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Abstract 

Supracrustal rocks (mafics and ultramafics) occurs along with banded iron formation, and felsic volcanics around Babina, 
Dhaura, and Mauranipur linear east west trends in central part of the Bundelkhand Craton represent Archean crust. The mafic 
and ultramafic rocks geochemically classified into Komatiite and Basaltic Komatiite and have high Fe Tholeiitic in composition 
which may relate with the primitive mantle. The major and trace element geochemistry of mafic and ultramafic rocks 
correspond to hydrated mantle with wedge tectonic sources and ocean ridge geological characteristics. 
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1. Introduction  

Archean cratons of the world have become the nerve centers for study to decode the earlier crustal history of 
earth. The formation of supracrustal rocks or first landmass is in fact an irreversible process in the geological 
history of earth, which led the processes of initiation of stabilization, continental growth, micro-continent, and 
supracontinental growth (Pearce and Peate, 1995; Fitton et al., 2003; Naqvi, 2005; Condie, 2014, 2015). The 
Archean
from the island arc and collisional settings of the Archean to the lithospheric extension and global continental 
rifting in the early Paleoproterozoic (Bogina et al., 2015). The Indian shield comprises two major Northern 
(Bundelkhand, Aravalli carton) and Southern (Dharwar, Bastar, Singhbhum Craton) Indian crustal blocks 
separated along the E W trending Son Narmada lineament known as Central Indian Tectonic Zone (Naqvi, 2005; 
Ramakrishnan and Vaidyanadhan, 2010; Slabunov and Singh, 2018). Mostly the central part of each craton 
consisting of TTG gneisses and granitoids, commonly associated with sequences of meta-sedimentaries, meta-
volcanics and unstratified ultramafic and mafic volcanic rocks (Naqvi, 2005; Mohan et al., 2013; Jayananda et al., 
2015).  

The Bundelkhand Craton begin with the ca. 3.55 Ga crustal component growth signatures around the Babina 
and Mauranipur areas, as preserve in the form of TTG gneissic rocks (Sarkar et al., 1996; Mondal et al., 2002; 
Kaur et al., 2014; Singh, 2015; Saha et al., 2016; Singh et al., 2019a). The ca. 3.4 Ga ancient basaltic rocks are 
mostly exposed contemporaneous with TTG in central part of the craton (Singh et al., 2018, 2019b). The mafics 
and ultramafic rocks are widely exposed around Baragaon, Dhaura, Babina villages. Singh and Slabunov (2015a) 
suggest two distinct greenstone complex occur in the craton i.e. (i) Central Bundelkhand (Babina; Mauranipur 
belts) greenstone and (ii) Southern Bundelkhand (Girar) schist belts. Singh (2005, 2015) has carried out detailed 
study on geology and structure of Babina Mauranipur areas and in present paper authors using petrological and 
geochemical data to determine tectonic settings of these Archean basaltic rocks of the central Bundelkhand 
Craton.  

2. Geological setting of Bundelkhand Craton 

represents a semicircular outcrop, which is overlain by low grade metamorphic rocks of the Bijawar Group 
(Paleoproterozoic) to the south, southeast, and Vindhyan Supergroup (Mesoproterozoic to Neoproterozoic) to 
the southeast, south, southwest, and west (Basu, 1986; Sarkar et al., 1996; Singh et al., 2007; Ramakrishnan and 
Vaidyanadhan, 2010; Fig. 1). The major part of the craton comprises the different phases of Archean magmatism, 
low-grade metamorphism, Paleoproterozoic mafic dykes and quartz veins. Singh (2005, 2015) mapped the older 
crustal components from the central part of the Bundelkhand Craton which are scattered in the E W shear zones 
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of 3 5 km width (Fig. 2). Metabasics, banded iron formation (BIF) and felsic volcanic rocks exposed from 3 km 
south of the Babina town to Mauranipur in the east consider as a part of the Central Bundelkhand greenstone 
complex (Singh and Slabunov, 2015a, 2015b; Slabunov and Singh, 2018; Fig. 1). The doleritic dykes are usually 
dark greyish green in colour and have NNW SSE to NW SE trend (Basu, 1986; Sharma and Rahman, 2000; 
Pradhan et al., 2012). These mafic dykes are subalkaline to tholeiitic in composition and display continental 
affinity (Pati et al., 2008). A general characteristic of highly jointed quartz veins occur mostly about NE  SW to 
NNE SSW trend.  

