Short communication

Effect of various irrigation methods on growth, flowering and yield of tuberose (*Polyanthes tuberosa* Linn.)

M.R. Deshmukh

Precision Farming Development Centre, Dr. A.S. College of Agricultural Engineering, Mahatma Phule Krishi Vidyapeeth, Rahuri-413722, India E-mail: mrdesh101@yahoo.co.in

ABSTRACT

Tuberose flower has very good fragrance and is suitable for loose and cut flowers. Although crop improvement has been researched upon in various institutes and state agricultural universities, irrigation management in this crop has not been given much emphasis. This factor is important and crucial in crop production. A field trial was conducted at Precision Farming Development Centre, Rahuri, with the objective of studying performance of tuberose cv. Suvasini Double under three irrigation systems, viz., drip, micro-sprinkler and surface irrigation (conventional method). Irrigation through drip and micro-sprinkler was applied at 0.85 PE; and in the conventional method of irrigation, the interval was set at 60 mm CPE with 6 cm depth of irrigation. Micro-sprinkler system proved to be the best and gave a flower yield of 6.77 lakh spikes/ ha with better flower quality, than drip or surface method of irrigation. B:C ratio was also higher under micro-sprinkler (2.68).

Key words: Tuberose, micro-sprinkler, drip

Tuberose is an important flower crop grown in India for its beautiful and fragrant flowers. Flower spikes have varied uses in bouquets and vases, while loose flowers are used for making garlands/ '*venis*' and other floral arrangements. Maharashtra enjoys a congenial climate for tuberose cultivation.

Tuberose (*Polyanthes tuberosa* Linn.) needs an improved package of practices for better yield and quality of flowers. Irrigation schedule and quantity of water applied are important factors deciding production. Scarcity of water has compelled the stakeholders to think seriously about water management in the crop. Pressurized irrigation system comprises drip, micro-sprinklers, spray guns, etc. The suitability of a method depends upon the crop and its planting density. To study the performance of tuberose under different irrigation systems, a trial was conducted at the Precision Farming Development Centre, M.P.K.V., Rahuri.

The experiment was conducted at the experimental farm of Precision Farming Development Centre, Rahuri. Three treatments, *viz.*, Drip irrigation, Micro-sprinkler and Surface irrigation (conventional) were studied. The experiment was laid out in Randomized Block Design, with seven replications. Tuberose cv. Suvasini (Double) was planted at 40 x15 cm spacing in 1.60x12.0 m size beds. Recommended dose of 200:300:300 kg NPK / ha was applied. Before planting, the bulbs were treated with 0.2% Carbendazim for 30 minutes. Irrigation through drip and micro-sprinkler was applied at 0.85 PE and, in the surfacemethod of irrigation, the interval was set at 60 mm CPE with 6 cm depth of irrigation water. Details of the irrigation methods are as under:

Irrigation system/ parameters	Drip	Micro- sprinkler	Surface method
Lateral size	16mm	16mm	Border irrigation,
Lateral spacing	2.2 m	2.2 m	Size of border
Emission spacing	60 cm	2.0 m	= 12x 1.6 m
Average discharge	4 LPH	44 LPH	
Operational pressure	1 kg/cm ²	1 kg/cm ²	
Uniformity coefficient	90%	94%	

Average discharge and emission uniformity were computed by the formula of by Keller and Karmelli (1974). Recommended dose of fertilizer was given in 30 splits. Irrigations were scheduled for every alternate day. Depth of water to be applied per plant was calculated using the equation

