Gene action and combining ability analysis in brinjal (Solanum melongena L.)

S. Ramesh Kumar ${ }^{1}$ and T. Arumugam
Department of Horticulture, Agricultural College and Research Institute Tamil Nadu Agricultural University
Madurai-625 104, India
E-mail: rameshamar06@gmail.com

Abstract

Combining ability analysis in brinjal genotypes indicated significant genotypic and environmental variations for all the 15 characters studied. Both general combining ability (GCA) and specific combining ability (SCA) variances showed significant interactions. Genotypes Palamedu Local $\left(\mathrm{L}_{5}\right)$, Alagarkovil Local $\left(\mathrm{L}_{4}\right)$, Melur Local $\left(\mathrm{L}_{6}\right)$ and Annamalai $\left(T_{1}\right)$ were found to be good general combiners, and the crosses $\mathrm{L}_{3} \times T_{3}$ (Kariapatty Local \times Punjab Sadabahar), $\mathrm{L}_{8} \times T_{1}$, (Nilakottai Local x Annamalai), $\mathrm{L}_{4} \times \mathrm{T}_{1}$ (Alagarkovil Local xAnnamalai), $\mathrm{L}_{6} \times \mathrm{T}_{2}$ (Melur Local \times KKM 1), $\mathrm{L}_{7} \times \mathrm{T}_{3}$ (Keerikai Local x Punjab Sadabahar) and $\mathrm{L}_{7} \mathrm{xT}_{2}$ (Keerikai Local x KKM 1) were identified as good specific combiners for fruit yield and other related traits. These hybrid combinations can be used for commercial exploitation for fruit yield in brinjal.

Key words: Brinjal, gene action, combining ability, GCA and SCA

Egg plant or brinjal (Solanum melongena L.) is an important, highly productive vegetable crop and is often referred to as the poor man's crop (Bindu et al, 2004). Heterosis breeding is an efficient approach in crop improvement, and selection of parental lines is very important in developing hybrids for commercialization. A knowledge of combining ability helps identify the best combiners, aids heterosis breeding or to accumulate fixable genes through selection. Such information forms the backbone of any breeding programme. Among the various methods, Line X Tester analysis provides information on the combining ability of genotypes.

Combining ability effects rank among the important parameters commonly used by plant breeders to evaluate genetic potential of the material being handled by them. Dhillion (1975) opined that combining ability of parents gave useful information on making the choice of parents in terms of expected performance of their hybrids and progenies. The gca effect is considered as an intrinsic genetic value of the parent for a trait, which is due to additive genetic effects and is fixable (Simmonds, 1979). Singh and Hari Singh (1985) suggested that parents with high gca tend to produce transgressive segregants in F_{2} or later generations. Gravios and McNew (1993) reported that if additive gene action was predominant in a self-pollinated species, the breeder
could effectively select various levels of inbreeding, because additive effects are readily transmissible from one generation to another. In view of this, we undertook combining ability analysis using ten lines and four testers.

The experimental material comprised of $40 \mathrm{~F}_{1}$ and 14 parents (10 lines and 4 testers) which were evaluated, during 2010-2011 in RBD, with three replications, at College Orchard, Agricultural College and Research Institute, Madurai which is situated at $9^{\circ} 5$ latitude and $78^{\circ} 5$ longitude and at an elevation of 147 m above MSL. Cultural practices were followed as per the package of practices in TNAU Crop Production Guide (2005) with plants spaced at 60 cm x 60 cm . Observations were recorded in five plants selected randomly in each genotype. Data were recorded for 15 biometrical traits viz., plant height, days to first flowering, number of branches per plant, fruit length, fruit pedicel length, fruit circumference, calyx length, number of fruits per plant, average fruit weight, shoot borer infestation, fruit borer infestation, little leaf incidence, ascorbic acid content, total phenol content and fruit yield per plant in 14 parents and 40 hybrids. This data was used for estimating combining ability. Combining ability analysis was computed as per Kempthorne (1957). Parents/hybrids that showed negative and significant gca effects were considered for days to first flowering, fruit length, calyx length, shoot and fruit borer