The supracrustal rock comprises mafic ultramafic rocks, banded iron formations, felsic volcanics occur along 
E W linear trends, generally dipping towards north. Fragments of low-grade metamorphosed mafic ultramafic 
rocks are occur nearby boundary between banded iron formation and TTG gneisses, at the south of Babina area 
(near Pura village), Mauranipur and Dhaura villages (Figs. 1 and 2). These rocks are intruded by K-rich granitoids 
(~2500 Ma) at Babina, Dhaura and Rash Pahari near Mauranipur villages. The pegmatite veins are also observed 
at many places. 

 
Fig. 1. Geological map of the Bundelkhand Craton (after Ramakrishnan and Vaidyanadhan, 2010 and Slabunov and Singh, 

2018), inset map shows the different cratons of Indian shield. 
 

 
Fig. 2. Geological map of the Babina  Gora traverse, Central Bundelkhand greenstone complex (after Singh and Slabunov, 

2015a). 
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The small body of mafic and ultramafic rocks, exposed along with BIF near village Kuraicha in Mauranipur 
greenstone belt (Fig. 3a). Basic ultrabasic rocks also exist in Babina greenstone belt (Fig. 3b) which is resembled 
with Mauranipur greenstone belt. Exposures of felsic volcanics are observed at north of Babina (Fig. 3c), Paponi, 
and Dhaura areas. Intrusions of granite are noticed in the felsic volcanics which indicate their younger age. TTG
gneisses are exposed at Babina, Dhaura, Gora and Mauranipur areas. Field relation between basaltic, banded iron 
formation and TTG gneisses rocks shows its tectonic colleagues (Fig. 3b; Singh and Slabunov, 2015a). The 
voluminous pink granites are mostly inhabit of the craton during Neoarchean period in multiple phases (Mondal 
et al., 2002; Verma et al., 2016; Kaur et al., 2016; Joshi et al., 2017; Mishra et al., 2018; Singh et al., 2019c). 
Slabunov and Singh (2018) noted that Meso Neoarchean felsic rocks formed in a subduction geodynamic setting 
from the central Bundelkhand greenstone complex. 

3. Geochemistry and Tectonic setting 

Fresh samples of ultramafics and mafics from central Bundelkhand region have been collected and pulverized 
in agate ball mill for geochemistry. The samples have analysed at the geochemical lab of NGRI, Hyderabad for 
major, trace and REE using Inductively coupled Plazma Mass Spectrometry (ICP-MS) while XRF method was used 
at Wadia Institute of Himalayan Geology, Dehradun. The whole rock major and trace element compositions of 
the analysed samples are given in Table 1. The different variation diagrams and discrimination diagrams have 
been obtained using the free access GCDkit 3.00 computer program.  

The ultramafic and mafic rocks are classified as subalkaline/tholeiitic picritic, basalt to basaltic andesite with 
36.56 55.15 SiO2 wt. % (Fig. 4a). The rocks display a tholeiitic trend on the AFM diagram (Irvine and Baragar, 
1971) (Fig. 4b). In the Jensen (1976) diagram, most rock points are into komatiite, komatiitic basalt, and high Fe 
tholeiite fields (Fig. 4c). These rocks vary considerably in MgO (5.66 28.24 wt. %), TiO2 (0.19 2.52 wt. %), Ni (31
975 ppm) and Cr (67 3121 ppm) concentrations (Table 1). Al2O3 concentrations range from 6.58 to 14.25 Wt. %. 
The Fe2O3 in these rocks ranges from 11.89 to 24.3 wt. % which is to some extent high value for tholeiitic magma. 
Geochemical compositions are plotted on several variation and tectonic diagrams against MgO vs oxides (wt. %; 
TiO2 and P2O5) and trace elements (ppm; Rb, Sr, Y, and Zr) to examine crystallization behavior, which show 
decreasing trend with increasing MgO contents (Fig. 5), suggesting that these were more or less incompatible 
with any fractionating phases. 

 
 
 

 

Fig.3. (a) The mafic and ultramafic rocks exposed at the base of BIF near village Kuraicha, Kamla Sagar dam in Mauranipur 
greenstone belt (size of hammer 15 inch); (b) the underlain basic rocks show tectonic contact with BIF exposed in Babina 
greenstone belt; (c) Felsic volacnics exposed at 3 km north of Babina with granite intrusion (size of coin 2.5 cm diameter). 
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Fig. 4. Classification diagrams of mafic ultramafic rocks (a) SiO2  Na2O + K2O (Le Bas et al. 1986), (b) AFM (Irvine and Baragar, 
1971), (c) cation diagram FeO*+TiO2  Al2O3  MgO (Jensen, 1976). 

