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ABSTRACT 

The present study focused on the entropy generation as well as the heat transfer rate and velocity profiles of a 
nanofluid of the Jeffery-Hamel flow, especially for convergent-divergent channels. First, the governing 
dimensional partial differential equations have been transformed into a system of non-dimensional ordinary 
differential equations. The Power series method has been used to solve these non-dimensional governing 
equations and the Hermite-Pade approximation has been applied for analyzing them. The effect of various 
physical parameters such as channel angle, Reynolds number, Hartmann number, nanoparticle solid volume 
frictions and Eckert number have been investigated for the velocity profiles, heat transfer and entropy 
generation. Here, Cu has been used as the solid nanoparticle and water has been used as the base fluid. It is 
interesting to remark that the entropy generation of the whole system increased at the two walls and a 
significant effect could be noticed on the heat transfer rate and velocity profiles. 

Keywords: Convergent-divergent channel, Cu-nanoparticles, Hermite-Pade approximation, Jeffery-Hamel 
flow, MHD, Power series method. 

Nomenclature: 
f Fluid   Channel angle 
s Solid particle   Density 
nf Nanofluid   Dimensionless angle 
Ha Hartmann number   Dynamic viscosity 
Re Reynolds number   Kinematic viscosity 
Ec Eckert number   Solid volume friction 

Pr Prandtl number   Dimensionless temperature 

Ns Entropy generation   Any angle 

1. INTRODUCTION 

The dilute suspension of two particles is known as nanofluid. One of them is a solid nanoparticle and the other is 
a base fluid. Different type of solid nanoparticles may be used like Cu, Al2O3, TiO2, ZnO and so on. These 
particles are mainly nanosized (less than 100nm). Besides these solid nanoparticles behave as good conductors 
of heat. They also enable the base fluid to enhance its thermal properties.  In this case, water, ethylene glycol, oil 
etc. may be used as the base fluid which is available in (Das et al., 2007). But the word nanofluid was first 
introduced by (Choi, 1995). After that, a good number of researchers have been successfully drawn their 
attention to nanofluid. This is the reason that the applications of nanofluid have become an interesting issue in 
recent times. Nanofluid is used in many industrial and engineering processes like environmental, mechanical, 
biomechanical, aerospace, chemical and civil engineering. The flux of the rivers and canals is also a splendid 
application of nanofluid. Another real-life example of nanofluid is the blood flow in the human body. 

The classical Jeffery-Hamel flow is considered as the flow of a two-dimensional viscous incompressible fluid in 
a channel. This channel may be parallel or convergent-divergent. In the convergent-divergent channel, the two 
non-parallel walls are driven by a source or sink and are separated by a fixed angle. It was briefly described in 
(Hamadiche et al., 1994). The concept of the classical Jeffery-Hamel flow had come to the attention of the 
researchers since the first published study of (Jeffery, 1915) and (Hamel, 1916). Since then numerous studies 
have been done on the classical Jeffery-Hamel flow using nanofluid. Later, it can be found that there exists a 
similarity solution between the solutions of this flow and the Navier-Stokes equations for two dimensionless 
parameters. These two dimensionless parameters are mainly the Reynolds number and the channel angular 
width. (Fraenkel, 1962) then studied the laminar flow in symmetrical channels with slightly curved walls using 
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the Jeffery-Hamel solutions for flow between plane walls. It was found in this study that for viscous source or 
sink flow between straight walls of any plane, the solutions of the Jeffery-Hamel flow were mostly the same. So, 
in his analysis, he regarded the Jeffery-Hamel solutions as the leading term of a series solution for the velocity 
field of the flow. 

