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Abstract 

It is well understood that with  a large number of data, an excellent interpretation of the subsurface condition can be produced, and also our 

understandings of the subsurface conditions can be improved significantly. However, having abundant subsurface geological and petrophysical 

data sometimes may not be possible, mainly due to budget issues. This situation can generate issues during hydrocarbon exploration and/or 
development activities.  

In this paper, the authors tried to apply artificial intelligence (AI) techniques to estimate outcomes values of particular wireline log data, using 

available petrophysic data. Two types of AI were selected and these are artificial neural network (ANN), and multiple linear regression (MLR). 
This research aims to advance our understanding of AI and its application in geology. There are three objectives of this study: (1) to estimate sonic 

log (DT) and density log (RhoB) using different types of AI (ANN and MLR); (2) to assess the best AI technique that can be used to estimate 

certain wireline log data; and (3) to compare the estimated wireline log values with the real, recorded values from the subsurface. 
Findings from this study show that ANN consistently provided a better accuracy percentage compared to MLR when estimating density log 

(RhoB). While using different set of data and technique, estimation of sonic log (DT) produced different accuracy level. Moreover, crossplot 

validation of the results show that the results from ANN analysis produced higher trendline reliability (R2) and correlation coefficient (R) than the 
results from MLR analysis. Comparison of the estimated RhoB and DT log data with the original recorded data shows minor mismatch. This is 

evident that AI technique can be a reliable solution to estimate particular outcomes of wireline log data, due to limited availability of the original 

recorded subsurface petrophysic data. It is expected that these findings would provide new insights into the application of AI in geology, and 
encourage the readers to explore and expand the many possibilities of the application of AI in geology. 
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1. Introduction  

A successful oil and gas exploration, production, and 

development activities may rely on the availability of 

subsurface data (e.g. petrophysics data, seismic data, among 

others) and an excellent subsurface interpretation, besides the 

presence of a working petroleum system. Having a significant 

number of subsurface data is important in order to have a better 

insights and understanding of the source rocks, reservoirs, and 

cap rocks, to avoid failures in the exploration and/or 

development activities. Petrophysics data, which are a record of 

subsurface rock’s petrophysical properties are considered as an 

important data needed to gain insights into the subsurface 

(Cannon, 2016). Due to budget limitation, however, many oil 

and gas companies sometimes decided not to record a complete, 

full set of petrophysics/wireline log data during the exploration 

and/or development stage. A limited type and number of 

wireline log data may affect the interpretation of the subsurface 

rocks and conditions, and could cost a significant lost to the oil 

and gas companies.  

Artificial intelligence (AI) may provide a solution to the 

limited subsurface wireline log data. This technique can 

estimate values of certain petrophysical properties using 

available dataset, either from the same well, or from the vicinity 

wells (Lv et al., 2021). The application of AI in geology is still 

limited, with a few authors have successfully applied this 

technique for various geological purposes (e.g. Tariq et al., 

2019; Lv et al., 2021; Pang et al., 2021; Zheng et al., 2021). 

This relatively new technique can help in providing estimated 

values for certain type of wireline log data, and hence contribute 

to a better subsurface interpretation, and a successful 

hydrocarbon exploration, production, and development 

activities.  

AI has been successfully applied to the field of geology for 

various purposes. AI can help denoise seismic data in a 

supervised fashion (Birnie et al., 2021), to determine reservoir 

rock properties (Cuddy, 2021), to optimise drilling operation, 

and to improve hydrocarbon recovery (Solanki et al., 2022), and 

for mineral prospectivity mapping (Sun et al., 2019). Moreover, 

AI can also be used to estimate elastic properties of rock for 

geo-engineering purposes (Tariq et al., 2019), and to predict 

tunnel geology, its construction time and costs (Mahmoodzadeh 

et al., 2020). There are many other applications of AI in geology 

that are not possible to be mentioned in this paper/section.  A 

better understanding of this techni-que may also unlock the 

application of this method to provide solution to many other 

geology-related problems. 
This paper aims to better understand the application of AI 

in geology. There are three objectives of this study: (1) to 

estimate sonic log (DT) and density log (RhoB) using different 

types of AI (artificial neural network (ANN) and multiple linear 

regression (MLR); (2) to assess the best AI technique that can 

be used to estimate certain wireline log data; and (3) to compare 

the estimated wireline log values with the real, recorded values 
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from the subsurface. It is expected that the results from this 

study would improve our understanding of the AI techniques, 

its application in petrophysical analysis, and how this AI 

technique could help and assist geoscientists in analysing and 

interpreting subsurface conditions. 