 

 

Table 1. Major (wt. %) and trace (ppm) element analytical data of Mafic and Ultramafic rocks from the central Bundelkhand 

greenstone complex. 

Sample O14 O16 P57 S2a S3 S4a D2b D13 37 38 J3a 

Locality Kuraicha Kuraicha Dhaura Dhaura Dhaura Dhaura Dhaura Dhaura Babina Babina Babina 

SiO2 44.23 36.56 42.4 48.06 49.58 55.15 51.31 50.92 49.72 49.18 47.81 
TiO2 0.19 1.56 2.52 0.51 2.01 2.22 0.79 1.53 1.03 1.36 0.61 
Al2O3 9.15 10.37 11.56 6.58 11.53 13.07 9.61 14.25 11.72 10.87 10.86 
Fe2O3 11.89 24.3 23.5 12.51 17.76 12.28 14.22 14.98 16.11 19.98 13.63 
MnO 0.22 0.35 0.19 0.27 0.23 0.18 0.17 0.23 0.24 0.28 0.24 
MgO 28.24 14.99 11.55 21.29 6.91 5.66 9.62 6.9 7.74 6.26 12.21 
CaO 6.35 4.7 1.22 11.11 9.55 6.75 13.95 8.77 9.04 9.85 10.94 
Na2O 0.33 0.02 0.95 0.42 1.6 2.82 0.06 2.6 2.48 1.72 1.44 
K2O 0.06 0.03 0.47 0.1 0.27 1.48 1 1.61 0.62 0.44 1 
P2O5 0.04 0.21 0.13 0.09 0.24 0.35 0.11 0.17 0.11 0.14 0.07 
Cu 85 31 47  28 175 39 20   99 
Zn 120 131 101  83 105 72 130   131 
Co 59 75 60  51 59 73 80   78 
Ni 900 118 51 975 75 31 69 93 63 34 255 
Ga 15.9 16.7 12.1  20.5 17.5 7.4 26.9   8.7 
Rb 2.7 3.5 13 5.8 18 81 34.9 48.2 42.5 8.1 61.3 
Ba 129 68 44  492 135 45 102   114 
Sr 12 299 9 68 140 208 174 163 144 106 82 
Y 23.7 30.5 16.1  21.7 25.4 9.7 34.6   14 
Zr 7 808 199 30 166 277 77 110 89 102 35 
Nb 1 67.3 7 2.7 11 18 4.1 7 4.7 5 2.8 
Th 1.9 5.8 2.5  2 0.5 1.6 49.2   3.3 
Sc 51 60 45  58 43 40 36   24 
Pb 11.7 10 8  9.8 2.8 14.6 27.5   19.1 
U 1.4 0.3 1.8  1.1 1.4 0.3 1.9   0.5 
Cr 67 105 908  370 170 3121 743   2441 
Nb/Th 0.53 11.60 2.8  5.5 36 2.56 0.14   0.85 
Zr/Nb 7 12.01 28.43 11.11 15.09 15.39 18.78 15.72 18.94 20.4 12.5 
Nb/Y 0.04 2.21 0.44  0.51 0.71 0.42 0.20   0.2 
Zr/Y 0.30 26.49 12.36  7.65 10.91 7.94 3.18   2.5 

The three fields of mantle domains i.e. enriched mantle (EM), depleted mantle (DM), and hydrated mantle 
(HM) are define using Nb/Th and Zr/Nb ratio discrimination plot (Condie, 2003, 2005, 2015). The ratios of Nb/Th 
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is less than 8 and with variable Zr/Nb ratio, show the Archean basalts mostly falls under hydrated mantle domain 
(Condie, 2015). The Zr/Nb ratio is greater than 10 and Nb/Th less than 10 indicate arc setting (Condie, 2015). The 
samples from the central Bundelkhand greenstone belt plotted on diagram which show mostly hydrated mantle 
field and under arc setting conditions (Fig. 6). The sample no O16 which have 11.6 Nb/Th value likely consider an 
enriched mantle source (Condie, 2015). The sample no S4a have very high Nb/Th value (36) due to less value of 
Th noticed in specimen may not provide convincing interpretation. 

