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Abstract—In this paper, a design optimization algorithm is presented for non-linear steel frames with semi-rigid beam-
column connections using harmony search algorithm. The design algorithm obtains the minimum steel weight by selecting 
from a standard set of steel sections. Strength constraints of American Institute of Steel Construction - Load and Resistance 
Factor Design (AISC-LRFD) specification, displacement, deflection, size constraint and lateral torsional bulking are 
imposed on frames. Harmony search (HS) is a recently developed meta-heuristic search algorithm which is based on the 
analogy between the natural musical performance and searching the solutions to optimization problems. The HS algorithm 
accounts for the effect of connections’ flexibility and the geometric non-linearity of the members. The Frye–Morris 
polynomial model is used for modeling semi-rigid connections. Two design examples with extended end plate without 
column stiffeners are presented to demonstrate the application and validity of the algorithm.  

Index Terms— Optimum design; Harmony search algorithm, Genetic algorithm, Semi-rigid connections; Frye and Morris 
model. 

 

I INTRODUCTION

Structural design optimization of steel frames generally re-

quires the selection of steel sections for the beams and columns 

from a discrete set of practically available steel section tables. 

This selection is carried out in such a way that the steel frame has 

the minimum weight, while the design is limited by constraints 

such as the choice of material, the feasible strength, displace-

ments, deflection, size constraints, lateral torsional buckling and 

the true behavior of beam-to-column connections. The design 

algorithm aims at obtaining minimum steel weight frames by se-

lecting a standard set of steel sections such as AISC wide-flange 

shapes [1]. 

Computer-aided optimization is traditionally used to obtain 

more economical designs since the 1970s [2]; [3] and [4]. Numer-

ous algorithms have been developed for accomplishing the opti-

mization problems in the last four decades. Presently engineers 

and designers are compelled to achieve more economical designs 

and to search or develop more effective optimization techniques; 

this is why heuristic search methods emerged in the first half of 

1990s [5], [6] and [7]. 

In recent years, structural optimization witnessed the emer-

gence of novel and innovative stochastic search techniques. These 

stochastic search techniques make use of the ideas taken from 

nature and do not suffer the discrepancies of mathematical pro-

gramming based optimum design methods. Meta-heuristic algo-

rithms typically intend to find a suitable solution for any optimiza-

tion problem by ‘trial-and-error’ in a reasonable amount of com-

putational time. During the last few decades, several meta-

heuristic algorithms have been proposed. These algorithms in-

clude: Genetic algorithms (GAs), which are search algorithms 

based on natural selection and the mechanisms of population ge-

netics. The theory was proposed by Holland  [8] and further de-

veloped by Goldberg [9] and others. Genetic Programming, which 

is an extension of genetic algorithms, was developed by Koza 

[10]. He suggested that the desired program should itself evolve 

during the evolution process. Evolutionary programming, which 

was originally developed by (Fogel et al.) [11], described the evo-

lution of finite state machines to solve prediction tasks. Evolution 

strategies, were developed to solve parameter optimization prob-

lems by (Schwefel et al.) [12], in which a deterministic ranking is 

used to select a basic set of solutions for a new trial [13].  

Ant colony optimization (ACO), which was first formulated by 

Dorigo [14] and further developed by other pioneers [15] and 

[16]. This algorithm was obtained from the pheromone trails of 

ants. Particle Swarm Optimization (PSO), was developed by Ken-

nedy and Eberhart [17], inspired by the swarm behavior of fish 

and bird schooling in nature [18], [19] and [20]. Bee Algorithms 

(ABC), is developed by Karaboga and Basturk [21] for solving 

optimization problems. Not long ago, a large number of optimum 

structural design algorithms have been developed which are rely-

ing on these effective, powerful and novel techniques such as Ge-

netic algorithm based optimum design of nonlinear planar steel 

frames with various semi-rigid connections by Kameshki and Sa-

ka [22], design of steel frames using ant colony optimization by 

Camp, et. al. [23] and optimum design of cellular beams using 

harmony search and particle swarm optimizers by Erdal, et. al. 

[24]. 

Geem and Kim [25] developed a New Harmony search (HS) 

meta-heuristic algorithm that was conceptualized using the musi-

cal process of searching for a perfect state of harmony. The har-

mony in music is analogous to the optimization solution vector, 

and the musician’s improvisations are analogous to local and 

global search schemes in optimization techniques. The HS algo-
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rithm does not require initial values for the decision variables. 

Furthermore, instead of a gradient search, the HS algorithm uses a 

stochastic random search that is based on the harmony memory 

considering rate and the pitch adjusting rate (defined in harmony 

search meta-heuristic algorithm section) so that derivative infor-

mation is unnecessary. Compared to earlier meta-heuristic optimi-

zation algorithms, the HS algorithm imposes fewer mathematical 

requirements and can be easily adopted for various types of engi-

neering optimization problems. 