2. Data and methods 

The data used in this study are from three wells located 

onshore of the northern Perth Basin, Western Australia. 

Original well’s name have been changed, due to confidentiality 

issues, and these wells were renamed to Well-A, Well-B, and 

Well-C. These studied wells are situated close to each other, 

within the radius of 10 km. Wireline logging data from Well-A 

and Well-B include neutron porosity log (NPHI), gamma ray 

log (GR), density log (RhoB), and sonic log (DT). While data 

from Well-C include neutron porosity log (NPHI) and gamma 

ray log (GR). This study decided to estimate RhoB and DT 

using AI techniques, due to the importance of these logs to 

support the interpretation of the subsurface, and because Well-

C does not have these two logs. All the aforementioned wireline 

logging data used in this study are the data of the Late Permian 

Beekeeper Formation, a proven mixed carbonate-siliciclastic 

reservoir in the northern Perth Basin, Western Australia 

(Crostella, 1995; Mory and Iasky, 1996; Norvick, 2004; 

Thomas, 2014). 

 

Fig 1. Workflow used in this study to estimate RhoB and DT from the 

available dataset. 

Two types of AI techniques were used to achieve the aim 

and objectives of this  study, which are artificial neural network 

(ANN), and multiple linear regression (MLR). ANN and MLR 

techniques were selected due to their excellent ability to 

estimate certain outcome values by relying on the input data 

(multiple type of data), with high level accuracy.  Processing of 

the data using these techniques were conducted using SPSS-

IBM software. Workflow of how these methods used for this 

study is shown in fig.1. Visualisation of the data and results of 

this study were carried out with the help of Microsoft Excel and 

Adobe Illustrator. 

ANN is an AI method that tries to mimic how human brain 

analyses and processes data (Gurney, 2004). This method 

builds several processing units based on interconnected 

connections and consists of an arbitrary number of cells or 

nodes or units or neurons that connect the input set to the output 

(Dastres and Soori, 2021). ANN acquires the knowledge of the 

model, and discover the structure of the data through training, 

and then apply it to unknown data for the purpose of 

classification, prediction, time series analysis, etc (Wesolowski 

and Suchacz, 2012). ANN is better than traditional computers 

in processing the data because it can adapt to new environments 

by learning, can process fuzzy (imprecise) data, can work with 

noisy or erroneous data, and can perform classification tasks 

very quickly (Buscema, 1998). 

 MLR is a statistical technique that uses several explanatory 

variables to predict the outcome of a response variable (Uyanık 

and Güler, 2013). MLR technique uses correlations between 

variables (this study: input well log data) to explain variance in 

outcome variables and predict specific outcome values (Abbott, 

2017). This MLR technique allows us to investigate how a set 

of explanatory variables is associated with a dependent variable 

of interest, but does not allow us to make causal inferences 

(Tranmer and Elliot, 2008). 

3. Geological settings  

The Perth Basin is an elongate, north-south trending trough 

underlying approximately 100,000 square kilometres of the 

Western Australian margin between Geraldton and Augusta 

(Fig.2). Slightly more than half the basin lies offshore in water 

depths of up to 1,000 m (Mory and Iasky, 1996). The Perth 

Basin consists of a series of northerly striking sub-basins, 

troughs and uplifts, and covers an area of ca. 45,000 km2 

onshore and 55,000 km2 offshore (Song and Cawood, 2000). To 

the north, the basin is bounded by the Northampton block and 

the eastern margin of the Perth Basin is defined by the Darling 

Fault (Thomas, 2014). To the south, the Harvey Ridge, another 

shallow basement feature, extends obliquely northwest from the 

Darling Fault and separates the Dandaragan Trough from the 

Bunbury Trough, and Westward, sediments thicken into the 

Vlaming Sub-basin (Cadman et al., 1994). It is possible that a 

northwest extension of the Precambrian Leeuwin Block and a 

fault system extending southwest from the Edward's Island 

Block, merge to form the western boundary of the Vlaming 

Sub-basin (Cadman et al., 1994).  