Irrigation methods influencing tuberose cultivation

Parameter	Year	(T1) Drip	(T2) Micro-	(T3) Conven-	CD at 59
		(Microtube)	sprinkler	tional method	
werage plant height at bud	99-00	59.179	63.439	50.619	4.859
stage (cm)	00-01	59.107	64.446	49.909	0.288
	01-02	59.158	63.978	48.460	0.236
	pooled	59.148	63.954	49.663	1.695
Average no. of leaves/plant at	99-00	96.094	106.136	91.800	6.140
nset of flowering	00-01	95.766	108.129	90.978	0.349
	01-02	96.032	107.663	89.944	0.459
	pooled	95.964	107.309	90.907	2.181
lo. of flowers/spike	99-00	49.206	55.460	44.381	2.053
	00-01	49.259	55.617	44.421	0.596
	01-02	49.618	56.184	43.972	0.412
	pooled	49.494	55.986	44.124	0.212
verage spike length (cm)	99-00	107.774	110.374	99.456	3.086
	00-01	107.970	111.316	99.689	1.768
	01-02	107.869	110.989	99.446	0.161
	pooled	107.880	111.009	99.485	0.450
ength of rachis (cm)	99-00	48.571	51.570	41.857	2.997
e (00-01	49.353	52.010	35.809	0.473
	01-02	48.842	51.915	38.786	0.336
	pooled	48.922	51.832	38.817	4.365
/t. of spike (g)	99-00	36.226	39.143	30.803	3.126
	00-01	36.796	39.934	30.657	0.692
	01-02	36.637	39.799	30.378	0.448
	pooled	36.677	39.829	30.466	0.238
ïeld of bulbs (t/ha)	99-00	36.106	45.201	31.039	8.731
	00-01	37.803	47.564	31.073	2.709
	01-02	36.967	46.469	30.865	0.252
	pooled	36.973	46.477	30.867	0.160
ield of bulblets (t/ha)	99-00	13.641	16.147	10.034	4.032
	00-01	14.256	17.144	9.910	1.256
	01-02	13.930	16.669	9.758	0.139
	pooled	13.934	16.674	9.760	0.009
pike yield (lakh/ha)	99-00	5.241	6.650	4.423	0.760
~P	00-01	5.241	6.817	4.530	0.314
	01-02	5.192	6.763	4.390	0.112
	pooled	5.198	6.767	4.395	0.007
Duration of opening of	99-00	20.071	22.500	19.071	0.750
owers from 1 st to last	00-01	19.960	22.453	18.976	0.425
on the spike in field (days)	01-02	19.997	22.532	18.840	0.425
in the spike in neid (days)	pooled	19.993	22.502	18.906	0.151
Sulb diameter (cm)	99-00	2.689	3.140	2.090	0.151
	00-01	2.683	3.339	2.090	0.208
	01-02	2.692	3.254	1.967	0.247
	pooled	2.690	3.252	1.907	0.128
Average amt. of water applied/year (cm)	pooleu	156.97	156.97	196.0	

D = PE x Kc x Kp

Where

D = depth of water to be applied (mm)

Kc = Crop co-efficient (0.8, 1.0 and 1.2 for 3 months, respectively)

Kp = Pan factor (0.7)

PE = Sum of pan evaporation for two days (mm)

Volume of water to be applied for the treatment was computed by the equation

V = D x A x N

Where

V = volume of water (l)

J. Hortl. Sci. Vol. 7(1):94-97, 2012

Deshmukh

Table 2. Cost economics	in	tuberose	cultivation
-------------------------	----	----------	-------------

Cost economics	Drip (Microtube)	Micro- sprinkler	Conventional
Fixed cost (Rs./ha)	40000	85000	_
a) Life (seasons)	7	7	_
b) Depreciation	5143	10929	_
c) Interest	5600	11900	_
d) Repairs & Maintenance	800	1700	_
e) Total (b+c+d)	11543	24529	_
Cost of cultivation (Rs./ha)	55391	55391	55391
Seasonal total cost $(1e + 2)$ (Rs./ha)	66934	79920	55391
Water used (mm)	1569.7	1569.7	1960.0
Yield of produce (spikes/ha)	519800	676700	439500
Selling price (Rs./ spike)	0.15	0.15	0.15
a) Income from produce (5 x 6) (Rs.)	77970	101505	65925
b) Income form bulbs (Rs.)	93750	112500	75000
c) Total $(a + b)$	171920	214005	140925
Net seasonal income (7-3) (Rs.)	104986	134085	85534
Additional area cultivated due to saving of water (ha)	0.25	0.25	_
Additional expenditure due to additional area (3rd x 9th) (Rs.)	16734	19980	_
Additional income due to additional area (7 x 9) (Rs.)	42980	53501	_
Additional net income (11 - 10) (Rs.)	26246	33521	_
Gross cost of production (Rs.) (3+ 10)	83668	99900	55391
Gross income (7+11) (Rs.)	214900	267506	140925
Gross B:C ratio (14/13)	2.57	2.68	2.54
Net extra income due to irrigation system over conventional	45698	82072	_
(12 + 8 drip - 8th conventional) (Rs.)			
Net profit per mm water used (8/4)	66.88	85.42	43.64
WUE (5/4) (spikes/ha - mm)	331.15	431.10	224.23