The main differences between HS and GA are summarized as: 

(i) HS generates a new design considering all existing designs, 

while GA generates a new design from a couple of chosen parents 

by exchanging the artificial genes; (ii) HS takes into account each 

design variable independently. On the other hand, GA considers 

design variables depending upon building block theory. (iii) HS 

does not code the parameters, whereas GA codes the parameters. 

That is, HS uses real value scheme, while GA uses binary scheme 

(0 and 1). 

The current study develops an algorithm to obtain the optimum 

design of steel frames with semi-rigid beam-column connections 

using Harmony Search (HS) technique. The design optimization 

problem was formulated to obtain the minimum steel frame 

weight. The AISC-LRFD specifications [1] were imposed on the 

strength, displacement, deflection, size constraints. The Frye and 

Morris polynomial model is introduced to model the semi-rigid 

connections. To demonstrate the application of the developed al-

gorithm, two steel frames with extended end plate moment con-

nections are presented. 

II DESIGN OPTIMIZATION PROBLEM. 

The formulation of the current problem as an optimization 

problem is carried out by identifying the design variables, objec-

tive function, penalized objective function and penalty function. 

A Design variables. 

Structural design optimization of steel frames generally re-

quires selection of steel sections for its beams and columns from a 

discrete set of practically available steel section tables. The design 

algorithm aims to obtain the minimum steel weight of frames by 

selecting a standard set of steel sections. The current study utilizes 

the AISC wide-flange shapes from W40 to W8 as the design vari-

ables of the optimization problem. These sections are considered 

the most practical sections for steel beams and columns. 

B The objective function. 

The adopted optimization problem of the design of steel frames 

is to minimize the overall steel weight. The objective function of 

the minimization problem is formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊(𝑥) =  ∑𝐴 𝜌 𝐿 

  

   

          (1) 

 In Equation 1, W(x) is total weight of the members, ng is total 

numbers of groups in the frame, Ai is cross-sectional area of 

member, ρi and Li are density and length of member i. 

C Penalized objective function. 

In order to assess the fitness of a trial design and determine its 

distance from the global optimum, the eventual constraint viola-

tion should be computed by means of a penalty function. The pen-

alty function consists of a series of geometric constraints corre-

sponding to the dimensions and shape of the cross sections, and a 

series of constraints related to the deflection and internal forces of 

the members of the structure. Thus, the penalty will be propor-

tional to constraint violations, and the best design will have the 

minimum weight with no penalty. There are several studies devot-

ed to the selection of penalty functions [26], [27] and [28]. In this 

study, the penalized objective function φ(x) is applied and written 

for American Institute of Steel Construction Load and Resistance 

Factor Design (AISC-LRFD) code as follows [1]: 

𝜑(𝑥) = 𝑊(𝑥). (1 + 𝛾. 𝑉)          (2) 

Where, φ(x) = Penalized Objective Function, γ = Penalty con-

stant, V = Constraint violation function and ε = Penalty function 

exponent. In this study γ = 1.0, ɛ = 2.0 are considered [23]. 

D Penalty function. 

The constraints of the current optimization problem comprise 

displacement constraints, size constraints, deflection constraints 

and strength constraints. Therefore, the constraint violation func-

tion of the optimization problem is expressed as: 

𝑉 =∑𝑉 
  

   

   

+ ∑𝑉 
  

  

   

+∑𝑉 
  

   

   

+∑𝑉 
  

  

   

+∑𝑉 
  

  

   

+∑𝑉 
 

  

   

          (3) 

Where, Vi
td

 is constraint violations for top-storey displacement, 

Vi
id

 is constraint violations for inter-storey displacement, Vi
sc

 and 

Vi
sb

 are constraint violations for size constraints of column and 

beam, respectively, Vi
db

 is constraint violations for beam deflec-

tion and Vi
I
  is the interaction formulas of the LRFD specification; 

Nj
t
 = number of joints in the top storey. Ns and Nc are number of 

storeys except the top storey and number of beam columns, re-

spectively. Ncl is the total number of columns in the frame except 

the ones at the bottom floor. Nf = is the number of storeys. 

The computation of the penalty function of these constraints is 

illustrated below: 

The penalty may be expressed as, 

𝑉 = { 
0       𝑖𝑓   𝜆 ≤ 0
𝜆       𝑖𝑓   𝜆 > 0

            (4) 

The displacement constraints are, 

𝜆 
  =

𝑑 
𝑑 
 − 1.0 ≤ 0     𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,…… . .𝑁           (5) 

𝜆 
  =

𝑑 
𝑑 
 − 1.0 ≤ 0     𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,…… . .𝑁          (6) 

Where, dt: maximum displacement in the top storey, dt
u
: allow-

able top storey displacement (max height/300), di : interstorey 

displacement in storey i, di
u
: allowable interstorey displacement 

(storey height/300). 