Strata within the Perth basin range mainly from Permian to 

Cretaceous in age and locally reach up to 15,000 m in thickness 

in major depocentres like the Dandaragan Trough (Song and 

Cawood, 2000). Basement of the Perth basin consists of 

Archaean and Proterozoic blocks, overlain by an Early 

Paleozoic sequence (Tumblagooda Sandstone), recognised in 

the northern part of the basin and probably coincided with local 

block faulting (Song and Cawood, 2000; Song and Cawood, 

2010). 

The Perth Basin developed through the interplay of phases 

of extension and transtension, resulting in a complex history of 

faulting and synsedimentary fault block movement (Mory and 

Iasky, 1996; Norvick, 2004; Thomas, 2014). Two main rifting 

phases in the Permian and Jurassic to earliest Cretaceous have 

been recognised in both offshore and onshore (Mory and Iasky, 

1996; Song and Cawood, 2000). The younger event 

corresponds to final rifting and breakup of Gondwana 

lithosphere between Australia and Greater India and, entails 
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dextral strike–slip deformation and basin inversion as well as 

margin orthogonal extension (Norvick, 2004; Thomas, 2014; 

Geoscience-Australia, 2020). 

 

Fig 2. The Perth Basin is situated in the Western Australia, with more 
than half the basin lies offshore  (Modified from Sharifzadeh and 

Mathew, 2011). 

Most hydrocarbon accumulations in the Perth Basin are in 

structures associated to strike–slip deformation, although 

rollover anticlines have also proved as successful exploration 

sites (Crostella, 1995). Basement structures have been 

reactivated during basin formation and control the linear, north-

striking structural grain of the basin (Song and Cawood, 2000). 

The basin is compartmentalised by a series of northwest-

striking transfer faults which formed during break-up (e.g. 

Abrolhos and Cervantes transfer zones), but which were 

probably localised along pre-existing basement structures 

(Mory and Iasky, 1996). 

4. Results 

The application of AI techniques to estimate density log 

(RhoB) and sonic log (DT) using input data of neutron porosity 

log (NPHI), and gamma ray log (GR) as the independent 

variables/covariates yielded excellent results (Fig.3, and 4), 

with average accuracy of >95% (table 1), and crossplot 

validation showing trendline reliability (R2) and correlation 

coeffcient (R) values of more than 0.6 (Fig.5, and 6).  The 

accuracy percentage of the results of each sample data was 

calculated using the ABS function in Microsoft Excel, while R 

was calculated using the CORREL function.  

Findings of this study consistently show that ANN 

produced better results compared to MLR when estimating 

RhoB (table 1, Fig.5, and 6), either using the input data from 

Well-A or Well-B. This suggests that ANN is more reliable 

when used to estimated RhoB. The accuracy of the estimated 

RhoB values is ranging between 74.9%-100%, with the average 

accuracy value between 97.98%-98.87% (table 1). In Well-A, 

the average accuracy of RhoB using ANN is 98.47%, slightly 

higher than the 97.98% accuracy of MLR (table 1). Moreover, 

the average accuracy of RhoB in Well-B using ANN, which is 

98.87%, is also slightly higher compared to 98.85% of MLR 

(table 1). 