Recently, (Jeong et al., 2008) has investigated that in fundamental concepts of spreading and adhesion on a solid 
surface, nanofluid behaves electrically like classical liquid. The compressible Navier-Stokes equations are 
derived for the slip boundary conditions which is available in (Aoki, 2017).  He has studied it from the 
Boltzmann equation based on the Chapman-Enskog solution. (Sobey and Drazin, 1986) have also used 
analytical, experimental and numerical methods to investigate the instabilities and bifurcations of two-
dimensional channel flows. They have found a rich and unexpected structure for Reynolds numbers of less than 
a few hundred to the solutions of the Navier stoke equation. Moreover, (Moradi et al., 2015) have studied the 
non-linear Jeffery-Hamel flow in a fluid for the effect of heat transfer. Three different types of nanoparticles are 
used in their study. They have observed that the effect of solid nano-particle volume friction on the fluid flow 
parameters and the heat transfer are more stable. Turbulent friction and heat transfer behaviours of dispreads 
fluids have been investigated by (Pak and Cho, 1998). A circular pipe has been used in their experiment with 
alumina (Al2O3) and titanium dioxide (TiO2) have been used as the solid particles having diameters of 13nm and 
27nm, respectively. The results of their study demonstrate that the convective heat transfer coefficient of the 
dispersed fluid is smaller than the pure water under the condition of constant velocity. 

Presently, many researchers have given their attention to develop the analysis of nanofluid. Different types of 
study have been being continued. In recent times, the combined free and forced convection MHD flow in a 
rotating channel with a perfectly conducting wall have been studied by (Seth and Singh, 2008). They have 
observed that if the fluid is electrically conducting then the current induces Joule heating. It is also found that 
this induced Joule heating depends on the strength of the magnetic field. The entropy generation minimization 
for forced-free convective heat transfer due to viscosity effects and temperature gradient in a fluid was studied 
by (Bejan, 1996). Recently, (Alam et al., 2017) have studied the entropy generation of steady MHD 
incompressible flow with viscous dissipation and Joule heating using Cu-nanoparticles through the convergent-
divergent channel. In their study, the remarkable result was that the entropy generation of the system increased 
at the two walls. They also found that along the centerline of the channel the heat transfer irreversibility and the 
fluid friction irreversibility were dominant there. 

The present study is focused on the effect of different thermophysical properties on entropy generation as well 
as on the velocity and temperature profiles considering viscous dissipation and Joule heating in the convergent-
divergent channel. The velocity profiles, temperature distributions and entropy generation, as well as the rate of 
heat transfer, have been discussed graphically for the variation of channel angle  , Reynolds number Re , 
Hartman number Ha , Eckert number Ec  and nanoparticle volume friction  . The Hermite-Pade 

approximation (HPA) has been applied to solve the power series. The bifurcation diagrams of the skin friction 
against divergent channel angle and Reynolds number have also been presented here. 

2. DERIVATION OF MATHEMATICAL EQUATION 

In this investigation, a steady two-dimensional incompressible laminar flow of Cu-water nanofluid has been 
considered which places a source or sink in two non-parallel walls. The angle between the two walls is 2  
which is shown in Figure 1. In this case, a cylindrical coordinate system (r, , z)  has been used. Here it is 

assumed that the velocity is purely radial. This radial velocity depends on r  and  . This shows that the flow 

parameter receives no change in the z  direction. Markedly, it is a presumption that an external magnetic field 
has been acted vertically downward to the top wall. Let the domain of the experimented flow be      . 

So the semi angle of the channel will be  . Now, considering Joule heating and viscous dissipation the 
continuity equation, Navier-Stokes equation and the energy equation are, 

  0nf ru
r r
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Here it is assumed that the flow is symmetrically radial. So the velocity field has been turned into the form 
[ , 0,0]v u  where u  is the function of both r  and  . Then the volumetric flow rate through the channel is  

Q ur d







   (5) 

Boundary conditions for the problem are as follows, 
0,u T T    at      (6) 

In the above equations, the velocity components and temperature of the base fluid are u  and T  respectively. 
Also 0 , p, , , ,nf nf nf nfB      represent the electromagnetic induction, the fluid pressure, the effective 

density, the effective dynamic viscosity, the electrical conductivity and the kinematic viscosity of the nanofluid 
respectively and the variations of these physical parameters are given as (Aminossadati and Ghasemi, 2009), 
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Now the corresponding heat capacity and the effective thermal conductivity of the nanofluids are, 
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Here   is the nanoparticle volume friction of the nanoparticles. s  and f  represent the thermal conductivities 

of solid particle and the base fluid respectively. Also  p nf
c  is the heat capacity of the nanofluid. The 

thermophysical properties of the nanoparticle and the base fluid are given in Table 1. 
 