The size constraint is given as follows, 

𝜆 
  =

𝑑  
𝑑  

− 1.0 ≤ 0     𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,…… . . 𝑁           (7) 

𝜆 
  =

𝑑  

𝑑  
− 1.0 ≤ 0     𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,…… . . 𝑁          (8) 

Where, dun and dbn are depths of steel sections selected for up-

per and lower floor columns, dbf, dbc are the width of beam flange 

and column flange respectively.  
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The deflection control for each beam is given as follows, 

𝜆 
  =

𝑑  
𝑑  

− 1.0 ≤ 0     𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,…… . . 𝑁          (9) 

Where, ddb: maximum deflection for each beam, ddu: allowable 

floor girder deflection for unfactored imposed load ≤ L/360. 

For members subjected to bending moment and axial force, the 

adopted strength constraints based on [1] are expressed as follows, 

𝑓𝑜𝑟      
𝑃 
∅  𝑃 

≥ 0.20 

𝜆 
 = (

𝑃 
𝜙  𝑃 

) +
8

9
(
𝑀  

𝜙  𝑀  
+

𝑀  

𝜙  𝑀  
) − 1.0 ≤ 0 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,… . 𝑁                                                                  (10) 

𝑓𝑜𝑟      
𝑃 
∅  𝑃 

< 0.20 

𝜆 
 = (

𝑃 
2𝜙  𝑃 

) + (
𝑀  

𝜙  𝑀  
+

𝑀  

𝜙  𝑀  
) − 1.0 ≤ 0 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,… . 𝑁 𝑁                                                             (11) 

Where, Pu = factored applied compression load, Pn = nominal 

axial strength (compression), Mux= factored applied flexural mo-

ment about the major axis, Muy = factored applied flexural moment 

about the minor axis, Mnx = nominal flexural strength about the 

major axis, Mny = nominal flexural strength about the minor axis 

(for two-dimensional frames, Muy = 0), φc= resistance factor for 

compression (equal 0.90), φb = flexural resistance factor (equal 

0.90). 

A The nominal compressive strength of a member. 

𝑃 = 𝐴 . 𝐹           (12) 

𝐹 =
𝜋 . 𝐸

(
𝐾𝐿
𝑟
)
          (13) 

𝐹  = 0.658 
(    )⁄  𝐹              𝑤ℎ𝑒𝑛,

𝐹 

𝐹 
≤ 2.25      (14) 

𝐹  = 0.877 𝐹                          𝑤ℎ𝑒𝑛,
𝐹 

𝐹 
> 2.25      (15) 

Where, Pn = nominal axial strength (compression), Ag = cross-

sectional area of member, Fcr = critical compressive stress, Fe = 

Euler stress, Fy = yield strength of steel, E = modulus of elasticity, 

K = effective-length factor, L = member length, r = governing 

radius of gyration. The effective length factor K, for an unbraced 

frame is calculated from the following approximated equation 

taken from [29]. The out-of-plane effective length factor for each 

column member is specified to be Ky = 1.0, while that for each 

beam member is specified to be Ky = L/6 (i.e., floor stringers at 

L/6 points of the span). The length of the unbraced compression 

flange for each column member is calculated during the design 

process, while that for each beam member is specified to be L/6 of 

the span length. 

𝐾 =  √
1.6𝐺 𝐺 + 4.0(𝐺 + 𝐺 ) + 7.50

𝐺 + 𝐺 + 7.50
         (16) 

Where, subscripts A and B denote the two ends of the column 

under consideration. The restraint factor G is stated as 

𝐺 =  
∑(𝐼 /𝐿 )

∑(𝐼 /𝐿 )
         (17) 

Where, Ic is the moment of inertia and Lc is the unsupported 

length of a column section; IB is the moment of inertia and LB is 

unsupported length of a beam section. Σ indicates a summation for 

all members connected to that joint (A or B) and lying in the plane 

of buckling of the column under consideration. 

B The nominal flexural strength of a member. 

Design strength of beams is φb Mn. As long as λ ≤ λp, the Mn is 

equal to Mp and the shape is compact. The plastic moment Mp is 

that calculated from the following equation. 

𝑀 =  𝑀 = 𝐹  . 𝑍          (18) 

Where, Mn = nominal flexural strength, Mp = plastic moment, 

Fy = yield stress of steel, Z = the plastic section modulus, λp = 

slenderness parameter to attain Mp. φb =flexural resistance factor 

(equal 0.90). Details of the formulations are given in the [1]. 

III CONNECTION MODELING AND ANALYSIS OF STEEL 

FRAMES. 