The accuracy for the estimated DT values is  not consistent, 

as different dataset and AI techniques produced different 

accuracy level (table 1). Accuracy for estimated DT from Well-

A is ranging between  78.18%-99.99%, with average value 

ranging between 96.03%-96.08% (table 1). These results from 

Well-A show that MLR is a better choice when estimating DT 

values. However, results from Well-B show that ANN 

produced a better results and accuracy compared to MLR when 

estimating DT values. The accuracy of the estimated DT value 

from Well-B is   ranging between 79.29%-99.99%, with the 

average value ranging between 96.88%-96.98% (table 1).   

Crossplots analysis between the recorded DT and RhoB and 

the estimated DT and RhoB, from both Well-A, and Well-B 

were conducted to validate the application and results of AI 

methods (Fig.5, and 6). The results show that the R2 (trendline 

reliability) and R (correlation coefficient) values of the studied 

data are more than 0.6 (except Fig.5.D), and these are 

considered as good-excellent results (Fig.5, and 6). The nearer 

R2, and R are to 1, the better the trendline fits the data/better 

correlation between the data. Moreover, results from crossplot 

validation show that ANN analysis consistently produced 

higher R2 and R, compared to MLR, either in Well-A (Fig.5) or 

Well-B (Fig.6). This is suggestive that ANN analysis is better 

than MLR analysis in estimating DT and RhoB. These good-

excellent crossplots results validate that the results from AI 

analysis are reliable and acceptable.  

Training and testing of the data from Well-A and Well-B 

showed high level accuracy results, as has been explained in the 

earlier paragraphs.  On the basis of these excellent results, AI 

techniques were  then applied to estimate RhoB and DT values 

for Well-C, using the input data from Well-A, Well-B, and 

Well-C. 

Results of this study show that  the estimated RhoB and DT 

of Well-C  are similar to the recorded and estimated RhoB and 

DT from Well-A and Well-B (Fig.7, 8, and 9). Low NPHI 

(<5%), and low GR (20-40 API) correspond to low DT (<55 

US/F). Moderate NPHI (5-10%), and moderate GR (40-60 API) 

correspond to moderate DT (55-65 US/F). High NPHI (>10%), 

and high GR (>60 API) correspond to high DT (>65 US/F). On 

the other hand, the trend for RhoB log is slighly different 

compared to the trend for DT log.  Low NPHI (<5%), and low 

GR (20-40 API) correspond to low RhoB (<2.6 G/Cm3). 

Moderate (5-10%) to high (>10%) NPHI, and moderate (40-60 

API)  to high (>60 API) GR correspond to moderate (2.6-2.7 

G/Cm3) RhoB. High NPHI (>10%), and high GR (>60 API) 

correspond to high RhoB (>2.7 G/Cm3). Therefore, on the basis 

of these patterns and trends similarities, the authors consider the 

estimated DT and RhoB values of Well-C are reasonable, 

reliable, and acceptable (Fig.7).   

Comparison of the estimated RhoB and DT values with the 

recorded data shows a minor mismatch between logs, and 

shows similar pattern with the original recorded data (Fig.3, and 

4). These results are evident that AI techniques (ANN and 

MLR) are suitable, applicable, and acceptable to be carried out 

to estimate particular subsurface petrophysical data.
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Fig 3. Comparison of the results from AI (ANN, MLR) analysis and the original recorded data. The estimated values of sonic log (DT)  of 

well-A, and well-B are quite similar with the original recorded data. Minor mismatch between the logs can clearly be seen in this figure. Y axis = 

subsurface depth (m), X axis = sonic log (DT, in US/F). 
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Figure 4. Comparison of the results from AI (ANN, MLR) analysis and the original recorded data. The estimated values of  density log (RhoB) of 

well-A, and well-B are quite similar with the original recorded data. Minor mismatch between the logs can clearly be seen in this figure. Y axis = 

subsurface depth (m), X axis = density log (RhoB, in G/Cm3). 