Table 1. Analysis of Variance for parents and hybrids for 15 characters

Source	df	PH	DFF	NB/ P		FL	FPL	FC	CL
Hybrids	39	346.5306*	54.8730*	17.4039*		5.4570*	1.4005*	9.9952*	1.0970*
Lines	9	973.0851*	76.5412*	* 40.2728*		4.9768*	2.1125*	20.0498*	2.5695*
Testers	3	66.6626*	17.7451*	- 12.1612*		9.7032*	0.4415*	16.6776*	0.5407*
Line x Testers	27	168.7756*	51.7756*	10.3635*		5.1453*	1.2698*	5.9011*	0.6680*
Errors	78	85.0412	3.3519	4.3914*		0.0933	0.0216	0.4478	0.0424
Source	df	NF/P	AFW	SBI	FBI	LLI	ACC	TPC	FY/P
Hybrids	39	161.9557*	149.5525*	54.4746*	63.3535*	* 69.4393*	12.9752*	533.5026*	0.6288*
Lines	9	197.8137*	328.0857*	104.8571*	80.0248*	* 128.8896*	24.3787*	998.8697*	0.9020*
Testers	3	234.2205*	72.4168*	41.9781*	34.1338*	* 70.4679*	33.1344*	55.7529*	0.4214*
Line x Testers	27	141.9736*	98.6121*	39.0689*	61.0430*	* 49.5083*	* 6.9342*	431.4635*	0.5608*
Errors	78	1.8176	4.0138	0.9524	2.1378	0.8543	0.1632	4.1422	0.0100

*Significant at 5\% level
PH - Plant height (cm)
DFF - Days to first flowering
NB/P - Number of branches per plant
FL - Fruit length (cm)
FPL - Fruit pedicel length (cm)

FC - Fruit circumference (cm)
CL - Calyx length (cm)
NF/P - Number of fruits per plant
AFW - Average fruit weight (g)
SBI - Shoot borer infestation (\%)

FBI - Fruit borer infestation (\%)
LLI - Little leaf incidence (\%)
ACC - Ascorbic acid content (mg/100g)
TPC - Total phenol content (mg/100g)
FY/P - Fruit yield per plant (kg)
infestation and little leaf incidence; while, for the other traits, parents /hybrids with positively significant gca effects were taken into consideration. Combining ability analysis was carried out using TNAUSTAT software package.

Analysis of Variance revealed highly significant differences among all parents and hybrids for all the characters studied, indicating the presence of considerable amount of genetic variability (Table 1). Hybrids vs Parents comparison was significant for all the traits, revealing occurrence of heterotic effects. Knowledge of relative importance of additive and non-additive gene action is essential to the plant breeder for developing an efficient hybridization programme. Panse (1942) suggested that if additive genetic variance was greater, the chance of fixing superior genotypes in early-segregating generation would be greater; whereas, if dominant and epistatic interactions were predominant, selection should be postponed to a later generation, and appropriate breeding techniques should be applied to obtain a useful genotype. From an analysis of the combining ability estimates, it was seen that non-additive gene action operated for all the characters in our study, as, variance due to general combining ability (GCA) and specific combining ability (SCA) was highly significant (Table 2). Further, it was observed that variance due to SCA was higher in magnitude than GCA for all the traits studied. Thus, it supports predominance of non-additive gene effects on governing the expression of most of the characters.

