the text** and in clear and concise English. Use the font Times New Roman (12 point). The paper should be divided into subheadings (placed on the left margin and in upper case) such as Introduction, Material and Methods, Results and Discussion, Acknowledgements, and References. Units and abbreviations should be in metric (SI) system. It is desirable that authors take due care on clarity and brevity of the paper. The length of the paper should not exceed 2500 words.

Tables/ Illustrations/ Photographs: Each table should be on a separate sheet with a short title at the end of the paper, numbered in the order in which it appears in the text. The data reported must be subjected to appropriate statistical analysis. The illustrations should be relevant to the research findings and should not be repeating of data presented in the table. Only very good photographs, mounted on hard paper to avoid folding, given on a separate sheet of paper with title, which are reproducible, will be accepted. Data to be presented in graphical form should be sent on quality glossy contrast paper without folding.

References: References should be cited in the text in the form of (Anon., 1999; Prakash, 2002; Krishnamoorthy and Mani, 2004). The term *et al* should be used when there are more than two authors. The letters, a,b,c,... should be used following the year, to distinguish between two or more papers by the same author(s) in one year. References at the end of the text should be given in the following form:

Shikhamany, S. D. and Satyanarayana, G. 1973. A study on the association of leaf nutrient contents with poor yields in Anab. E.shahi grape (*Vitis vinifera* L.). *Ind. J. Hort.*, **30**: 376 - 380

Panse, V. G. and Sukhatme, P. V. 1978. Statistical methods for Agricultural workers. ICAR, New Delhi, p 108.

Srinivas, K. 1987. Response of watermelon (*Citrullus lanatus* Thunb. Musf) to drip and furrow irrigation under different nitrogen and plant population levels. Ph.D thesis, UAS, Bangalore

Mehta, N. K. and Sharma, S. D. 1986. Studies on flowering and fruit retention in some cultivars of peach (*Prunus persica* Batch). In: Advances in Research on Temperate Fruits. *Proc. Nat'l. Symp. Temp. Fruits*, Solan (India), Dr. Y. S. Parmar Univ. Hort. and Forestry, pp 37-42

Krishnamoorthy, A. and Mani, M. 2000. Biological Control of Pests of Vegetable Crops.p367-78. In: Biocontrol Potential and its exploitation in sustainable Agriculture. Vol. 2: Insect Pests. Upadhyaay, R. K. Mukerji, K. G. and Chamola, B.P. (cd.). Kluwer Academic / Plenum Publishers, New York

Cover photo (s) shall be included at the discretion of Editor. Authors may submit photographs/figures/diagrams for cover page while submitting the manuscript.

AUTHOR INDEX - VOL. 15 (1&2) 2020

Name	Page	Name	Page
Α		Gavankar, M. S.	233
Adamu, J.T.	136	Gokhale, N. B.	233
Adekoya, M.	136	Gowda D. C. S.	161
Adeniji, O.T.	136	Gowda, N. K. S.	197
Aghora T.S.	62	Ι	
Ahamed N.	17	Ingle Y. V.	153
Aravintharaj, R.	229	Ishaka, A.	136
Aremu, C.A.	136	J	
Ashok Kumar J.	45	Jadhav S.B.	67
Asokan, R.	229	Janakiram, T.	147
Aswath C.	93	Jandong, E.	136
Aswath, C.	147	Jasmin M. R.	207
Awcharae, C. M.	177	Jessy Mol K.K.	52
Azeez, S.	197, 207	Κ	
В		Kalaivanan D.	9
Babli, M.	127	Kanupriya, C.	221
Bala, M.	191	Karunakaran, G.	221
Bhatt R.M.	62	Katwate S.M.	67
Bhonde, S. R.	153	Khandekar, R. G.	233
Burondkar, M. M.	233	Kshirsagar, P. J.	233
С		Kulkarni, M. M.	233
		Kumar D.	17
Chandran, N. K.	81	Kumar, R.	147
Chandrashekara C.	197, 207	L	
D		Lad, O. A.	233
Desai, V. S.	233	Lakshmana Reddy D.C	52
Dhananjaya, M. V.	147	Lakshmi, J.	183
Dinakara Adiga, J.	127	Laxman R.H.	35
Dinesh, M. R.	107, 161	М	
G		Madhavi Reddy K	52
	9	Manivannan, N.	183
GaneshamurthyA.N.	-	Manjunath B.L.,	35
Ganga, M.	183		