Fitton et al. (2003) describe the Nb/Y versus Zr/Y discrimination diagram which distinguish NMORB and 
Iceland basalts on Nb incompatible element. The lower limit of Iceland data array as reference line defined a 

 The mafic and ultramafic rocks from the central 
Bundelkhand greenstone complex plotted on Fitton et al. (2003) discriminant diagram which falls mostly in the 
vicinity of Nb/Zr=0.06 line with OIB field and some samples falls in Iceland basaltic type (Fig. 7). 

The compositions of mafics and ultramafics rocks are associated to arc type tectonic setting for the 
magmatism. Singh et al. (2019b) suggest that the mafic-ultramafic rocks from central Bundelkhand greenstone 
complex have been interpreted to be derived from oceanic crust in a subduction-related setting with depleted 
mantle composition. Similar rocks are also reported by Malviya et al. (2006) from Mauranipur area and stated 
that komatiite basalt is nearly constant along the olivine fractional crystallization trend but enriched LREE and 
LILE as modern boninite formed at a plate convergent margin. 

  
 

 
 

Fig. 5. Geochemical variation diagrams between MgO (wt%) and minor oxides (TiO2 and P2O5; wt%) and trace elements (Rb, Sr, 
Y, and Zr; in ppm). 
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Fig. 6. Discrimination diagrams for distinguishing tectonic setting using Nb/Th and Zr/Nb ratios (Condie, 2015). 
 
 
 

 
 

Fig. 7. Zr/Y versus Nb/Y discrimination diagram (after Fitton et al., 2003); NMORB: normal mid-ocean ridge basalt, OIB: ocean-
island basalt. 

 

4. Discussion and Conclusions 

The supracrustal rocks of Babina and Mauranipur consist of low K Tholeiitic basalt, basaltic Komatiite, 
volcanosediment and BIF followed by andesite to rhyodacite volcanics which are similar to those reported from 
various Archean greenstones (Paris, 1987; Kusky et al., 2001; Polat et al., 2003; Manikyamba et al., 2005). Condie 
(2015) discussed that Nb/Th and Zr/Nb incompatible element ratios are useful to illustrate their tectonic setting 
where the ratio of Nb/Th is less than 8 and with variable Zr/Nb ratio, falls under hydrated mantle domain mainly 
of Archean oceanic basalts. Several hypotheses have been discussed as accretions of oceanic terrain form by 
plume impact explain the unusual high MgO content of Komatiite (Hertzberg, 1995; Xie et al., 1995; Arndt et al., 
1997) causes the large degree of melting and the pyrope bearing peridotite source material is usually considered 
for the source of Komatiite magma. The accretion of oceanic volcanic arc may explain a geochemical similarity 
between Komatiite and modern arc related volcanic for supracrustal rocks of the central Bundelkhand region 
(Malviya et al. 2006). 

The discussions of occurrences of metabasic and ultrabasic rocks and generation of various type of parent 
(Basaltic/Komatiitic) magma reveal related to different tectonic environment even in smaller tectonic provinces 
too (Bose, 1997; Barley et al., 2000; Massaki et al., 2001; Svetov et al., 2001; Shimizu et al., 2005; Verma et al., 
2015). Fitton et al. (2003) provides a useful discriminant logarithmic plot of Nb/Y versus Zr/Y between Icelandic 
basalt and NMORB (i.e. plume and nonplume basalt). The Nb/Y versus Zr/Y plotted mafics and ultra mafics rocks 
from central part of the Bundelkhand Craton show mostly OIB type plume basalt (Fig. 7). The initial Komatiite 
composition of magma altered to Komatiitic basalt and Tholeiitic compositions, either due to fractionation or 
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contamination or metasomatic activities in the area. Geochemically the mafic and ultramafic rocks are very 
similar to the Komatiitic and Komatiite basalts of greenstone belts.  

Singh and Slabunov (2015a) estimated as Paleo Neoarchean time for the formation of supracrustal metabasic 
rocks from central Bundelkhand greenstone complex. The ultramafic and mafic sequences in Babina and 
Mauranipur greenstone belt are related to arc type subduction related magmatism (Malviya et al., 2006; Singh, 
2015, Condie, 2015). Singh et al. (2018, 2019b) stated that εNdt value of +2.0 to +5.6 for the basalts from Babina 
greenstone belt indicate depleted mantle source at ca.3.4 Ga.  

Thus, the geochemical characteristics conclude that the protolith of supracrustal rocks of the central 
Bundelkhand greenstone complex be produced in hydrated mantle field with arc tectonic setting in Archean 
time. The Komatiitic Tholeiitic association of greenstone formed in narrow belt along the Babina Mauranipur 
greenstone belt.  
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