These results are in accordance with Prabhu (2005), Muthulakshmi (2007) and Prakash (2008) for plant height;

Indiresh et al (2005) for days to first flowering; Prakash (2008) for number of branches per plant; Suneetha (2006), Muthulakshmi (2007) and Prakash (2008) for number of fruits per plant; Muthulakshmi (2007) for average fruit

Table 2. Magnitude of Variance for yield components

Character	$\begin{gathered} G C A \\ \text { variance } \end{gathered}$	SCA variance	$\delta^{2} \mathrm{~A}$	$\delta^{2} \mathrm{D}$	Ratio of $\delta^{2} \mathrm{~A}: \delta^{2} \mathrm{D}$
Plant height (cm)	67.02	98.15	2.91	98.15	0.02
Days to first flowering	2.06	14.97	0.20	14.97	0.01
Number of branches per plant	4.52	17.34	0.26	17.34	0.01
Fruit length (cm)	-0.01	2.15	0.05	2.15	0.02
Fruit pedicel length (cm)	0.07	0.41	0.03	0.41	0.07
Fruit circumference (cm)	1.17	4.40	0.06	4.40	0.01
Calyx length (cm)	0.15	0.38	0.007	0.38	0.01
Number of fruits per plant	11.80	62.29	0.75	62.29	0.01
Average fruit weight (g)	19.12	51.88	0.83	51.88	0.01
Shoot borer infestation (\%)	5.48	19.66	0.25	19.66	0.01
Fruit borer infestation (\%)	1.58	18.65	0.03	18.65	1.60
Little leaf) incidence (\%	6.61	26.49	0.32	26.49	0.01
Ascorbic acid content (mg/100g)	1.45	6.84	0.09	6.84	0.01
Total phenol content (mg/100g)	47.28	159.27	1.67	159.27	0.01
Fruit yield per plant (kg)	0.02	0.20	0.02	0.20	0.10

Table 3. General combining ability effects of parents

Parent	Plant height (cm)	Days to first flowering	Number of branches per plant	Fruit length (cm)	Fruit pedicel length (cm)	Fruit circumference (cm)	Calyx length (cm)	Number of fruits per plant	Average fruit weight (g)	Shoot borer infestation (\%)	Fruit borer infestation $(\%)$	Little leaf incidence (\%)	$\begin{aligned} & \text { Ascorbic } \\ & \text { acid } \\ & \text { content } \\ & (\mathrm{mg} / 100 \mathrm{~g}) \end{aligned}$	Total phenols content (mg/100g)	Fruit yield per plant (kg)
LINES															
L	11.29**	1.30*	0.24	0.31**	-0.11*	1.78**	-0.18**	-4.73**	6.34**	-3.33**	-0.40	1.38**	2.90**	-4.95**	-0.07*
L_{2}	13.92**	3.14**	-2.87**	0.25**	-0.42**	-0.48*	-0.32**	2.10**	-0.98	0.38	-2.45**	0.74**	0.35**	-4.66**	0.07*
L_{3}	6.51*	3.19**	-2.23**	-0.27**	0.38**	-2.08**	0.59**	-6.12**	-4.74**	-5.91**	1.26**	-2.73**	0.51**	1.94**	-0.45**
L_{4}	1.14	-3.16**	-0.35	0.53**	0.28**	-1.31**	0.63**	4.53**	2.20**	0.81**	-1.86**	-4.71**	-0.41**	8.96**	0.30**
L_{5}	-7.68**	-2.16**	3.53**	-0.07	0.39**	1.79**	0.38**	8.13**	4.17**	-0.67*	-0.76	-3.61**	-0.46**	0.64	0.43**
L_{6}	-9.69**	-3.48**	3.03**	-0.25**	0.41**	0.69**	0.39**	-0.21	-1.05	-1.20**	0.25	-2.77**	-0.17	5.87**	-0.04
L_{7}	5.36*	-1.03	2.26**	-0.04	-0.80**	-0.55**	-0.46**	-2.57**	5.48**	0.58*	-1.28**	1.67**	0.19	18.28**	0.06*
L_{8}	-2.20	1.52**	-0.12	1.26**	-0.41**	-0.91**	-0.68**	4.47**	-10.28**	3.01**	3.36**	2.44**	-1.57**	-11.06**	0.03
L_{9}	-7.83**	-1.29*	0.66	-0.64**	0.23**	0.16	-0.27**	0.41	-3.95**	3.62**	5.03**	2.02**	1.01**	-10.24**	-0.06*
L_{10}	-10.83**	1.97**	-4.13**	-1.08**	0.05	0.89**	-0.07	-6.03**	2.80**	2.71**	-3.16**	5.57**	-2.35**	-4.77**	-0.27**
SE	2.66	0.52	0.49	0.08	0.04	0.19	0.05	0.39	0.57	0.28	0.42	0.26	0.11	0.58	0.02
TESTERS															
T ${ }_{1}$	1.54	-0.96**	1.32**	-0.71**	-0.02	0.86**	-0.07	1.44**	0.11	0.52**	-0.68*	0.56**	1.14**	-0.48	0.11**
T ${ }_{2}$	-2.01	-0.17	1.34**	0.08	-0.15**	-0.05	-0.15**	3.43**	-0.78*	1.29**	-0.51	-0.10	-0.07	0.34	0.15**
T_{3}	0.48	0.26	-1.05**	-0.05	0.02	-0.95**	0.14**	-4.13**	2.12**	-0.34	1.59**	-2.05**	0.31**	-1.54**	-0.17**
T_{4}	-0.01	0.86*	-1.61**	0.68**	0.15**	0.14	0.08*	-0.74**	-1.46**	-1.47**	-0.41	1.59**	-1.38**	1.69**	-0.09**
SE	1.68	0.33	0.31	0.05	0.02	0.12	0.03	0.25	0.36	0.17	0.26	0.16	0.07	0.37	0.01