 
 
     
 
 

 
 
 
 
 
 

Figure 1: Diagram of the flow problem. 

Table 1: Thermophysical properties of the Cu-nanoparticle and the water (Das et al., 2005). 

Physical properties Cu Water 

 3/kg m  8933 997.1 

 /pc J kgK  385 4179 

 /W mK  401 0.613 

 m   59.6 X 106 0.05 

If it requires 0Q  , then 0  , the flow is diverging from a source at 0r  . 

Let the stream function be  ,r   , then it becomes 

Source or Sink 

0B

0u   at     

0u   at      

r
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Now the new non-dimensional variables have been established, 

     , ,
T

F
Q T

    


    (9) 

The reduced ordinary differential equation of the governing equations (2) – (4) can be written in the following 
form, 

    2.5 2.5(iv) 2 22 Re 1 ' '' 4 1 '' 0,F A F F D Ha F          (10) 
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The corresponding boundary conditions have been reduced to the form, 
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Re is the Reynolds number and it is defined as Re
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3. SERIES ANALYSIS 

In this investigation, the equations have been solved using the series solution method. These series have been 
analysed by considering different non-linear terms and then the equations are also expressed through a  
parameter. For solving these, the power series expansion in terms of the parameter  have been considered first. 
For initially performing this problem, Equation (10) and Equation (11) can be written in the non-linear form for 
stream function and temperature profile. These non-linear terms are as follows, 

       
0 0

,i i
i i

i i

F F       
 

 

      as   1   (13) 

Now by substituting Equation (13) into Equation (10) and Equation (11) and using the corresponding boundary 
conditions given in Equation (12), the dimensionless governing equations are then solved into a series solution. 
First of all,  the coefficients of powers of  have been equated in both sides of the equation. We have then 

computed it for the series of the stream function  F   and temperature    . For solving this more accurately, 

the programming software MAPLE has been used. By using this software, the first 12 coefficients for these 
series in terms of , , Re, , , Pr, , , ,Ha Ec A B C D  have been computed. The different non-dimensional 

parameters are also expressed here. 

The expressions of shear stress and skin friction are as follows, 
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Using the non-dimensional transformation Equation (9) in the above Equation (14), the reduced form is obtained 
from Equation (14). 
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4. HERMITE PADE APPROXIMANT 

Hermite-Pade approximant is a method of solution of a non-linear system of equation. This method is first 
introduced by (Hermite, 1893) and (Padé, 1892). In this study, conditions of criticality along with earlier 
mentioned irreversibility in the system by the Hermite-Pade method have been computed accurately. This 
approximation method is as follows, 

For 1  , S be the partial sum of the series. By applying rapid polynomial approximation, desired sum can be 

obtained. 

 
1

1
0

N
n

N n
n

S a 





                         (16) 

Let d be any positive integer and (d 1)  tuple of polynomials then Hermite-Padé form is 
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N N NP P P d N      if                                           (17) 
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where      0 1, ,..., dS S S    different forms of a single series or independent series. 

After solving Equaton (17) and (18) got the polynomials [i]
NP  which are determined by their coefficient. The 

unknowns in the Equation (18) is  
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deg 1 1
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P d N
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Here it is confirmed by the equation that the coefficient matrix related to this system is square. 

Now the left side of the Equation (18) has been expanded in power of   and then equated N equations of the 
system equal to zero. In this case, a system of linear homogeneous equations can be found. To perform the next 
step of the solution, some kind of normalization is needed to calculate the coefficients of the Hermite-Padé 
polynomials such as, 

 [ ] 0 1i
NP     for some integer  0 i d   (20) 

      0 1, ,..., dS S S    are the first N coefficients of the series, which are required for the calculation of the 

Hermite-Padé polynomials. For that, the linear equations have been solved by Gaussian elimination or Gauss-
Jordan elimination. In this case, if the singularity is of an algebraic type, then the exponent   may be 
approximated by 
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Here two unique moderately approximants HODA (High-order differential approximant) and HPDA (High-
order partial differential approximants) have been carefully introduced by (Khan, 2002) and (Rahman, 2004) 
respectively. With the above-mentioned methods, a particular algebraic approximant have been used 
additionally which was introduced by (Drazin and Tourigney, 1996). 

