

JOURNAL OF HORTICULTURAL SCIENCES

Volume 16

December 2021

Issue 2

Society for Promotion of Horticulture ICAR - Indian Institute of Horticultural Research, Bengaluru - 560 089

JOURNAL OF HORTICULTURAL SCIENCES

Volume 16	Issue 2	June 2	021
	C O N T E N T S		
In this Issue			i-ii
Review			
Phytoremediation of indoor plants beyond aesthetics Shalini Jhanji and U.K.Dhatt	r air pollutants: Harnessing the potential of	131-1	43
Research Articles			
Response of fruit yield and lemon [<i>Citrus limon</i> (L.) B Sheikh K.H.A., Singh B., Ha	quality to foliar application of micro-nutrients in surm.] cv. Assam lemon okip S.W., Shankar K., Debbarma R.	144-1	51
Studies on high density pla	inting and nutrient requirement of banana in	152-1	63
Debnath Sanjit Bauri F.K., S Bhalerao V.P., Baruah K., Ma	wain S., Patel A.N., Patel A.R., Shaikh N.B., anju P.R., Suma A., Menon R., Gutam S. and P. Patil		
Mineral nutrient compositi mango genotypes grown un Nimbolkar P.K., Kurian R.M D. Kalaivanan	on in leaf and root tissues of fifteen polyembryonic nder varying levels of salinity ., Varalakshmi L.R., Upreti K.K., Laxman R.H. and	164-1	76
Optimization of GA3 conce grape cv. Crimson Seedles Satisha J., Kumar Sampath P	entration for improved bunch and berry quality in s (<i>Vitis vinifera</i> L) P. and Upreti K.K.	177-1	84
RGAP molecular marker f ridge gourd [<i>Luffa acutang</i> Kaur M., Varalakshmi B., Ku Mahesha B. and Pitchaimuthu	For resistance against yellow mosaic disease in gula (L.) Roxb.] Imar M., Lakshmana Reddy D.C., I M.	185-1	92
Genetic divergence study i Nithinkumar K.R., Kumar J.S Ramachandra R.K., Prashan	n bitter gourd (<i>Momordica charantia</i> L.) S.A., Varalakshmi B, Mushrif S.K., ath S.J.	193-1	98
Combining ability studies	to develop superior hybrids in bell pepper	199-2	205
Varsha V., Smaranika Mishra Kattegoudar J. and Madhavi	, Lingaiah H.B., Venugopalan R., Rao K.V. Reddy K.		
SSR marker development i using transcriptome seque Gayathri M., Pitchaimuthu M	n <i>Abelmoschus esculentus</i> (L.) <i>Moench</i> ncing and genetic diversity studies I. and K.V. Ravishankar	206-2	214