[^0]Table 4. Specific combining ability effects of hybrids

Hybrid	PH	DFF	NB/ P	FL	FPL	FC	CL	NF/P	AFW	SBI	FBI	LLI	ACC	TPC	FY/P
$\mathrm{L}_{1 \times 1} \mathrm{~T}_{1}$	-13.03*	-2.80**	2.62*	0.17	-0.12	-1.46**	-0.36**	6.95**	8.88**	4.91**	-1.34	2.07**	-0.37	1.57	0.71**
$\mathrm{L}_{1 \times} \times \mathrm{T}_{2}$	-2.48	-0.08	-0.07	-0.29	-0.36**	1.02**	-0.13	-5.98**	-5.01**	-2.78**	1.27	-3.57**	-0.20	-2.65*	-0.46**
$\mathrm{L}_{1 \times} \mathrm{T}_{3}$	-2.68	1.58	-1.36	-0.25	0.79**	0.96*	0.53**	-2.55**	3.25**	-4.11**	1.50	-3.02**	0.74**	3.09*	-0.13*
$\mathrm{L}_{1 \times} \times \mathrm{T}_{4}$	18.19**	1.30	-1.19	0.37*	-0.31**	-0.52	-0.04	1.58*	-7.12**	1.98**	-1.43	4.52**	-0.16	-2.01	-0.12*
$\mathrm{L}_{2 \times} \mathrm{T}_{1}$	13.08*	2.82**	-1.51	1.42**	-0.33**	2.28**	0.06	7.54**	-5.21**	-0.67	4.02**	2.01**	-0.68**	10.98**	0.16**
$\mathrm{L}_{2} \times \mathrm{T}_{2}$	-5.44	-2.98**	-0.91	-1.29**	-0.11	-0.62	0.22	-11.26**	2.01	5.59**	-0.35	-0.12	0.88**	18.87**	-0.52**
$\mathrm{L}_{2 \times} \mathrm{T}_{3}$	0.13	4.10**	0.54	-0.39*	-0.14	-0.82*	0.08	7.02**	2.60*	-2.19**	-0.99	-3.89**	-0.97**	13.72**	0.51**
$\mathrm{L}_{2 \times} \times \mathrm{T}_{4}$	-7.77	-3.94**	1.88	0.26	0.58**	-0.83*	-0.37**	-3.32**	0.60	-2.74**	-2.69**	2.00**	0.77**	-21.61**	-0.15**
$\mathrm{L}_{3 \times} \mathrm{T}_{1}$	8.55	4.48**	1.59	0.32	-0.76**	0.53	-0.66**	6.03**	-5.95**	1.44*	-1.19	-0.31	0.02	9.34**	0.06
$\mathrm{L}_{3} \times \mathrm{T}_{2}$	0.34	5.67**	-0.58	-0.11	-0.42**	-0.04	-0.26*	-6.94**	-4.12**	-2.49**	4.04**	-0.24	-2.01**	-9.39**	-0.43**
$\mathrm{L}_{3 \times} \mathrm{T}_{3}$	-3.44	-4.44**	-2.11*	0.47**	-0.15	-0.21	0.06	6.42 **	10.53**	-2.39**	-3.97**	-3.91**	0.72 **	7.77**	0.63**
$\mathrm{L}_{3 \times} \mathrm{T}_{4}$	-5.46	-5.71**	1.11	-0.68**	1.32**	-0.28	0.87**	-5.52**	-0.47	3.43 **	1.12	4.46**	1.26**	-7.72**	-0.27**
$\mathrm{L}_{4 \times} \mathrm{T}_{1}$	1.83	-1.28	3.37**	-0.30	-0.17*	1.79**	0.25*	3.08**	4.52**	-7.04 **	3.76**	-2.05**	-0.79**	4.09**	0.26**