5.         ANALYSIS OF IRREVERSIBILITY 

In this century, the world is going to face a large problem as people are using non-renewable energy without any 
limit. This limitless use of energy causes much wastage too. The result goes this renewable energy is being lost 
day by day from the world. If it is continuing, it will be impossible to live in the world. So, it is one of the major 
concern of the engineers and the researchers is to find the methods that can control the wastage of useful energy. 
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It is interesting that there is a significant influence of MHD on this system. A great example of this system is 
that in a convergent-divergent channel with the isothermal walls, the properties of flow in presence of a 
magnetic field and viscous dissipation are irreversible. At the solid boundaries, the temperature in equilibrium 
conditions arises because of the exchange of energy and momentum within the fluid. This energy produces 
continuous entropy generation. For the fully developed flow, the volumetric entropy generation rate in 
cylindrical coordinates is given as, 

2 2 2
0 2
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nf nf nf
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BdT du
E u

d T d TT  

  
 
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   
 (21) 

Here, entropy generation is determined by the summation of three terms. The first term of the right side of 
Equation (21) is the irreversibility due to heat transfer. The second and third terms of the right side of the above 
Equation (21) are the irreversibility due to viscous dissipation and the local entropy generation due to the effect 
of the magnetic field, respectively. The non-dimensional form of the entropy generation number can be reduced 
as, 
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In this paper, the focus of the study is observing the entropy generation for the optimum values of the 
parameters and discussing the obtained outcomes. 

6. RESULTS AND DISCUSSION 

In the present study, the influence of different parameters of interest in the convergent-divergent channel have 
been observed for the problem. Entropy generation, temperature distribution and velocity profiles are performed 
here for the parameters. The parameters which are investigated here are the nanoparticle volume friction  , 

magnetic Hartman number Ha , Reynolds number Re, channel angle   and Eckert number Ec . Also, the solid 
volume friction for Cu-nanoparticles is studied in the range of 0 0.2   and the Prandtl number Pr  for the 

base fluid is kept at 6.2 here. The graphical representations of the outcomes are presented and discussed for this 
study.  

6.1 Stability Analysis 

It is mentioned earlier that in this study the centerline axial velocity and the radial velocity will be investigated 
as two series in powers of , , Re, ,Ha A   and D . Here, Table 2 exhibits the convergence of c  for 3d   

using 12N   up to 12 decimal places. This study has been performed for a different amount of the presence of 
nanoparticle in the nanofluid. The variation in the critical values c  with critical exponent   for four different 

values of solid volume friction 0.00, 0.07, 0.14, 0.20  . If the present outcome is observed, there is an 

indication that there is a great influence of the presence of nanofluids in the instability of the flow process. It is 
seen in the flow that these nanofluids result from early development in the system. 

Table 2: Numerical values of critical angles c  and their exponent   at 1Ha   and Re 20 . 

  
c    

0.00 0.271769826156 0.450319299852 
0.07 0.210881499718 0.507663726998 
0.14 0.187752358428 0.428501987679 
0.20 0.183265993141 0.421205605495 

Here, the algebraic approximation method has been applied to our series. By applying this method, the 
bifurcation graphs of skin friction coefficient against  are obtained. Figure 2 denotes the bifurcation graph of 
skin friction against   for the Cu-nanoparticles. It is interestingly noticed from Figure 2 that there is a turning 
point or a saddle-node bifurcation at c  . It is also noticeable from the bifurcation diagram that there is a 

growing effect for the increasing amount of Cu-nanoparticles in the fluid. 
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Here two solutions branches for the skin friction for different values of nanoparticle volume friction have been 
observed. One is for c   and the other marginal solution is for c  . But there is no solution for c  . 