Generation mean analysis of important yield traits in Bitter gourd (<i>Momordica charantia</i>)	215-221
Swamini Bhoi, Varalakshmi B., Rao E.S., Pitchaimuthu M. and Hima Bindu K.	
Influence of phenophase based irrigation and fertigation schedule on vegetative performance of chrysanthemum (<i>Dendranthema grandiflora</i> Tzelev.) var. Marigold Vijayakumar S., Sujatha A. Nair, Nair A.K., Laxman R.H. and Kalaivanan D.	222-233
Performance evaluation of double type tuberose IIHR-4 (IC-0633777) for flower yield, quality and biotic stress response Bharathi T.U., Meenakshi Srinivas, Umamaheswari R. and Sonavane, P.	234-240
Anti-fungal activity of <i>Trichoderma atroviride</i> against <i>Fusarium oxysporum</i> f. sp. <i>Lycopersici</i> causing wilt disease of tomato Yogalakshmi S., Thiruvudainambi S., Kalpana K., Thamizh Vendan R. and Oviya R.	241-250
Seed transmission of bean common mosaic virus-blackeye cowpea mosaic strain (BCMV-BlCM) threaten cowpea seed health in the Ashanti and Brong-Ahafo regions of Ghana	251-260
Adams F.K., Kumar P.L., Kwoseh C., Ogunsanya P., Akromah R. and Tetteh R.	
Effect of container size and types on the root phenotypic characters of <i>Capsicum</i> Raviteja M.S.V., Laxman R.H., Rashmi K., Kannan S., Namratha M.R. and Madhavi Reddy K.	261-270
Physio-morphological and mechanical properties of chillies for mechanical harvesting Yella Swami C., Senthil Kumaran G., Naik R.K., Reddy B.S. and Rathina Kumari A.C.	271-279
Assessment of soil and water quality status of rose growing areas of Rajasthan and Uttar Pradesh in India Varalakshmi LR., Tejaswini P., Rajendiran S. and K.K. Upreti	280-286
Qualitative and organoleptic evaluation of immature cashew kernels under storage Sharon Jacob and Sobhana A.	287-291
Physical quality of coffee bean (<i>Coffea arabica</i> L.) as affected by harvesting and drying methods Chala T. Lamessa K. and Jalata Z.	292-300
Vegetative vigour, yield and field tolerance to leaf rust in four F1 hybrids of coffee (Coffea arabica L.) in India Divya K. Das, Shivanna M.B. and Prakash N.S.	301-308
Limonene extraction from the zest of <i>Citrus sinensis</i> , <i>Citrus limon</i> , <i>Vitis vinifera</i> and evaluation of its antimicrobial activity Wani A.K., Singh R., Mir T.G. and Akhtar N.	309-314
Event Report National Horticultural Fair 2021 - A Success Story Dhananjaya M.V., Upreti K.K. and Dinesh M.R.	315-318
Subject index	319-321
Author index	322-323

Original Research Paper

Genetic divergence study in bitter gourd (Momordica charantia L.)

Nithinkumar K.R.¹, Kumar J.S.A.,², Varalakshmi B., Sadanand K.³, Mushrif S.K.⁴, Ramachandra R.K.⁵, and Prashanth S.J.⁶

¹Department of Vegetable Science, College of Horticulture, Kolar; ²Department of Vegetable Science, College of Horticulture, Mysuru; ³Division of Vegetable Crops, IIHR, Bengaluru; ⁴Department of Plant Pathology, College of Horticulture, Kolar; ⁵Department of BCI, College of Horticulture, Mysuru; ⁶Department of Vegetable Science, College of Horticulture, Bengaluru *Corresponding author Email : nithinkumarveg@gmail.com

ABSTRACT

The genetic divergence of forty bitter gourd genotypes was studied for sixteen different parameters by adopting Mahalanobis D² statistics using Tocher'smethod. The genotypes were grouped into six clusters irrespective of geographic divergence, indicating no parallelism between geographic and genetic diversity. A maximum of 32 genotypes entered in cluster I, followed by 4 genotypes in cluster II. The cluster III, IV, V and VI had single genotypes each. Maximum inter cluster distance observed between cluster II and cluster IV followed by cluster IV and cluster V and cluster II and V. This indicates, the genotypes belonging to cluster II (GYB-3-1-2, Bit-3-1-2-1, Bit-3-1-1-1, ArkaHarit), cluster IV (IC-68238) and cluster V (Bit-18-1-1) are more diverse and hence, hybridization between genotypes of respective cluster may improve the yield and quality of bitter gourd.

Keywords: Bitter gourd, clusters, D² analysis and genetic divergence

INTRODUCTION

Bitter gourd (*Momordica charantia* L.) is considered as a valuable vegetable crop for its nutritional and medicinal properties, but it is neglected in terms of genetic and molecular breeding. Even though bitter gourd has a relatively broad phenotypic species variation due to diverse morphological traits, the studies on multi variate analysis is limited (Singh *et al.*, 2013). Genetic divergence has been considered as an important factor in discriminating the genetically diverse parents for efficient and successful hybridization programme in order to get potential transgressive segregants and also provide new recombination of genes in the gene pool.