Table 1. Accuracy of the AI results are ranging between 74.9%-100%. With this level of accuracy, the results of this AI analysis are considered 

acceptable and reliable. Accuracy percentage for each sample data was calculated using the ABS function in Microsoft Excel. RhoB = density log 

(G/Cm3), DT = sonic log (US/F), ANN = artificial neural network, MLR = multiple linear regression. 
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  Well-A Well-B 

  RhoB-Estimated DT-Estimated RhoB-Estimated DT-Estimated 

  Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) 

  ANN MLR ANN MLR ANN MLR ANN MLR 

Min 89.53 74.90 79.48 78.18 88.01 87.98 79.29 79.31 

Max 99.99 100.00 99.98 99.99 100.00 100.00 99.99 99.99 

Avg 98.47 97.98 96.03 96.08 98.87 98.85 96.98 96.88 
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Fig 5. Results from crossplot analysis of Well A. A. Crossplot between recorded DT and estimated DT (using ANN) produced R2 = 0.65, and R = 

0.80. B. Crossplot between recorded DT and estimated DT (using MLR) produced R2 = 0.60, and R = 0.77. C. Crossplot between recorded RhoB 

and estimated RhoB (using ANN) produced R2 = 0.72, and R = 0.76. D. Crossplot between recorded RhoB and estimated RhoB (using MLR) 

produced R2 = 0.21, and R = 0.45. The nearer R2, and R are to 1, the better the trendline fits the data/better correlation between the data. R2 = 

trendline reliability, and R = correlation coefficient. DT = sonic log (US/F), and RhoB = density log (G/Cm3). 

 

Fig 6. Results from crossplot analysis of Well B. A. Crossplot between recorded DT and estimated DT (using ANN) produced R2 = 0.80, and R = 

0.90. B. Crossplot between recorded DT and estimated DT (using MLR) produced R2 = 0.79, and R = 0.89. C. Crossplot between recorded RhoB 

and estimated RhoB (using ANN) produced R2 = 0.13, and R = 0.36. D. Crossplot between recorded RhoB and estimated RhoB (using MLR) 

produced R2 = 0.13, and R = 0.36. The nearer R2, and R are to 1, the better the trendline fits the data/better correlation between the data. R2 = 
trendline reliability, and R = correlation coefficient. DT = sonic log (US/F), and RhoB = density log (G/Cm3). 
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Fig 7. NPHI and GR are the input data used to estimate RhoB and DT of Well-C. The data are from subsurface depth of 2165-2230 m. 

 

Fig 8. Original recorded wireline log data of Well-A. These data were trained and tested to estimate RhoB and DT. The data are from subsurface 
depth of 2240-2350 m. 
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Fig 9. Original recorded wireline log data of Well-B. These data were trained and tested to estimate RhoB and DT. The data are from subsurface 

depth of 2200-2310 m. 

5. Discussion 

This paper contributes to the advancement of AI in geology, 

in particular field of petrophysical analysis. Findings from this 

study showed the possibility of applying AI to estimate 

particular wireline log data (RhoB and DT) that yielded high 

level accuracy results. AI is a relatively new technique that can 

be used to provide a solution to many problems, in many field 

of sciences, including geology (Chen et al., 2020). However, 

the application of this technique in geology is still in its infancy, 

and much development is needed (Chen et al., 2020). 

Findings of this study, using the data from Well-A, Well-B, 

and Well-C, consistently show that ANN produced better 

results compared to MLR when estimating RhoB. This is 

interpreted to be caused by the algorithm of ANN that relies on 

the deep learning process, multilayer perceptron, with multiple 

hidden layers, and this makes ANN a more reliable technique 

compared to MLR. Moreover, data used for this study are 

subsurface rock data with inconsistent trends/patterns and 

random relationship between each data, and ANN is best to 

estimate a particular outcome with the input of this type of data. 

ANN has an excellent capability (adaptive learning) to identify 

specific patterns and trends, and in categorising information 

(Dastres and Soori, 2021). 

There is no consistent best techique to estimate DT, as 

shown by the results of this study. This may be due to the nature 

of the DT data that are highly sensitive to the type of the 

subsurface rocks. Vertical distribution of the DT data is highly 

dispersed, and this make the estimation of this type of data more 

difficult. Both ANN and MLR may produce DT results with the 

best/better accuracy level, depending on the type of the input 

data. These results show that estimating DT needs to be done 

carefully, and the selection of the AI methods needs to be done 

with caution. Different AI methods may produce results with 

different accuracy level for DT estimation. 