The modeling of beam – column connection and steel frame 

members has been demonstrated by ANSYS software. The beams 

and columns of the frame were modeled using BEAM3, from 

ANSYS library elements. BEAM3 is a uniaxial element with ten-

sion, compression, and bending capabilities. The extended end 

plate connections without column stiffeners were simulated using 

a non-linear spring element, COMBIN39. It is a unidirectional 

element with nonlinear generalized force (moment) – deflection 

(rotation) capabilities that can be used in any analysis.  

In the present study, the non-linear properties of the extended 

end plate connections were modeled using Frye-Morris polynomi-

al model [30] because of its simple implementation. This model 

has the general form: 

𝜃 = 𝑐 (𝑘𝑀)
 + 𝑐 (𝑘𝑀)

 + 𝑐 (𝑘𝑀)
            (19) 

Where, θr is a rotation (rad x10
-3

), M is a moment connection 

(Kip.in), k is a standardization constant which depends upon the 

connection type and geometry; c1, c2, c3 are the curve fitting con-

stants. The values of these constants are given in Table 1 [31]. 

IV DESIGN OPTIMIZATION USING HARMONY SEARCH 

ALGORITHM. 

Harmony Search technique (HS) was proposed by (Geem et 

al.)  [25], [32], [33], [34] and [35] for solving combinatorial 

optimization problems. This approach is based on the musical 

performance process that takes place when a musician searches 

for a better state of harmony. A brief description of the 

implementation steps of the HS technique is presented in the 

following subsections:  

A Initialize the harmony search parameters. 
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The HS technique comprises several parameters to identify an 

algorithm which better represents a specific problem. These pa-

rameters comprise harmony memory (HM) matrix, harmony 

memory size (HMS), harmony memory consideration rate 

(HMCR), pitch adjusting rate (PAR), random uniformly distribu-

tion (rand), design variables (Xsl) and maximum iteration (Max-

iter).  

B Initialize harmony memory matrix. 

In this step the harmony memory (HM) matrix is initialized by 

random selection of design variables from the adopted steel sec-

tion list. The random selection is performed by using the interval 

[0, 1].The HM matrix can be represented as shown below:-  
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Where, xi

1
, xi

2
,…, xi

HMS-1
,xi

HMS
 and φ(x

1
),φ(x

2
),…, φ(x

HMS-1
), 

φ(x
HMS

) are design variables and the corresponding unconstrained 

objective function value, respectively.  

C Generating a new harmony vector. 

A new Harmony xi
new

 is improvised from either the HM or de-

sign variables (Xsl). Three rules are applied for the generation of 

the new harmony. These are HMCR, PAR and rand.  

𝑥 
   ←

{
 
 

 
 

  

𝑥 
    ∈ {𝑥 

  , 𝑥 
  , …… . , 𝑥 

      , 𝑥 
    }  

𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐻𝑀𝐶𝑅

𝑥 
   ∈     𝑥                                                                       

𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝐻𝑀𝐶𝑅

     (21) 

At first, a random number (rand) is generated, if this random 

number is equal or less than the HMCR value, xi
new 

is selected 

from the current values stored in the i
th

 column of HM. If rand is 

higher than HMCR, xi
new 

is selected from the design variables (Xsl).  

Any design variable of the new harmony, xi
new

 which obtained 

by the memory consideration is examined to determine whether it 

is pitch-adjusted or not. Pitch adjustment rate (PAR) which inves-

tigates better design in the neighboring of the current design as 

follow: 

𝑥 
   ← {  

𝑌𝑒𝑠, 𝑖𝑓  𝑟𝑎𝑛𝑑 ≤ 𝑃𝐴𝑅
𝑁𝑜, 𝑖𝑓  𝑟𝑎𝑛𝑑 > 𝑃𝐴𝑅

            (22) 

A random number (rand) is generated for xi
new

, if this random 

number is equal or less than the PAR, xi
new

 is replaced with its 

neighboring section in the design variables (Xsl). If rand is higher 

than PAR, xi
new

 remains the same. HMCR and PAR parameters are 

introduced to allow the solution to escape from local optima and 

to improve the global optimum prediction of the HS algorithm  

[25] and [32] . 

D Update the harmony memory. 

If the new harmony vector is better than the worst harmony in 

the HM, judged by objective function value, the new harmony is 

included in the HM and the existing worst harmony is excluded 

from the HM. 

E Termination criteria. 

If the termination criterion (Maxiter) is reached, computation is 

stopped. Otherwise, Steps C and D are repeated. 

V HARMONY SEARCH BASED STRUCTURAL 

OPTIMIZATION AND DESIGN PROCEDURE. 