Name	Page	Name	Page
Manoj Y.B.	52	Sankar V	177
Meena H.R.	72	Sankaran, M.	107, 161
Mohan N.	62	Satisha G.C.	197, 207
Muralidhara, B. M	177	Shejal A. Porob	97
Ν		Shilpa Pandurangaiah,	27
	25	Shivashankar K.S.	27
Nair A.K.	35	Shivashankara, K. S.	207
Negi, S. S.	147	Singh D. R.	177
P		Singh S.R.	17
Paithankar, D. H.	153	Singh, P.	221
Pandey, M.	197, 207	Singh, T.	191
Pawar, C. D.	233	Somasundaram J.	72
Priya Devi S	45,97	Sriram S.	81
-	-,-,-	Srivastava K.K.	17
R		Sudhakar Rao D.V.	27
Rachitha R.	207	Sujatha A. Nair	177
Radha T.K.	72	Susmita C.	62
Ragaji, S. G.	233	Т	
Raghu B.R.	1	Tanya Thakur	173
Raghupathi H.B.	9	Tejaswini Prakash	81
Rajamani, K.	183	Tenebe, A.V.	136
Rajiv Kumar	93	Thangam M	45,97
Ramachandran, N.	147	Thondaiman, V.	127
Ramachandrudu K	45		127
Rami Reddy, P. V.	225	V	
Rao, T. M.,	147	Veena, G.L.	127
Rashmi I.	72	Venugopalan, R.	161
Ravishankar K.V	27	Vichare S.V	67
Roy, T. K.	197, 207, 229	Y	
Rupa T.R	9		17
S		Yousuf S.	17
Sadashiva A.T.	27	Z	
Sadawarte, A. K.	153	Zamil, M.	207
Safeena S.A.	45	Zamzam, M.A.	136

SUBJECT INDEX - VOL. 15 (1&2) 2020

Name	Page	Name	Page
Α		Foot rot	152
Alphonso	233	Free amino acids	207
Amino acid score	207	Fruit development	97
Antigonon	225	Fruit trees	9
Anti-senescence compound	191	Fruit quality	136
Apis spp	225	Fruit shape	136
Arka Mushroom Rasam	197	Fruit yield	136
В		Fruits	107
B:C ratio	233	Fusarium wilt	147
Bee flora	255	G	
Bioavailability	197	Garden pea	62
Biplot analysis	161	GCV	161
Bound amino acids	207	Genetic diversity	17
Breeding	62	Genetic analysis	161
Bulb	67	Genetic divergence	45
	07	Genotype by environment	136
C		Gerbera	93
Canopy management	127	Germplasm	1,107
Carotene	27	GIS	107
Carotenoid	27	Gladiolus	147
CGMS	52	Goa	97
Character correlation	136	Groundwater depletion	9
Chrysanthemum	173, 191	Growth	67
Conservation	107	Growth parameters	233
Copper	72	Gummosis	152
Correlation coefficient	45	Н	
Curry leaves	1 177	Heritability	161
Cut flower production Cut-flower	93	High temperature	62
	95	Honey bees	02 225
D		Honeydew	229
Delayed flowering	191	Hot pepper	52
Dendrobium	177	Hybrid	52 67
Distribution	1	Hypsizygus ulmarius	197
Diversity	1		197
Drought	9	Ι	
Ε		In situ	107
Early summer	62	Iron	72
Evaluation	93, 147	Iron fortified	197
Ex situ	107	J	
F		Jasminum spp	183
Flower	67	Κ	
Flowering	147	Kikiobiory	173
0		-	

Name	Page	Name	Page
L		Pruning	127
LC-MS-MS	229	Pulp recovery	221
Leaf analysis	72	Q	
Lycopene	27	Quality	177
	2,	Quantitative character	45
M		R	
Manganese	72		01
Mango	161,233	Resistance Gene Analogues (RGA)	81
Marker Assisted Selection	52 72	Rootstocks	127
Micronutrient deficiency Mitochondria	72 52	Rose	81
Morphotypes	52 1	S	
Mushrooms	197	Sapota	72
	197	Scheduling irrigation	35
Ν		Selection	221
Nagpur mandarin	152	Single linkage cluster analysis	17
Nitrogen	173	Single type tuberose	67
Novel hybrids	93	Soil volume wetting	35
Nucleotide Binding Site-Leucine	81	Soilless media	233
Rich Repeats (NBS-LRR)		Solanum lycopersicum	136
Nutrients	177	Spacing	35
Nutrition	207	Standardization	173
0		Stress tolerance	62
Onion	17	Sugars	229
Orchid	177	Т	
ORF	52	Tamarind	221
Ornamental creeper	225	Thrips palmi	229
Р		Tomato	27
-	102	Training	127
Palynology	183	Tropical	107
Papaya yield	35 127	V	
PBZ	127		
PCV Peak water	161 9	Variability	136
	9	Varieties	107
Perennial crops Phytophthora	9 152	Vase life	147, 191
Pink types	132 97	Vegetable cowpea	45
Planting geometry	127	W	
Podosphaera pannosa	81	Water use efficiency	35
Policy issue	9	Wax apple	97
Pollen germination	183	White types	97
Pollen morphology	183	Wild species	107
Polyhouse	93,136	Y	
Potassium salt of phosphonic acid (PS	<i>,</i>		
Potted plants	173	Yield	221
Powdery mildew	81	Ζ	
Principal component analysis	17	Zinc	72
1 1 2			

STATEMENT OF OWNERSHIP AND OTHER PARTICULARS ABOUT JOURNAL OF HORTICULTURAL SCIENCES

(Form IV)

Place of Publication	:	Bengaluru
Periodicity of publication	:	Half-yearly
Printer's Name	:	Mr. Ravikumar, B.A.
Nationality	:	Indian
Address	:	Resolution Print Media #131, 6 th Main, Meenakshinagar Kamakshipalya, Bengaluru - 560 079.
Publisher's Name	:	Society for Promotion of Horticulture
Address	:	ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake P.O. Bengaluru - 560 089
Editor-in-Chief	•	Dr. S. Sriram
Nationality	:	Indian
Address	:	ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake P.O. Bengaluru - 560 089.
Name and addresses of individuals who own the journal and partners or are share- holders holding more than one per cent of the total capital	:	Society for Promotion of Horticulture ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake P.O. Bengaluru - 560 089.