It is clear from the above figure that the bifurcation points have become change for various values of  . The 

bifurcation points are obtained at Re = 20, Ha = 1. Here, it is also noted that the skin friction coefficient is 
increased by the solid volume friction.  

 

  

 

 

 

 

 

 

 

Figure 2: Bifurcation diagram of skin friction coefficient versus divergent channel angle   at Re = 20, Ha = 1 

for Cu-nanofluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          (a)                                                                                                   (b) 
 
 
 

 
 
 
 
 
 
 
 
 
 
                                                                                             (c)                                      
Figure 3: (a) Velocity profile (b) Temperature distribution (c) Entropy generation for different values of   at 

0.07,Re 20, 10, Pr 6.2, 0.1Ha Ec       
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6.2 Diverging Channel 

A non parallel channel having a source by which the fluid enters into the channel is known as a diverging 
channel. The effect of different parameters for the entropy generation as well as velocity profiles and 
temperature distribution have been discussed for the divergent channel here. Below the key figures, the unique 
results have come out from the study of the diverging channel. 

Figure 3(a) represents the effect of channel angle on velocity profiles for Cu-nanofluid in the divergent channel. 
Here it can be noticed that the presence of Cu-nanoparticles  0.07   expedites the velocity at the centerline 

of the channel. It is also observed that a major backflow occurs for the large channel angel in the two walls of 
the channel. The effect of increasing channel angle is also noticed on temperature distribution for the divergent 
channel. Figure 3(b) represents the temperature distribution for the increasing channel angle. It is significantly 
noticed that for the large angle /18 , the nanofluid generates the highest temperature values and 

/180 exhibits the lowest heat transfer rate. There is also seen that at the centerline of the channel, the heat 
transfer rate reach the highest. It is mentioned in many affiliated textbooks and research papers that the heat 
transfer property in a flow region is enhanced by the characteristics of nanofluids. The influence of nanofluid in 
entropy generation is also noticed here. The impact of channel angle on the entropy generation is shown in 
Figure 3(c). It is interesting to percept here that the entropy generation has a great influence on the channel 
opening. The increasing channel angle provides a more entropy rate for the Cu-nanofluid. Here it is seen that in 
the channel angle /18 , the entropy gives the highest rate followed by a small channel angle. But the entropy 
is high at the two walls more than the centerline of the channel. It is a splendid effect that the lowest channel 
opening has not only the lowest velocity profiles but also the lowest channel angle exhibits the lowest 
temperature and entropy generation. The lowest channel angle is kept /180 in this study. It is interesting to 
notice that the outcomes of the increasing channel angle has also an increasing effect on this study. 
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Figure 4: (a) Velocity profile (b) Temperature distribution (c) Entropy generation for different values of   at 

/ 36, Re 20, 10,Pr 6.2, 0.1Ha Ec       



Journal of Engineering Science 12(2), 2021, 79-92                                                                                               87                                   

 
 

 

Figure 4(a) represents the velocity profiles with the variations of nanoparticle volume friction  .  It is seen 

from the figure that the presence of nanoparticles has a great influence on the velocity profiles. Without any 
nanoparticles which means only base fluid water has the lowest velocity rate. Perhaps the increasing amount of 
nanoparticles in the nanofluid produces high velocity in the channel.  The effect of nanoparticles in the 
temperature distribution is presented in Figure 4(b). A noticeable effect for nanoparticles volume friction is 
found in this temperature distribution. The temperature rises high at the centerline of the channel. It is also 
significant in Figure 4(b) that at the two walls of the channel, the temperature remains almost the same. The 
entropy generation for the variations of nanoparticles volume is plotted in Figure 4(c). It is interesting to notice 
here that the velocity profiles and temperature distribution 0.20   gives the highest entropy. 