Figure 1 shows the detailed procedure of HS algorithm-based 

method to determine optimal design of steel frame structures. The 

detailed procedure can be divided into the following two steps:  

Step 1: Initialization. HS algorithm parameters such as HMS, 

HMCR, PAR, maximum number of searches and design variable 

are initialized. Harmonies (i.e., solution vectors) are then random-

ly generated from the possible variable bounds that are equal to 

the size of the HM. Here, the initial HM is generated based on a 

finite element analysis (ANSYS) subjected to the objective func-

tion and penalized objective function.  

Step 2: Search. A new harmony is improvised from the initially 

generated HM or possible variable values using the HMCR and 

PAR parameters. These parameters are introduced to allow the 

solution to escape from local optima and to improve the global 

optimum prediction in the HS algorithm. The new harmony is 

analyzed using the finite element analysis (ANSYS), and its fit-

ness is evaluated using the constraint functions. If satisfied, the 

weight of the structure is calculated using the objective function. 

If the new harmony is better than the previous worst harmony, the 

TABLE 1 

Curve fitting constants and standardization constant for Frye-Morris Polynomial model. 

Extended end plate without column stiffeners. 
Curve Fitting Constants 

Unit (inch) 

Standardization Constant 

Unit (inch) 

 

c1= 1.83 x 10-3 

c2= 1.04 x 10-4 

c3= 6.38 x 10-6
 

k = dg-2.4 tp-0.4 db-1.5 
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new harmony is included in the HM and the previous worst har-

mony is excluded from the HM. The HM is then sorted by the 

objective function value. The computations terminate when the 

maximum number of the search criterion is satisfied. If not, this 

step is repeated.  

VI  BENCHMARK DESIGN EXAMPLES. 

Two design problems have been examined in the present study 

to implement the developed optimum design algorithms. The de-

sign of steel frames with semi-rigid connections were compared 

those of rigid connections under similar design requirements. The-

se semi-rigid and rigid connections frames were analyzed linearly 

and non-linearly including P-∆ effect of beam-column members. 

In addition, two catalogs was used, Full Catalog Section (FCS) 

that contain all beam-column members with W40 to W8. These 

sections are considered the most practical sections for steel beams 

and columns. Selected Catalog Section (SCS) that contains two 

separate population section lists was used to search economic so-

lutions. The first one is column catalog with the height/width ratio 

less than 2; the second one is a beam section list with the 

height/width ratio greater than 2. 

The design algorithm aims at obtaining the minimum steel 

weight of frames by selecting a standard set of steel W-sections 

from the AISC standard sections. AISC Strength, displacement, 

deflection and size constraint for all members and lateral torsional 

buckling were imposed on frames [1]. A comparative study was 

carried out between the HS optimization results and the results 

obtained for similar frames optimized using Genetic Algorithm 

(GA) techniques published by Kameshki and Saka [22]. 

A Design of three-storey, two-bay steel frame. 

The geometry and loading of a three-storey, two-bay frame are 

shown in Figure 2. The Modulus of Elasticity and Yield stress of 

the steel sections are 29,000 ksi and 36 ksi, respectively. The top 

storey and inter-storey sway (H/300) is limited to 1.44 inch, 0.48 

inch, respectively. The allowable deflection for service imposed 

load (L/360) is considered 0.66 inch. The out-of-plane effective 

length factor for each column (Ky) is taken 1.0. The out of plane 

unbraced length (L/6) for beams is specified to be 40 inch. Bolt 

diameter and end plate thickness are taken to be 1 inch, 0.685 

inch, respectively.  

The following tuning parameters are applied in HS algorithm; 

the harmony memory size (HMS) and the harmony memory con-

sideration rate (HMCR) are selected as 15 and 0.90, respectively. 

The pitch adjustment rate (PAR) selected as 0.45 and bandwidth 

(bw) with a randomly selected neighboring index of -2 or +2, for 

example, if xi
new 

is W14X68, the neighboring index of -2 or +2 

forms a list of W14 x 90, W14 x 82, W14 x 74, W14 x 68, W14 x 

61, W14 x 53, W14 x 48. The algorithm selects a random neigh-

boring section from the four sections, namely; W14 x 82, W14 x 

74 or W14 x 61, W14 x 53). The maximum iteration (Maxiter) is 

2500 i
th

 [36].  

Start
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1. Harmony memory size (HMS).
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Figure 1 Harmony search algorithm optimization and design 

procedure. 
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Figure 2 Three-storey, two-bay steel frame. 
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The results of ten independent runs of the HS steel design optimi-

zation algorithm are presented in Table 2. It is observed that the 

non-linear analysis including p-∆ effect of semi-rigid connection 

frames showed 3.50% less steel weight than those with rigid con-

nections. Table 2 revealed that the optimum weight of semi-rigid 

connection with non-linear analysis in both Full Catalog Section 

(FCS) and Selected Catalog Section (SCS) has the same weight, 

but the convergence was obtained using only 65% of the expected 

iteration with FCS. This means that the SCS has an added flexibil-

ity in choosing beams and columns over those with FCS. In addi-

tion, the solution with linear analysis of semi-rigid connections 

yielded lighter frame weight than those with rigid connections 

2.58% and the optimum weight converged at 1579
th

 iterations was 

obtained using only 63% of the expected maximum iteration 

TABLE 2 

Minimum steel frame weight of three-storey, two-bay steel frame based on HS. 