I, Dr. S. Sriram, hereby declare that the particulars given above are true to the best of my knowledge and belief.

Sd/-(S. Sriram) Editor-in-Chief

June 30, 2020

SOCIETY FOR PROMOTION OF HORTICULTURE

ICAR-Indian Institute of Horticultural Research Hessaraghatta Lake Post, Bengaluru-560 089, India sphiihr2005@gmail.com/chiefeditor.jhs@gmail.com Website : https://sphindia.org

ENROLMENT FORM

Name in full (in block letters) Dr./Mrs./Mr./Ms.	:
Designation	:
Address for communication	:
Phone No.	:
E-mail ID	:
Type of membership	: Patron / Life member / Annual member / Student member*
Payment	:
Demand Draft No. / Date	:
Demand Draft No. / Date Bank	:
	: : :

Membership fee structure :

Type of membership	Membership amount	Enrolment fee	Total membership amount payable by Demand Draft (₹)
Patron	20,000/-	200/-	20,200/-
Life Member	5,000/-	200/-	5,200/-
Annual Member (India)	1,000/-	200/-	1,200/-
i. For SAARC authors	US \$ 100	US \$ 5	US \$ 105
ii. For SAARC countries	US \$ 50	US \$ 5	US \$ 55
Student member*	500/-	200/-	700/-

*The application of student members must be certified by their Head of dept. or equivalent and the student member shall not receive a copy of the journal.

Please send the duly filled-in enrolment form along with Demand Draft drawn in favour of Society for Promotion of Horticulture, by post to General Secretary, Society for Promotion of Horticulture ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru - 560 089.

ACKNOWLEDGEMENTS

The editorial team acknowledges the services of the following reviewers

Dr. Shylesha A.N. Principal Scientist, ICAR-NBAIR, Bengaluru

> **Dr. Ashwath Narayan** Associate Professor, UAS, Raichur

Dr. Mohan C. Principal Scientist, ICAR-CTCRI, Trivandrum

Dr. Chavalli Sarada Associate Professor, YSRHU, Guntur

Dr. Dinesh R. Principal Scientist, ICAR-IISR, Calicut

Dr. Kalaivanan D. Scientist, ICAR-IIHR, Bengaluru

Dr. Sudhakar Rao D.V. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Fakrudin B. Professor, College of Horticulture, UHS, Bengaluru

Dr. Hebbar K.B. Principal Scientist, ICAR-CPCRI, Kasaragod

Dr. Hima Bindu Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Satisha J. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Krishnamurthy K.S. Principal Scientist, ICAR-CPCRI, Kasaragod

Dr. Kundan Kishore Principal Scientist, CHES (ICAR-IIHR), Bhubaneswar

> **Dr. Sankaran M.** Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Madhu Bala Associate Professor, PAU, Ludhiana

Dr. Nandeesha P. Senior Scientist, ICAR-IIHR, Bengaluru

Dr. Venkatarami Reddy P. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Prakash Tripathi Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Prasad R.D. Principal Scientist, ICAR-IIOR, Hyderabad

Dr. Rajashekaran P.E. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Rajiv Kumar Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Ravindran Chandran Horticulturist, TNAU, Coimbatore

Dr. Ramani S. Former Project Coordinator, AICRP on Honey Bees and Pollinator, Bengaluru

> **Dr. Veena S.S.** Principal Scientist, ICAR-CTCRI, Trivandrum

> > **Dr. Smaranika Mishra** Scientist, ICAR-IIHR, Bengaluru

Dr. Sujatha A. Nair Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Tejaswini Prakash Principal Scientist, ICAR-IIHR, Bengaluru

> **Dr. Usha Bharathi T.** Scientist, ICAR-IIHR, Bengaluru

Dr. Sridhar V. Principal Scientist, ICAR-IIHR, Bengaluru

Dr. Srinivasan V. Principal Scientist, ICAR-IISR, Calicut

Sd/-

(**S. Sriram**) Editor-in-Chief

New Varieties/ Technologies of ICAR-IIHR

New Water Melon - Arka Shyama variety

Arka Red - New Gerbera variety

Leaf curl resistant chilli varieties Arka Tejaswi, Arka Saanvi and Arka Tanvi

Arka Abhi

Arka Shuba

New Varieties/ Technologies of ICAR-IIHR

Arka Herbiwash - Safe way of removing pesticide residues

Arka Bharath - New teasel gourd variety

Journal of Horticultural Sciences is indexed by the following abstracting and indexing services

Article published in Journal of Horticultural Sciences are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