 D^2 statistics (Mahalanobis, 1936) is highly acceptable as it provides a measure of magnitude for divergence between two genotypes under comparison. Grouping of genotypes based on D^2 analysis will be useful in choosing suitable parental lines for hybridization. Therefore, the present study was conducted to identify suitable parents out of 40 bitter gourd genotypes to initiate a breeding programme by identifying the clusters that are diverse and contain genotypes with good performance.

MATERIALS AND METHODS

The present investigation was carried out at the Department of Vegetable Science, College of Horticulture, Yelachenahalli, Mysuru district, Karnataka during 2017-18. The experimental materials comprised of 40 indigenous genotypes of bitter gourd including some of the commercially released varieties from different institutes of India as listed in Table 1. The experiment was laid out in a randomized complete block design (RCBD) with two replications. The spacing used in this experiment was 120×90 cm. The recommended NPK fertilizer doses and cultural practices along with plant protection measures were followed to raise a commercial crop (Choudhary et al., 2003). Five randomly chosen plants in each replication of each entry were labelled and used for recording the observations. The mean of five plants was taken for analysis. Observations were recorded for 16 parameters like Vine length (m), Number of branches per vine, Duration of crop (days), Node at which first female flower appears, Days to first female flower opening, Days to 50 per cent flowering, Days to first fruit picking, Fruit length (cm), Fruit diameter (cm), Average fruit weight (g), Number of fruits per vine, Fruit yield per vine (kg), Fruit yield per hectare (t), Number of seeds per fruit, Flesh thickness (mm)

This is an open access article distributed under the terms of Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

and Ascorbic acid (mg/100g). The data were subjected to multivariate analysis of genetic divergence using

Mahalanobis D² statistic. Grouping of entries was done by Tocher's method (Rao, 1952).

SI. No.	Genotypes	Source	SI. No.	Genotypes	Source
1	Preethi	KAU, Vellanikkara	21	Bit-10-1-1	COH, Kolar, Karnataka
2	Yellapur Local-2	Yellapur, Karnataka	22	West Bengal Local-2	West Bengal
3	Bit-25-2-1	COH, Kolar, Karnataka	23	Kotla Local-1	Rajastan
4	Meghnaa-2	Masood seeds, Bangladesh	24	Bit-10-1-2	COH, Kolar, Karnataka
5	Jhalawar Local-3	Jalawar, Rajastan	25	Bit-5-1-4-1	COH, Kolar, Karnataka
6	CO-1	TNAU, Coimbatore	26	Contai Bolder	Barasat Agri Hybrid seeds, West Bengal
7	Bit-22-1-1-3	COH, Kolar, Karnataka	27	Bit-1-2-2-4	COH, Kolar, Karnataka
8	Bit-9-2-4-1	Maharashtra	28	Bit-18-1-1	Varanasi, Uttar pradesh
9	GYB-3-1-2	Tamil Nadu	29	Jhalawar Local-1	Jalawar, Rajastan
10	Bit-1-2-3	COH, Kolar, Karnataka	30	Bit-3-1-1-1	Tamil Nadu
11	Yellapur Local-1	Yellapur, Karnataka	31	GYB-5-1-5-2	COH, Kolar, Karnataka
12	Bit-37-2-1	COH, Kolar, Karnataka	32	Bit-22-1-1-1	COH, Kolar, Karnataka
13	DEB-505	Debgiri Pvt Ltd. Kolkatta	33	Bit-9-2-1-2	Maharashtra
14	Bit-3-1-2-1	Tamil Nadu	34	GYL-2	COH, Kolar, Karnataka
15	Bit-9-3-2-3	Maharashtra	35	GYB-2-2	COH, Kolar, Karnataka
16	Bit-5-1-2-1	COH, Kolar, Karnataka	36	Katahi	Hyderabad
17	West Bengal Local-1	West Bengal	37	Bit-35-1-1	Odisha
18	Jhalawar Local-2	Jalawar, Rajastan	38	Bit-31-2-2	COH, Kolar, Karnataka
19	Super Green	Super Seeds, Odissa	39	ArkaHarit	IIHR, Bengaluru
20	IC-68238	NBPGR, New Delhi	40	Bit-9-1-4-1	Maharashtra