Comparison of the estimated RhoB and DT with the 

original recorded RhoB and DT data show a minor mismatch, 

and the log trends and patterns are quite similar. This is evident 

that the selected AI methods used for this study (ANN and 

MLR) are reliable techniques that can produce results with high 

level accuracy and confident. Although the results from these 

two analyses are quite similar, the procedure for MLR is much 

simpler than ANN. Therefore, we encourage the readers to first 

choose MLR when estimating particular wireline logging data 

(e.g. RhoB and DT), and if the results are considered as less 

reliable, then we suggest the reader to apply ANN analysis. It is 

also a wise choice if the readers decide to run both ANN and 

MLR analyses simultaneously to compare and see the results 

from both analyses, as the different algorithm used for each 

analysis may produce different results. 

6. Conclusion 

This study provides some new insights into the application 

of AI in geology, in particular in the field of petrophysical 

analysis. Problems commonly occur during hydrocarbon 

exploration and/or development stage, due to the lack of 

subsurface wireline log data can be tackled by the application 

of AI techniques to estimate particular well log data. The 

contribution from this paper is expected to improve our 

understanding of AI, and encourage the development of AI not 

only in the field of petrophysics, but also in other branches of 

geology. 

AI, which is a relatively new method, can be used to 

estimate certain wireline log data using input data of available 

subsurface petrophysical dataset with high level accuracy and 

confident. This study used ANN and MLR (types of AI) to 

estimate RhoB and DT, and it yielded excellent results (average 
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accuracy >95%). ANN is proven to be a better choice when 

used to estimate RhoB. Besides, results from this study show 

that both ANN and MLR can produce the best/better results 

when estimating DT, depending on the type of the input data. 

Selection of the type of AI technique may need to be done 

carefully when used to estimate DT.  

Acknowledgements 

This study utilised well log data provided by the 

Department of Mines, Industry Regulation and Safety (DMIRS) 

of the Government of Western Australia. The authors would 

like to thank DMIRS for providing the data, and for their 

permission to publish the studied well log data. 

References 

Abbott, M.L., 2017. Using statistics in the social and health 

sciences with SPSS and Excel. Wiley, Canada. 

Birnie, C., Ravasi, M., Liu, S. and Alkhalifah, T., 2021. The 

potential of self-supervised networks for random 

noise suppression in seismic data. Artificial 

Intelligence in Geosciences, 2: 47-59. 

Buscema, M., 1998. Theory: Foundations of Artificial Neural 

Networks. Substance Use & Misuse, 33(1): 17-199. 

Cadman, S.J., Pain, L. and Vuckovic, V., 1994. Australian 

petroleum accumulations report 10, Perth Basin, 

Western Australia, Department of primary industries 

and energy, Bureau of resource sciences, Australia. 

Cannon, S., 2016. Petrophysics, A Practical Guide. Wiley 

Blackwell, United Kingdom. 

Chen, L., Wang, L., Miao, J., Gao, H., Zhang, Y., Yao, Y., Bai, 

M., Mei, L. and He, J., 2020. Review of the 

Application of Big Data and Artificial Intelligence in 

Geology. Journal of Physics: Conference Series. 

Crostella, A., 1995. An evaluation of the hydrocarbon potential 

of the onshore northern Perth Basin, Western 

Australia, Report 43, Geological survey of Western 

Australia, Australia. 

Cuddy, S., 2021. The benefits and dangers of using artificial 

intelligence in petrophysics. Artificial Intelligence in 

Geosciences, 2: 1-10. 

Dastres, R. and Soori, M., 2021. Artificial Neural Network 

Systems. International Journal of Imaging and 

Robotics, 21(2). 

Geoscience-Australia, 2020. Regional geology of the northern 

Perth Basin, Geoscience Australia, Australia. 