Frame analysis No. 

Rigid connection Semi-Rigid connection 

FCS FCS SCS 

Linear Non-linear Linear Non-linear Non-linear 

Weight Ib 
Iter. 

ith 

Weight Ib 
Iter. 

ith 

Weight Ib 
Iter. 

ith 

Weight Ib 
Iter. 

ith 

Weight Ib 
Iter. 

ith 

1 6504 1746 6528 2235 6336 1579 6300 2366 6300 1547 

2 6528 2199 6576 1392 6348 1802 6348 1255 6336 1513 

3 6552 1578 6768 1621 6372 2488 6372 1135 6432* 1546 

4 6624 1624 6792* 2235 6396 1615 6396* 1496 6432* 1249 

5 6672 1125 6792* 1586 6456 1748 6396* 1490 6492 2005 

6 6720 2303 6792* 1803 6816 2110 6504 1751 6504* 1558 

7 6792 1542 6864 2130 6852 1657 6516 1622 6504* 1558 

8 6804 1872 6888 2133 6876 1681 6648 1204 6744 1490 

9 7116 2442 6924 1600 6912 1642 6696 2091 6756 1674 

10 7248 2386 7272 1155 7020 2206 7128 1622 6852 1452 

Min weight  (Ib) 6504 - 6528 - 6336 - 6300 - 6300  - 

MAPE         (%) 3.61 - 4.2 - 4.4 - 3.41 - 3.52 - 

Time         (min) 40 65 50 75 65 

Note: 1- The * symbol have the same weights but different sections. 

          2- Mean absolute percentage error (MAPE) =  

Number. analysis Frame =n  Where,

 valueActual

 valueMinimum- valueActual%100

1




n

in

 
 

TABLE 3 
Optimum design results, of three-storey, two-bay steel frame. 

Three story, two bay 

frame 

GAs ( Kameshki , Saka, 2003) HS ( khalifa, 2011) 

Group 
Member 

type 

Rigid connection Semi-rigid connection Rigid connection Semi-rigid connection 

FCS FCS FCS FCS SCS 

Linear Non-linear Linear Non-linear Linear Non-linear Linear Non-linear Non-linear 

1 Column W24x55 W24X55 W21x50 W18X36 W21X44 W21X48 W12X30 W18X40 W12X35 

2 Column W21x44 W16X31 W18x35 W14X26 W14X30 W12X26 W12X26 W12X26 W12X26 

3 Column W12x26 W12X40 W18x35 W8X18 W10X22 W10X22 W8X24 W8X21 W8X24 

4 Column W30x108 W18X35 W27x84 W24X68 W14X38 W16X40 W14X48 W16X40 W14X43 

5 Column W24x55 W18X35 W24x55 W24X68 W14X30 W12X30 W12X30 W12X30 W12X30 

6 Column W18x35 W12X35 W18x46 W18X35 W10X22 W10X22 W12X30 W8X21 W10X22 

7 Beam W14x26 W16X26 W18x35 W16X26 W16X26 W16X26 W16X26 W14X26 W16X26 

Total weight (Ib) 8496 7404 9300 7092 6504 6528 6336 6300 6300 

% weight decrease 25.42 14.91 31.87 11.16 2.58 3.50 0 0 0 

Top story sway 0.48 0.64 0.39 0.61 0.78 0.63 1.13 0.93 0.92 

Note: Allowable top storey sway 1.44 inch 

0.93 

1.35 

1.21 

1.43 

 

Figure 3. Optimum design history of three-storey, two-bay 

frame (SCS). 
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(Maxiter), 2500. Moreover, Table 2 reveals that in all cases of the 

HS mean absolute percentage error (MAPE) was obtained 3.40% - 

4.40%, which reflected the accuracy of algorithm technique. 

Figure 3 shows a typical convergence history for an HS design 

of the three-storey, two-bay steel frames with semi-rigid connec-

tions for SCS analysis. This Figure further illustrates that the op-

timization process decreased gradually to fine-tune. Because the 

values of pitch adjustments PAR and neighboring bandwidth (bw) 

decreased with time to prevent overshoot, oscillations and forcing 

the algorithm to focus more on intensification in the final itera-

tions. Furthermore, the Figure revealed that the convergence curve 

was high up to the iteration number 500
th

, and the optimum value 

was obtained at the iteration number 1547
th

 and kept unchanged 

until the maximum iteration is reached (Maxiter), 2500. 