$\mathrm{L}_{4 \times} \mathrm{T}_{2}$	-3.15	-1.31	2.32*	-0.09	-0.54**	0.75	0.08	4.03**	-2.86*	-1.11	1.54	-1.48**	1.64**	-0.08	0.14*
$\mathrm{L}_{4 \times} \mathrm{T}_{3}$	3.92	1.76	-3.52**	-1.43**	-0.00	-0.69	-0.64**	-4.31**	-5.02**	5.40 **	-2.93**	4.35**	-0.47 *	-4.18**	-0.37**
$\mathrm{L}_{4 \times} \mathrm{T}_{4}$	-2.59	0.83	-2.15*	1.81**	0.72**	-1.85**	0.31*	-2.81**	3.36**	2.76 **	-2.37**	-0.82	-0.38	0.18	-0.03
$\mathrm{L}_{5} \times \mathrm{T}_{1}$	-2.62	-2.13*	-3.90**	-0.05	-0.02	-0.50	-0.20	-11.37**	7.78**	-0.77	-5.82**	3.56**	2.09**	-9.24**	-0.56**
$\mathrm{L}_{5 \times} \mathrm{T}_{2}$	-0.44	0.44	0.03	-0.42*	-0.31**	-0.95*	-0.47**	0.98	2.17	0.97	0.32	4.43**	-0.70**	4.76**	0.04
$\mathrm{L}_{5 \times} \mathrm{T}_{3}$	7.13	3.88**	2.11*	0.03	-0.01	1.12**	0.89**	6.31**	-4.33**	0.13	-3.64**	-3.53**	-1.04**	-5.68**	0.38**
$\mathrm{L}_{5} \times \mathrm{T}_{4}$	-4.07	-2.20*	1.81	0.43*	0.34**	0.33	-0.22	4.04**	-5.62**	-0.32	9.14**	-4.45**	-0.35	10.16**	0.14*
$\mathrm{L}_{6 \times 1} \mathrm{~T}_{1}$	4.25	2.59*	-3.47**	-1.49**	0.96**	-0.46	-0.24*	-4.57**	-1.49	2.99**	2.82**	-6.30**	2.63**	-16.57**	-0.32**
$\mathrm{L}_{6 \times} \mathrm{T}_{2}$	1.94	-1.56	1.97*	3.50**	0.67**	-0.90*	0.58**	4.85**	3.72**	-4.26**	-6.05**	0.21	-1.15**	0.85	0.41**
$\mathrm{L}_{6 \times \times} \mathrm{T}_{3}$	-14.13**	-1.06	0.91	-0.20	-0.64**	-0.80*	0.21	-2.13**	-1.67	3.46 **	6.15**	4.74**	-1.12**	3.35**	-0.16**
$\mathrm{L}_{6 \times \times} \mathrm{T}_{4}$	7.94	0.03	0.59	-1.81**	-0.99**	2.17**	-0.55**	1.85*	-0.56	-2.18**	$-2.91^{* *}$	1.35*	-0.38	12.37**	0.07
$\mathrm{L}_{7 \times} \times \mathrm{T}_{1}$	-5.83	4.52**	-2.08 *	-0.48**	0.16	-0.23	0.29*	-10.8**	-3.11**	1.48 *	3.27**	1.40*	-0.01	4.12**	-0.77**
$\mathrm{L}_{7 \times} \times \mathrm{T}_{2}$	4.19	1.11	1.74	1.03**	0.73**	1.69**	-0.19	8.24**	10.71**	0.74	-1.19	-4.24**	-1.64**	5.06**	0.91**
$\mathrm{L}_{7} \times \mathrm{T}_{3}$	5.42	-6.12**	-0.66	-0.99**	-0.25**	0.96*	-0.46**	1.13	-7.17**	-1.28 *	-1.86*	6.59**	1.99**	-10.10**	-0.18**