Gurney, K., 2004. An introduction to neural networks. Taylor 

& Francis, London. 

Lv, A., Cheng, L., Aghighi, M.A., Masoumi, H. and Roshan, 

H., 2021. A novel workflow based on physics-

informed machine learning to determine the 

permeability profile of fractured coal seams using 

downhole geophysical logs. Marine and Petroleum 

Geology, 131. 

Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Farid Hama 

Ali, H., Ismail Abdullah, A. and Kameran Al-Salihi, 

N., 2020. Forecasting tunnel geology, construction 

time and costs using machine learning methods. 

Neural Computing and Applications, 33(1): 321-348. 

Mory, A.J. and Iasky, R.P., 1996. Stratigraphy and structure of 

the onshore northern Perth Basin, Western Australia, 

Report 46, Geological survey of Western Australia, 

Australia. 

Norvick, M.S., 2004. Tectonic and stratigraphic history of the 

Perth Basin, Record 2004/16, Geoscience Australia, 

Australia. 

Pang, Y., Shi, B., Guo, X., Zhang, X., Han, Z., Cai, L., Xiao, 

G. and Liu, H., 2021. Source–reservoir relationships 

and hydrocarbon charging history in the central uplift 

of the south Yellow Sea basin (East Asia): 

Constrained by machine learning procedure and basin 

modeling. Marine and Petroleum Geology, 123. 

Sharifzadeh, A. and Mathew, N., 2011. Shale gas in Western 

Australia, Petroleum in Western Australia. 

Solanki, P., Baldaniya, D., Jogani, D., Chaudhary, B., Shah, M. 

and Kshirsagar, A., 2022. Artificial intelligence: New 

age of transformation in petroleum upstream. 

Petroleum Research, 7(1): 106-114. 

Song, T. and Cawood, P.A., 2000. Structural styles in the Perth 

Basin associated with the Mesozoic break-up of 

Greater India and Australia. Tectonophysics, 317. 

Song, T. and Cawood, P.A., 2010. Multistage deformation of 

linked fault systems in extensional regions: An 

example from the northern Perth Basin, Western 

Australia. Australian Journal of Earth Sciences, 

46(6): 897-903. 

Sun, T., Chen, F., Zhong, L., Liu, W. and Wang, Y., 2019. GIS-

based mineral prospectivity mapping using machine 

learning methods: A case study from Tongling ore 

district, eastern China. Ore Geology Reviews, 109: 

26-49. 

Tariq, Z., Abdulraheem, A., Mahmoud, M., Elkatatny, S., Ali, 

A.Z., Al-Shehri, D. and Belayneh, M.W.A., 2019. A 

new look into the prediction of static Young's 

modulus and unconfined compressive strength of 

carbonate using artificial intelligence tools. 

Petroleum Geoscience, 25(4): 389-399. 

Thomas, C.M., 2014. The tectonic frameworks of the Perth 

Basin: Current understanding, Record 2014/14, 

Geological survey of Western Australia, Australia. 

Tranmer, M. and Elliot, M., 2008. Multiple linear regression. 

Cathie Marsh Centre for Cencus and Survey 

Research. 

Uyanık, G.K. and Güler, N., 2013. A Study on Multiple Linear 

Regression Analysis. Procedia - Social and 

Behavioral Sciences, 106: 234-240. 

Wesolowski, M. and Suchacz, B., 2012. Artificial neural 

networks: theoretical background and pharmaceutical 

applications: a review. J AOAC Int, 95(3): 652-68. 

Zheng, W., Tian, F., Di, Q., Xin, W., Cheng, F. and Shan, X., 

2021. Electrofacies classification of deeply buried 

carbonate strata using machine learning methods: A 

case study on ordovician paleokarst reservoirs in 

Tarim Basin. Marine and Petroleum Geology, 123. 

© 2022 Journal of Geoscience, Engineering, 

Environment and Technology. All rights reserved. This 

is an open access article distributed under the terms of 

the CC BY-SA License (http://creativecommons.org/licenses/by-sa/4.0/). 

 

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