D = depth of water (mm)

A = area of one plot (m^2)

N = number of plots or replications per treatments

Time of operation (hr) of drip irrigation system for each treatment was calculated using the equation

To = V / q. Eu.n. N

Where

To = Time of application of the operation of drip irrigation unit for the respective treatment (hr)

V = Volume of water to be applied for each application for all three replications of treatment (l)

q = Average discharge of emitters in the respective treatments (lph)

Eu = Emission uniformity of the drip irrigation unit

n = Number of emitters per treatment

N = Number of plots per treatment

Observations on plant height, number of leaves, number of flowers per spike, average spike length, length

of rachis (cm), weight of spike (g), yield of bulbs (t/ha), yield of bulblets (t/ha), spike yield, days for opening of flowers and, diameter of bulb (cm) were recorded.

Results presented in Table 1 depict significant effect of various irrigation systems on growth and yield in tuberose cv. Suvasini. Pressurized irrigation, viz., sprinkler and drip, proved better than the surface method of irrigation. Microsprinkler was the best and gave significantly better values [mean plant height at bud stage (63.95 cm), number of leaves per plant at onset of flowering (107.30), number of flowers per spike (55.98), spike length (111.00 cm), length of rachis (51.83 cm), weight of spike (39.82 g), yield (6.76 lakh spikes /ha), yield of bulb (46.47 t/ha) and bulblet yield (16.67 t/ha) and bulb diameter (3.25 cm)]. Flower spikes lasted longer under micro-sprinkler irrigation. Results obtained in microsprinkler were superior over the other irrigation systems because of maximum area wetted and better microclimate. The active root zone in tuberose lies at 30 cm soil depth. Micro-sprinkler created favourable conditions for bulb development, bulblet multiplication, better growth and yield of spikes, etc. These results are in agreement with Beattii et al (1993) who reported very marked differences in response to irrigation methods in Asiatic lilies.

Overhead method of irrigation produced plants with greater height and good yield. Similar results were reported by Shillo (1992) who stated that tuberose was a popular garden plant besides its use on cut flower; each rhizome of the plant has a potential to produce one flower; but, flowering percentage is related to rhizome size and the irrigation method. In field trials on cv. Pearl, it was observed that plants irrigated with micro-sprinklers had maximum height and number of leaves. Each spike had as many as 60 flowers/ spike and averaged 115 cm in length. Performance of tuberose under drip irrigation was found to be better than in conventional irrigation system. Low performance of these systems compared to that with micro-sprinkler can be attributed to the growing conditions and soil water status which, in these methods, is not as congenial. Ramaswamy et al (1979) also reported similar results in their study on influence of various methods of irrigation on flowering and yield in tuberose.

Total amount of water applied through micro-sprinkler

and drip was 156.97 cm/ year as against 196.0 cm /year in the surface method of irrigation. Cost economics presented in Table 2 reveal that maximum B:C ratio of 2.68 was obtained with micro-sprinkler method of irrigation.

REFERENCES

- Beattie, D.J., Blodgett, A.M. and Holcomb, E.J. 1993. Effects of root removal, irrigation methods and ancymidol on flowering of Asiatic lilies. Plant growth regulator society of America (*Quarterly*) **21**:64-72
- Keller, J. and Karmeli, D. 1974. Trickle irrigation design parameters. Part II, *Hort. Rev.*, **17**:678-684
- Ramaswamy, N., Paulraj, C. and Chocklingam, P. 1979.
 Studies on the influence of different irrigation methods on flowering and yield of tuberose (*Polyanthes tuberosa* L.). *Annamalai. Univ. Agri. Res. Annua*, 7:29-33
- Shillo, R. 1992. The tuber community holds the answer to flowering problems in *Polyanthes tuberosa*. Acta *Hort.*, **325:**139-148

(MS Received 03 August 2010, Revised 17 April 2012)