$\mathrm{L}_{7} \times \mathrm{T}_{4}$	-3.78	0.48	1.00	0.45*	-0.64**	-2.42**	0.36**	1.46	-0.43	-0.94	-0.22	-3.75**	-0.34	0.92	0.04
$\mathrm{L}_{8 \times} \mathrm{T}_{1}$	-1.24	-8.00**	3.45**	-0.50**	0.35**	-0.74	0.16	1.67*	-1.86	4.76 **	10.69**	-1.39*	-2.05**	3.32**	0.39**
$\mathrm{L}_{8 \times} \mathrm{T}_{2}$	-4.85	1.00	-0.39	-2.26**	0.58**	-1.10**	-0.11	4.86**	-0.27	0.55	4.82**	1.28*	3.03**	-8.37**	-0.24**
$\mathrm{L}_{8 \times} \mathrm{T}_{3}$	2.72	-2.46*	1.20	2.67**	-0.84**	0.10	-0.21	-0.97	-5.07**	-1.15 *	6.32**	-3.07**	-0.91 **	5.97**	$-0.54 * *$
$\mathrm{L}_{8 \times} \times \mathrm{T}_{4}$	3.38	9.46**	-4.26**	0.08	-0.09	1.74**	0.16	-6.66**	7.20**	-4.16 **	-0.45	3.18**	-0.07	-0.92	0.39**
$\mathrm{L}_{9 \times} \mathrm{T}_{1}$	-2.85	1.63	4.08**	0.03	-0.26**	-1.19**	0.44**	5.95**	-3.58**	-4.54**	2.34**	2.94**	1.05**	-11.79**	0.51**
$\mathrm{L}_{9} \times \mathrm{T}_{2}$	7.38	-0.74	-4.69**	-0.56**	0.01	-1.26**	0.00	9.17**	-2.48*	3.17**	-1.76*	-0.30	0.50 *	-5.28**	-0.08
$\mathrm{L}_{9 \times} \mathrm{T}_{3}$	-1.04	2.59*	1.11	0.65**	0.84**	0.69	-0.57**	1.06	4.18**	2.00 **	1.42	3.65**	0.36	-1.16	-0.27**
$\mathrm{L}_{9 \times} \mathrm{T}_{4}$	-3.49	-3.49**	-0.49	-0.12	-0.59**	1.76**	0.13	-6.60**	1.87	-0.63	-2.00*	-6.29**	-1.90**	18.23**	-0.16**
$\mathrm{L}_{10 \times} \times \mathrm{T}_{1}$	-2.13	-1.84	-4.09**	0.88**	0.18*	-0.01	0.25*	-3.63**	0.02	-2.55**	2.83**	-1.92**	-1.95**	26.14**	-0.45**
$\mathrm{L}_{10 \times} \mathrm{T}_{2}$	2.51	-1.56	0.58	0.48**	-0.25**	1.43**	0.30*	-7.73**	-3.89**	-0.38	-2.64**	4.04**	-0.35	-3.78**	0.24**
$\mathrm{L}_{10 \times} \mathrm{T}_{3}$	1.95	0.16	1.81	-0.57**	0.41**	-1.32**	0.10	5.97**	2.70*	0.12	-2.00*	-1.91**	0.75**	-12.77**	0.14*
$\mathrm{L}_{10 \mathrm{x}} \mathrm{T}_{4}$	-2.33	3.23**	1.70	-0.79**	-0.34**	-0.10	-0.65**	1.37	1.17	2.80 **	1.80*	-0.21	1.55**	-9.59**	0.08
SE	5.32	1.05	1.20	0.17	0.08	0.38	0.11	0.77	1.15	0.56	0.84	0.53	0.23	1.17	0.05