The effects of Reynolds number on velocity profile, temperature distribution and entropy generation are shown 
in Figure 5(a)-5(c) respectively. With the fixed nanoparticle volume friction and channel angle, the velocity 
profile rises high with the increasing Reynolds number. The same changes can be noticed in Figure 5(b). The 
temperature distribution for different Re shows different outcomes here. The highest Re results at the highest 
temperature for the divergent channel. But the temperature of the fluid near the non-parallel walls persists 
identical. There is also an opposite influence of Re on the entropy generation for the Cu-based nanofluid. From 
Figure 5(c) it is clear that Re=10 gives the highest entropy for the nanofluids. A significant change can be 
noticed that at the centerline, the entropy rates for Re=30 is the fastest followed by the others. 
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                                                                                         (c) 

Figure 5: (a) Velocity profile (b) Temperature distribution (c) Entropy generation for different values of Re  at 

/ 36, 0.07, 10, Pr 6.2, 0.1Ha Ec        
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                                         (a)                                                                                          (b) 

Figure 6: (a) Velocity profile (b) Temperature distribution for different values of Ha  at 

/ 36, 0.07, Re 20,Pr 6.2, 0.1Ec        

Figure 6(a) and 6(b) represents the velocity profiles and temperature distribution respectively. In the effect of 
Hartman number, Ha has a conversed effect on the velocity profiles. For the divergent channel with a fixed 
channel angle and flow rate, the velocity profiles have reduced for the increasing Hartman number. It is seen in 
the above figure that for Ha = 0, the velocity reaches the highest level at the centerline and then for different 
values of Ha greater than 0 show their result. The temperature distribution for the increasing Ha is also plotted 
in Figure 6(b). It is interestingly noticed that with the presence of an external magnetic field, the rate of heat 
transfer increases rapidly due to a faster rate of Ha. 

 

 

 

 

 

 

 

 

 

 
                                          (a)                                                                                  (b) 

Figure 7: (a) Temperature distribution (b) Entropy generation for different values of Ec at 

/ 36, 0.07,Re 20,Pr 6.2, 10Ha        

The effect of the Eckert number on temperature distribution and the entropy generation for the divergent 
channel is demonstrated in Figure 7(a) and 7(b) respectively. The heat transfer rate of the nanofluid gains the 
maximum level at the centerline of the channel which is plotted in Figure 7(a). It is clear that there also exists an 
increasing trend of increasing Eckert number. The increasing value of Ec results in the fastest rate of 
temperature distribution. Entropy generation for various Eckert number is also presented in Figure 7(b). Here, it 
can be noticed that at the centerline of the channel the entropy decreases significantly with the increasing value 
of the Eckert number. Highest Ec generates the highest entropy with irreversibility for the nanofluid. 

 



Journal of Engineering Science 12(2), 2021, 79-92                                                                                               89                                   

 
 

 

6.3 Converging Channel 

The effect of various physical and thermal parameter for the converging channel on velocity profiles and heat 
transfer rate are represented graphically and discussed here. 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
                                          (a)                                                                               (b) 

Figure 8: (a) Velocity profile (b) Temperature distribution for different values of   at 

10, 0.07,Re 20, Pr 6.2, 0.1Ha Ec      

The possession of channel angle for the converging channel on velocity profiles and temperature distribution are 
represented graphically in Figure 8(a) and 8(b), respectively. From Figure 8(a), it can be noticed that in the 
convergent channel the velocity of the fluid descends for the accelerating values of the channel closing angle. 
The heat transfer rate in this channel is also presented in Figure 8(b). Here, it is immersing to notice that an 
antipodean effect created for the temperature at the centerline of the channel. Convergent channel angle 

/180 exhibits the highest temperature for the nanofluid. On the contrary, the smallest heat transfer rate can 
be exposed to /18  in the channel. 
 