Table 1. List of genotypes and their sources of collection

RESULTS AND DISCUSSION

The results from the analysis of variance for 16 characters indicated significantly high differences among 40 genotypes of bitter gourd under study. These 40 genotypes were grouped into six clusters. The distribution of genotypes into 6 clusters were presented in Table 2. Cluster I is the largest cluster having 32 genotypes followed by cluster II with four genotypes (GYB-3-1-2, Bit-3-1-2-1, Bit-3-1-1-1and ArkaHarit). Cluster III (Yellapur Local-2), cluster IV (IC-68238), cluster V (Bit-18-1-1) and cluster VI (Jhalawar Local-2) had one genotype each. The genotypes collected from different geographical regions were present in same clusters indicating that there was no association

between geographical distribution and genetic diversity as reported earlier by Bhagwat *et al.* (2013) in bitter gourd.

The intra and inter-cluster D^2 and D values among 6 clusters are furnished in the Table 3. and illustrated in Figure 1. Intra-cluster average D^2 values ranged from 0 to 104.02. Among the clusters, cluster II had the maximum intra-cluster distance (104.02) followed by cluster I (96.08). The clusters like III, IV, V and cluster VI had no inter cluster distance (zero) as they were represented by single genotypes. The maximum inter cluster D² value was found between cluster II and VI (1620.05) followed by cluster IV and VI (1262.95), cluster II and V (1098.44), cluster II and cluster III

Cluster	Number of genotypes	Genotypes included in the cluster
Ι	32	Preethi, Bit-25-2-1, Meghnaa-2, Jhalawar Local-3, CO1, Bit-22-1-1-3, Bit-9-2-4-1, Bit-1-2-3, YellapurLocal-1, Bit-37-2-1, DEB-505, Bit-9-3-2-3, Bit-5-1-2-1, West Bengal Local-1, Super Green, Bit-10-1-1, West Bengal Local-2, Kotla Local-1, Bit-10-1-2, Bit-5-1-4-1, Contai Bolder, Bit-1-2-2-4, Jhalawar Local-1, GYB-5-1-5-2, Bit-22-1-1-1, Bit-9-2-1-2, GYL-2, GYB-2-2, Katahi, Bit-35-1-1, Bit-31-2-2, Bit-9-1-4-1
II	4	GYB-3-1-2, Bit-3-1-2-1, Bit-3-1-1-1, ArkaHarit
III	1	YellapurLocal-2
IV	1	IC-68238
V	1	Bit-18-1-1
VI	1	Jhalawar Local-2

Table 2. Cluster	r composition	based	on D ²	statistics	in	bitter go	urd
------------------	---------------	-------	-------------------	------------	----	-----------	-----

Fable 3. Intra-cluster	(diagonal)	and inter-cluster	D ² and	D	values in	bitter	gourd	genotypes
------------------------	------------	-------------------	--------------------	---	-----------	--------	-------	-----------

	Ι	II	III	IV	V	VI
Ι	96.08 (9.80)	399.88 (19.20)	207.68 (14.41)	179.48 (13.34)	333.55 (18.26)	749.76 (27.38)
II		104.02 (10.12)	851.00 (29.17)	215.32 (14.67)	1098.44 (33.14)	1620.05 (40.25)
III			0.00(0.00)	539.69 (23.23)	103.32 (10.16)	369.75 (19.23)
IV				0.00 (0.00)	685.87 (26.19)	1262.95 (35.54)
V					0.00 (0.00)	168.13 (12.96)
VI						0.00 (0.00)

Figures in parenthesis denotes corresponding D values

Mahalanobis Euclidean Distance (Not to the scale)

Highest inter cluster distance was found in cluster II and VI, suggesting that hybridisation between the genotypes from these clusters may lead to high heterotic effects and better segregants (Rabbani *et al.*, 2012). Similarly, lowest inter cluster distance was observed in cluster III and V indicating that, genotypes exhibited higher genetic similarity (Tyagi *et al.*, 2017).