B Comparison of HS with genetic algorithm for three-
storey, two-bay steel frame. 

The optimum steel section designations obtained by the Harmo-

ny Search (HS) method is given in Table 3. The optimum weight 

of frames with semi-rigid connections is generally less than that of 

frames with rigid connections. In addition, the optimum weight of 

semi-rigid connection with non-linear analysis in both FCS and 

SCS has the same weight, but the sections are completely differ-

ent. When comparing the results of HS with the corresponding 

frames optimized using genetic algorithm (GA) technique, the HS 

indicated 11.16% lighter weights than those optimized using GAs. 

Furthermore, Table 3 revealed that in all cases HS yielded lighter 

frames between 11.16% - 31.87% compared with those obtained 

by GAs. 

The results also showed that the lateral displacement at the top 

storey was 0.92 inch in case of non-linear semi-rigid frame with 

SCS analysis, which is higher than those obtained by GAs, but 

within the allowable limit of AISC-LRFD (1.44 inch). This can be 

attributed to the fact that lighter sections sways more than heavier 

members. 

C Ten-storey, one-bay steel frame. 

The geometry and loading of a ten-storey, one-bay frame are 

shown in Figure 4. The Modulus of Elasticity and Yield stress of 

the steel sections are 29,000 ksi and 36 ksi, respectively. The top 

storey and inter-storey sway (H/300) is limited to 4.92 inch, 0.48 

inch, respectively. The allowable deflection for service imposed 

load (L/360) is considered 1.00 inch. The out-of-plane effective 

length factor for each column (Ky) is taken 1.0. The out of plane 

unbraced length (L/6) for beams is specified to be 60 inch. Bolt 

diameter and end plate thickness are taken to be 1.125 inch, 1.00 

inch, respectively. 

The following tuning parameters are applied in HS algorithm; 

the harmony memory size (HMS) and the harmony memory con-

sideration rate (HMCR) are selected as 20 and 0.90, respectively. 

The pitch adjustment rate (PAR) and neighboring bandwidth (bw) 

are selected as 0.45 and ± 2, respectively. The maximum iteration 

(Maxiter) is 5000 i
th

. [36]. 

The results of ten independent runs of the HS steel design op-

timization algorithm are presented in Table 4. It is observed that 

the linear analysis of semi-rigid connection frames showed 2.03% 

less steel weight than those with rigid connections. Table 4 re-

vealed that the optimum weight of semi-rigid connection with 

linear analysis using SCS showed 1.87% less steel weight than 

those with FCS. This means that the SCS has flexibility in choos-

ing beams and columns than those with FCS. Furthermore, the 

solution with non-linear analysis of semi-rigid connections result-

ed in a heavier frame weight than those with rigid connections 

1.40% due to the magnitude of loading and frame configuration. 

Over the above, Table 4 revealed that in all cases of the HS mean 

absolute percentage error (MAPE) was obtained 1.78% - 6.21%, 

which reflected the accuracy of algorithm technique.  
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Figure 4 Ten-storey, one-bay steel frame. 
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Figure 5 shows a typical convergence history for an HS design of the ten-storey, one-bay steel frames with semi-rigid connections 

for SCS analysis. As shown in this Figure, the optimization pro-

cess decreased gradually to fine-tune. Because the values of pitch 

adjustments PAR and neighboring bandwidth (bw) decreased with 

time to prevent overshoot, oscillations and forcing the algorithm 

to focus more on intensification in the final iterations. Also, the 

Figure revealed that the convergence curve was high up to the 

iteration number 1000
th

, and the optimum value was obtained at 

the iteration number 4050
th

 yet remained unchanged until the 

maximum iteration (Maxiter), 5000. 

D Comparison of HS with genetic algorithm for ten-storey, 
one-bay steel frame. 

The optimum steel section designations obtained by the Har-

mony Search (HS) method is given in Table 5. The optimum 

TABLE 4 

Minimum steel frame weight of ten-storey, one-bay steel frame based on HS. 

Frame analysis No. 

Rigid connection Semi-Rigid connection 

FCS FCS SCS FCS 

Linear Non-linear Linear Linear Non-linear 

Weight Ib 
Iter. 

ith 
Weight Ib 

Iter. 

ith 
Weight Ib 

Iter. 

ith 
Weight Ib 

Iter. 

ith 
Weight Ib 

Iter. 