 

 

 

 

 

 
 

(a)                (b) 

Figure 9: (a) Velocity profile (b) Temperature distribution for different values of   at 

/ 36, 10,Re 20, Pr 6.2, 0.1Ha Ec        

The effect of nanoparticle volume friction for the convergent channel is plotted in the above figures. Figure 9(a) 
denotes the velocity profiles and Figure 9(b) denotes the temperature distribution for the convergent channel. It 
can be noted here that for the expanding amount of volume friction the velocity of the fluid shows the reverse 
conclusion. Only the base fluid outcomes the highest velocity and base fluid with Cu-nanoparticles show the 
less. Nanofluid of 20% nanoparticles terminates the lowest velocity for the convergent channel. The rate of heat 
transfer with the same thermo physical properties are presented in Figure 9(b). Here the base fluid also generates 
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the highest temperature in the centerline of the channel and then the nanofluid with Cu-nanoparticles of different 
volume friction.  

 

 

 

 

 

 

 

(a)                                                                                (b) 

Figure 10: (a) Velocity profile (b) Temperature distribution for different values of Re  at 

/ 36, 10, 0.07,Pr 6.2, 0.1Ha Ec         

Figure 10(a)-10(b) represent the influence of Reynolds number in the convergent channel on velocity profiles 
and temperature distribution. In Figure 10(a) it is seen that the rising fluid flow results in less velocity. 
Nanoparticles volume friction is kept fixed at 0.07 in this case. In this investigation Reynolds number 30 causes 
the lowest velocity at the centerline. The heat transfer rate behaves the same characteristic for the same thermo 
physical properties. Also, the highest fluid flow generates the lowest temperature in the convergent channel 
which can be cleared from Figure 10(b). Here the centerline temperature also rises high compared to the 
temperature of the channel walls. Also, the same growing effect of increasing Reynolds number can be explored 
for the heat transfer rate. 

 

 

 
 
 
 
 
 

  
 

                                          (a)                                                                                  (b) 
Figure 11: (a) Velocity profile (b) Temperature distribution for different values of Ha  at 

/ 36, Re 20, 0.07, Pr 6.2, 0.1Ec         

Figure 11(a)-(b) stands for the effect of the Magnetic Hartmann number on the velocity profiles and the 
temperature profiles for the convergent channel. From the above Figure 11(a), it can be observed that the 
Hartmann number has a very minimal effect on the velocity profiles for the convergent channel. In this case, the 
flow rate of the nanofluid reduces because of the rising magnetic field in the channel. The velocity reaches the 
highest level at the centerline of the channel. But the velocity has the lowest performance at the two walls of the 
channel for the convergent channel. The temperature distribution is seen in Figure 11(b). For the heat transfer 
rate, the magnetic Hartmann number has an opposite characteristic compared to the velocity profiles. The 
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highest temperature is recorded for the highest Ha among all Ha which has been used in this study. This shows 
that Ha = 20 exhibits the highest temperature and Ha = 0 exhibits the lowest. Here, it is also significant that the 
temperature rises in the centerline of the channel. 

7. CONCLUSIONS 

In the current study, we have investigated the domination of Cu-nanoparticles on the entropy generation in the 
magnetohydrodynamic flow of viscous incompressible fluid. Here the water has been used as the base fluid. The 
effects of various physical parameters on the entropy generation with velocity field and temperature distribution 
are discussed in detail with the graphical representation. Based on the obtained tabular and graphical results the 
main inferences of this study are as follows: 

 At the two walls, in the solution of the shear stress, two bifurcations at the critical angle are found 
namely the upper branch and lower branch. In this investigation, it has been initiated that with the 
increases in nanoparticles volume friction, the value of skin friction coefficient also amplifies. 

 Enlargement in channel opening causes increasing in entropy generation, velocity and temperature 
distribution for both convergent and divergent channel but the fluid flow has an opposite behavior for 
the convergent channel. 

 Significantly, there is a conflicting effect on the increasing nanoparticles volume friction between the 
convergent and divergent channel. 

 The Reynolds number has an increasing influence with the increment of Re for the divergent channel and 
an opposite effect is observed for the convergent channel. 

 The velocity profiles at the centerline against Hartmann number has a rising effect but the temperature 
distribution has the reversed characteristics in both channels. 

 The behavior of the Entropy generation for the Eckert number has an increasing effect at the centerline of 
the channel and the heat transfer rate has the same for the divergent channel. 
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