The Per cent contribution of sixteen characters towards total divergence in bitter gourd genotypes is shown in Table 4. Among all the characters, ascorbic acid contributed the maximum (37.31%) to the diversity by taking first rank in 291 times out of 780 combinations, followed by fruit length (15.64% with 122 times ranked first), fruit diameter (14.36% with 112 times ranked first), flesh thickness (11.92% with 93 times ranked first), number of seeds per fruit (9.49% with 74 times ranked first), days to first female flower opening (6.92% with 54 times ranked first), average fruit weight (1.28% with 10 times ranked first). While, there was little and negligible

Fig1. Intra-cluster and inter-cluster distance of bitter gourd genotypes (Trocher's method)

SI. No.	Characters	No. of times ranked first	Per cent germplasm contribution
1	Vine length (m)	4	0.51
2	Number of branches per vine	7	0.90
3	Duration of crop (days)	0	0.00
4	Node at which first female flower appears	1	0.13
5	Days to first female flower opening	54	6.92
6	Days to 50 per cent flowering	0	0.00
7	Days to first fruit picking	0	0.00
8	Fruit length (cm)	122	15.64
9	Fruit diameter (cm)	112	14.36
10	Average fruit weight (g)	10	1.28
11	Number of fruits per vine	6	0.77
12	Fruit yield per vine (kg)	6	0.77
13	Fruit yield per hectare (t)	0	0.00
14	Number of seeds per fruit	74	9.49
15	Flesh thickness (mm)	93	11.92
16	Ascorbic acid (mg/100g)	291	37.31
	Total	780	100.00

Table 4. Per cent contribution of sixteen characters towards total divergence in bitter gourd genotypes

contribution from number of branches per vine (0.90%), number of fruits per vine (0.77%), fruit yield per vine (0.77%), vine length (0.51%) and node at which first female flower appears (0.13%). Similar results were reported by Sidhu and Pathak, 2016 in bitter gourd. However, the duration of crop, days to 50 per cent flowering, days to first fruit picking and fruit yield per hectare had no contribution towards genetic divergence. Similar findings were also observed by Sundaram (2008) and Bhagwat et al. (2013). Apart from the divergence, the performance of genotypes and the character with maximum contribution towards divergence should also be given due consideration which appear as desirable for improvement of bitter gourd (Deepa and Mariyappan, 2013).

Cluster means of forty genotypes showed that mean values of cluster varied for all the sixteen characters studied. Cluster II, V an VI performed better for the biometric parameters studied. Among the clusters, cluster VI was generally poor and cluster I as well as cluster III were intermediate in number of fruits per vine and fruit yield (Table 5.). Cluster II with four genotypes showed early flowering, flowering at lower node and early fruit picking. Cluster II had smaller fruits but the number of fruits per vine was highest. Cluster VI with one genotype had longer fruits (30 cm), lower fruit diameter with high average fruit weight and higher ascorbic acid content (112.43). Higher number of branches, longer duration of crop and higher fruit yield was noticed in cluster V with one genotype (Bit-18-1-1). Highest vine length was observed in the cluster III (3.67 m). Cluster I with maximum number of genotypes showed intermediate performance for almost all the characters observed. The best cluster with yield and yield components studied was cluster V followed by cluster III and cluster I. By using these elite germplasms, there is a scope for varietal improvement in bitter gourd.

Inter-crossing of genotypes based on the mean performance for their characters would be effective for further crop improvement. To develop early varieties with small fruits and higher number of fruits per vine, cluster II would be effective as it showed early flowering. Selection from cluster I would be useful in breeding moderately early flowering, intermediate yield with longer crop duration. Cluster VI can be used in breeding for longer fruits with greater average fruit