ith 

1 48828 4122 48420 4421 48744 3492 47832 4050 49110 4864 

2 48972 4919 48654 3727 49068 4994 48216 3916 49146 4274 

3 48984* 4244 48750 3815 49134 3627 49956 3186 49158 4175 

4 48984* 4244 48972 4255 49248 2954 50082 4250 49302 3492 

5 49086 3105 49242 4009 49734 4690 50484 2933 49464 4772 

6 49230 4908 49596 4671 50316* 3323 51996* 2670 50748 3590 

7 49242 2468 49668 4226 50316* 3323 51996* 2670 50508 4894 

8 50106 3674 49908 3479 51792 2948 52206 4190 51132 3489 

9 51600 2071 50166 4872 51810 4908 54000 3074 51168 4442 

10 52368 2982 52254 4326 52428 4395 54042 4155 51912 3814 

Min weight  (Ib) 48828 - 48420 - 48744 - 47832 - 49110  - 

MAPE         (%) 1.78 - 2.26 - 2.95 - 6.21 - 2.06 - 

Time         (min) 75 160 90 100 175 

Note: The * symbol have the same weights but different sections. 

 

 

Figure 5. Optimum design history of ten-storey, one-bay frame 

(SCS). 
TABLE 5 

Optimum design results, of ten-storey, one-bay steel frame. 

Ten-story, one-bay frame GAs ( Kameshki , Saka, 2003) HS ( khalifa, 2011) 

Group 
Member 

type 

Rigid connection Semi-rigid connection Rigid connection Semi-rigid connection 

FCS FCS FCS FCS SCS  FCS 

Linear Non-linear Linear Non-linear Linear Non-linear Linear Linear  Non-linear 

1 Column W36x135 W36x182 W36x160 W36x182 W36X150 W36X150 W24X162 W27X146 W33X152 

2 Column W33x141 W36x135 W36x135 W36x135 W30X132 W33X130 W24X131 W21X122 W30X132 

3 Column W30x108 W30x108 W36x135 W33x118 W27X114 W33X118 W21X101 W21X101 W30X108 

4 Column W27x102 W24x68 W33x118 W27x102 W24X84 W27X84 W14X82 W18X76 W30X90 

5 Column W14x90 W21x111 W30x108 W14x99 W18X76 W24X68 W14X68 W14X82 W27X84 

6 Beam W24x68 W24x68 W24x68 W33x118 W24X76 W24X76 W24X68 W24X68 W24X68 

7 Beam W24x68 W24x68 W24x68 W24x76 W24X76 W24X76 W24X68 W24X68 W24X68 

8 Beam W27x84 W24x68 W24x68 W21x93 W24X68 W24X68 W27X84 W27X84 W24X76 

9 Beam W30x108 W21x44 W18x35 W18x50 W21X48 W21X44 W21X62 W21X62 W18X65 

Total weight (Ib) 51498 49764 51858 58950 48828 48420 48744 47832 49110 

% weight decrease 7.11 1.31 7.76 16.70 2.03 - 1.87 0 0 

Top story sway 0.93 1.35 1.21 1.43 0.91 1.28 1.45 1.43 1.96 

Note: Allowable top storey sway 4.92 inch 

0.93 

1.35 

1.21 

1.43 

0.91 
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weight of frames with semi-rigid connections is generally less 

than that of frames with rigid connections. When comparing the 

results of HS with the corresponding frames optimized using ge-

netic algorithm (GA) technique, the HS indicated 7.76% lighter 

weights than those optimized using GAs. Furthermore, Table 5 

revealed that in all cases HS yielded lighter frames between 

1.31% -16.7% compared with those obtained by GAs. 

The results also showed that the lateral displacement at the top 

storey was 1.43 inch in case of linear semi-rigid frame with SCS 

analysis, which is higher than those obtained by GAs, but within 

the allowable limit of AISC-LRFD (4.92 inch). This can be at-

tributed to the fact that lighter sections will sway more than heav-

ier members. 

VII CONCLUSION. 

The optimum design algorithm is developed for semi-rigid 

steel frames based on the harmony search method which is a new 

stochastic random search approach that simulates the musical pro-

cess of searching for a perfect state of harmony. The benchmark 

design examples presented in this study revealed that the designs 

with semi-rigid connection resulted in lighter frames than the ones 

with rigid connections. In addition, it is observed that nonlinear 

semi-rigid frames are lighter in some cases and heavier in some 

others, compared to linear semi-rigid frames, depending on the 

magnitude of loading and frame configuration. 

The results obtained showed that the harmony search method is 

an efficient and robust technique, because it reached lighter frame 

sections than GAs 1.31%- 31.87%. Moreover, The Optimization 

using Selected Catalog Section (SCS) resulted in lighter frame 

sections than using Full catalog section (FCS) about 1.87%. It is 

further noticed that the mean absolute percentage error (MAPE) 

was obtained 1.78% - 6.21%.  Furthermore, the maximum sway 

obtained at the optimum design increased smoothly in case of 

semi-rigid frame in compression with a rigid frame, this can be 

attributed to the fact that lighter sections sway more than heavier 

members yet remain within the allowable limit by AISC-LRFD.  
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