FPL - Fruit pedicel length (cm) FC - Fruit circumference (cm) CL - Calyx length (cm) PH - Plant height (cm)
DFF - Days to first flowering
NB/P - Number of branches per plant
FL \quad - Fruit length (cm)
*Significant at 5\% level, $\quad * *$ Significant at 1% level
weight; Prasath (1997) for ascorbic acid content; and, Jerard (1996) and Suneetha (2006) for fruit yield per plant.

General combining ability estimates are presented in Table 3. In the present study, the line L_{5} (Palamedu Local) was adjudged as the best general combiner, since, it expressed significant GCA effects for nine traits, viz., days to first flowering, number of branches per plant, fruit pedicel length, fruit circumference, number of fruits per plant, average fruit weight, shoot borer infestation, little leaf incidence and fruit yield per plant. This was followed by L_{4} (Alagarkovil Local) which showed good general combining ability for the traits days to first flowering, fruit pedicel length, number of fruits per plant, average fruit weight, fruit borer infestation, little leaf incidence, total phenol content and fruit yield per plant. Among the lines, Alavayal Local $\left(\mathrm{L}_{1}\right)$ and Sedapatty Local Green $\left(\mathrm{L}_{2}\right)$ were also good general combiners, because of having high GCA values for seven characters.

Among the testers, T_{1} (Annamalai) was adjudged as a good general combiner, as, it showed significantly favourable gca effect for days to first flowering, number of branches per plant, fruit length, fruit circumference, number of fruits per plant, fruit borer infestation, ascorbic acid content and fruit yield per plant. From the above information, it is inferred that Palamedu Local $\left(\mathrm{L}_{5}\right)$, Alagarkovil Local $\left(\mathrm{L}_{4}\right)$, Melur Local $\left(\mathrm{L}_{6}\right)$ and Annamalai $\left(\mathrm{T}_{1}\right)$, among parents, were found to be the best general combiners, since these expressed good GCA effects for a majority of the traits (including growth, yield and quality characters).

Estimates for specific combining ability are given in Table 3. Sprague and Tatum (1942) reported that specific combining ability was due to non-additive gene action. SCA effect of hybrids have been attributed to a combination of positive, favourable genes from different parents or due to presence of linkage in repulsion phase (Sarsar et al, 1986). Therefore, selection of hybrids based on SCA effects would excel in heterotic effect. In the present study, hybrid $\mathrm{L}_{3} \mathrm{XT}_{3}$ (Kariapatty Local x Punjab Sadabahar) excelled, with superior SCA effect for nine characters, viz., days to first flowering, number of fruits per plant, average fruit weight, shoot and fruit borer infestation, little leaf incidence, ascorbic acid content, total phenol content and fruit yield per plant.