SI. No.	Characters	Cluster I	Cluster II	Cluster III	Cluster IV	Cluster V	Cluster VI
1	Vine length (m)	2.71	1.91	3.67	1.84	2.58	2.33
2	Number of branches per vine	10.54	8.15	10.60	8.50	11.00	9.40
3	Duration of crop (days)	95.79	85.56	92.13	86.50	98.50	94.00
4	Node at which first female flower appears	15.39	11.33	15.50	14.10	14.30	16.50
5	Days to first female flower opening	41.46	35.69	37.60	42.55	41.35	44.50
6	Days to 50 per cent flowering	44.10	37.88	41.50	44.75	47.50	44.77
7	Days to first fruit picking	58.74	50.59	56.00	58.00	61.50	59.50
8	Fruit length (cm)	16.94	7.05	22.43	13.49	29.05	30.00
9	Fruit diameter (cm)	4.82	4.46	4.48	5.48	5.04	2.85
10	Average fruit weight (g)	84.68	36.91	85.60	79.00	88.70	91.85
11	Number of fruits per vine	12.87	14.76	13.10	12.10	14.60	8.85
12	Fruit yield per vine (kg)	1.11	0.53	1.14	0.96	1.28	0.69
13	Fruit yield per hectare (t)	10.24	4.92	10.55	8.87	11.82	6.38
14	Number of seeds per fruit	18.06	8.75	23.50	10.50	20.50	18.25
15	Flesh thickness (mm)	6.09	4.63	4.94	9.41	6.69	4.11
16	Ascorbic acid (mg/100g)	94.56	101.45	84.10	100.50	102.42	112.43

Table 5. The cluster mean of sixteen characters for six clusters in bitter gourd genotypes

weight and higher ascorbic acid content, as the demand is increasing in our country. To breed varieties with higher yield and late flowering, selection from cluster V would be useful.

CONCLUSION

Genetic divergence has been considered as an important factor in discriminating the genetically diverse parents for efficient and successful hybridization programme in order to get potential

3-1-1-1, ArkaHarit), cluster IV (IC-68238) and cluster V (Bit-18-1-1) are more diverse and hence, hybridization between genotypes of respective cluster may improve the yield and quality of bitter gourd.

REFERENCES

- Bhagwat, S., Anoop, K. S. and Shailesh, K., 2013, Genetic divergence studies in bitter gourd (Momordica charantia L.). Acad. J. Plant Sci., 6 (2): 89-91.
- Choudhary, B. R., Fageria, M. S. and Dhaka, R. S., 2003, Textbook on production technology of vegetables. Kalyani Publishers. pp. 183-201.
- Deepa, D. N. and Mariyappan, S., 2013, Studies on genetic diversity in Snake Gourd

(Trichosanthesanguina L.). African. J. Agric. Res., 8(42): 5221-5225.

Mahalanobis, P. C., 1936, On the generalised distance in statistics. Proc. Nat. Acad. Sci., (India): pp. 79-85.

transgressive segregants and also provide new recombination of genes in the gene pool.Maximum

inter cluster distance observed between cluster II and cluster IV followed by cluster IV and cluster V and

cluster II and V. This indicates, the genotypes

belonging tocluster II (GYB-3-1-2, Bit-3-1-2-1, Bit-

Rabbani, M. G., Naher, M. J. and Hoque, S., 2012, Variability, character association and diversity analysis of ridge gourd (Luffa acutangulaRoxb.) genotypes of Bangladesh. SAARC J. Agric., 10(2): 1-10.

- Rao, C. R., 1952, Advanced statistical methods in biometrical research. John Wiley and Sons, Inc. New York. p. 390
- Sidhu, G. K., Pathak, M., 2016, Genetic diversity analysis in bitter gourd (*Momordica charantia*L.) using morphological traits. Int. J. Agric. Innov. Res.
- Singh, B., Singh, A. K. and Kumar, S., 2013, Genetic divergence studies in bitter gourd

(Momordica charantia L.).Acad. J. Plant Sci. 6:89-91.

- Sundaram, V., 2008, Genetic diversity studies for parental selection in bitter gourd (*Momordica charantia* L.). *Asian J. Hort.*, **3(2):** 333-335.
- Tyagi, N., Singh, V. B. and Tripathi, V. 2017, Studies on genetic divergence in bitter gourd (*Momordica charantia* L.). *Indian J. Ecol.* 2017(44): 607-609.

(Received on 07.07.2021, Revised on 27.11.2021 and Accepted on 06.01.2022)