The crosses, $L_{8} \times T_{1}$ and $L_{4} \times T_{1}$, were the next best specific combiners for eight traits each. These were followed by $\mathrm{L}_{6} \times \mathrm{T}_{2}, \mathrm{~L}_{10} \times \mathrm{T}_{3}, \mathrm{~L}_{7} \times \mathrm{T}_{3}$ and $\mathrm{L}_{7} \times \mathrm{T}_{2}$, which were identified
as specific combiners for seven traits each. In general, among the 40 hybrids studied, hybrids $L_{3} \times T_{3}$ (Kariapatty Local x Punjab Sadabahar), L_{8} x T_{1} (Nilakottai Local x Annamalai), $\mathrm{L}_{4} \times \mathrm{T}_{1}$ (Alagarkovil Local x Annamalai), $\mathrm{L}_{6} \mathrm{x}$ T_{2} (Melur Local x KKM 1), $\mathrm{L}_{7} \times \mathrm{T}_{3}$ (Keerikai Local x Punjab Sadabahar) and $\mathrm{L}_{7} \times \mathrm{T}_{2}$ (Keerikai Local x KKM 1) were good specific combiners for a majority of growth and yield attributing characters, including fruit yield.

REFERENCES

Bindu, Sharma, Pathania, N.K. and Gautham Vishal. 2004. Combining ability studies in brinjal (Solanum melongena L.). Himachal J. Agril. Res., 30:54-59
Dhillion, B.S. 1975. The application of partial diallel crosses in plant breeding - A review. Crop Improv., 2:17
Gravios, K.A. and McNew. R.W. 1993. Genetic relationships and selection for rice yield and yield components. Crop Sci., 33:249-252
Indiresh, K.M., Shivasankar, T. and Kulkarni, R.S. 2005. Gene action for yield and its components in brinjal (Solanum melongena L.). Mysore J. Agril. Sci., 39:50-56
Jerard, B.A. 1996. Studies on heterosis and combining ability in egg plant (Solanum melongena L.). M.Sc. (Hort.) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
Kempthorne, O. 1957. An Introduction to genetic statistics. John Wiley \& Sons Inc., New York, USA
Muthulakshmi, R. 2007. Heterosis and Line x Tester analysis of combining ability in brinjal (Solanum melongena L.). M.Sc. (Hort.) thesis, Agricultural College and Research Institute, Madurai, Tamil Nadu, India
Panse, V.G. 1942. Genetics of quantitative characters in relation to plant breeding. Indian J. Genet., 2:318327
Prabhu, M. 2005. Breeding for high yield with shoot and fruit borer (Leucinodes orbonalis Guen.) resistance in brinjal (Solanum melongena L.), Ph.D. (Hort.) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
Prakash, T. 2008. Heterosis and combining ability studies in brinjal (Solanum melongena L.). M.Sc. (Hort.) thesis, University of Agricultural Sciences, Dharwad, Karnataka, India
Prasath, D. 1997. Studies on per se performance, heterosis and combining ability in egg plant (Solanum melongena L.). M.Sc. (Hort.) thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Sarsar, S.M., Patil, B.A. and Bhatade, S.S. 1986. Heterosis and combining ability in upland cotton. Indian J. Agril. Sci., 56:567-573
Simmonds, N.W. 1979. Principles of crop improvement. Longman Group Ltd., London, pp. 110-116
Singh, S.N. and Harisingh. 1985. Note on the relationship between per se performance and general combining ability of parents in egg plant. Indian J. Agril. Sci., 52:614-615

Sprague, G.R. and Tatum, L.A. 1942. General vs Specific combining ability in single crosses of corn. J. Amer. Soc. Agron., 34:923-932
Suneetha, Y. 2006. Heterosis and association analysis for yield quality and physiological characters in late summer brinjal. J. Res. ANGRAU, 34:18-24
TNAU Crop Production Guide. 2005. Cultivation practices of brinjal. Pp. 46-47

[^0]: ** Significant at 1% level * Significant at 5% level

