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Abstract— In this article, a dynamical system  represents the poisoning-pest model  is considered. At First a 

mathematical  model  for  the  poisoning-pest model  is simulated. Since there is no exact  number  of  pests it is 

natural  to consider the variables as  fuzzy variables. Thus we need to consider a fuzzy dynamical system to the 

poisoning-pest model. To solve such a fuzzy optimal control system, using 𝛼-cut, and Zadeh’s extension 

principle,  one can convert this system to a non-fuzzy optimal control system. The final optimal control problem 

is solved by discrelization method. 

    Index Terms—Fuzzy optimal control, Poisoning-pest model, Zadeh’s extension principle, Fuzzy solution, Generalized  

differentiability                                                                                                                   
  

 

I INTRODUCTION

 
Hukuhara differentiability (H-differentiability) for  fuzzy 

functions  was  originally introduced  by Puri and  Raelescu 

in [1].  After  that  Kelva [2] discussed the properties of 

differentiable fuzzy function using Hukuhara derivative. 

Fuzzy differential equations are  studied in several papers [3,   

4]. But Hukuhara derivative has a disadvantage : the 

fuzziness of solution increases when time goes on. 

 

Bede and Gal in [5] introduced the generalized 

differentiability. The presented differentiability has not this 

disadvantage. Apparently the disadvantage of generalized 

differentiability of  a function compared to H-

differentiability is that a fuzzy differential equation has no 

unique solution.  

 

Whenever differential equation and control functions are 

fuzzy in an optimal control problem, we are facing with a 

fuzzy optimal control problem. The so-called problem 

considered by many authors, for example: Diamond and 

Kandel in [4] showed the existence of the fuzzy optimal 

control for the system �̇̃�(𝑡) = 𝑎(𝑡)⨀�̃�(𝑡) ⊕ �̃�(𝑡), �̃�(0) =
�̃�0. Najariyan and Farahi  in [6, 7] found  new techniques 

respectively for solving linear fuzzy controlled systems with 

fuzzy initial conditions and fuzzy optimal linear control 

systems with fuzzy coefficients by using 𝛼-cuts.  

 

One of the application of optimal control problems is the 

problem of controlling pests. Many attempts have been 

made in this area (see [8, 9]). Often times we are not dealing 

with an exact number of pests when we want to control  

pests. In such cases, researchers have used of the theory of 

fuzzy (see [10]).  

This article is based on minimizing the number of pests. 

Because the exact number of pests is not known for us so we 

associate with a optimal fuzzy control. 

 

 This paper is organized as follows: In Section 2 we 
present basic definitions  and theorems of  fuzzy numbers 
and operations of  fuzzy numbers. Also in this section we 
have discussed the definition of Zadeh’s extension 
principle  and generalized differentiability. In Section 3 
we define optimal fuzzy control of a poisoning-pest 
model problem.  In Section 4, we applied the technique to 
a real poisoning-pest  model. Finally, Section 5 will give a 
conclusion briefly.   
 

2   Basic concepts 

Let Ω be a set in ℝ, then a fuzzy subset �̃� of Ω is defined by 

its membership function, �̃�(𝑡), which produces values in 

[0,1] for all 𝑡 in Ω. So, �̃�(𝑡): Ω → [0,1].  
 A fuzzy number is a convex, normalized fuzzy set of the 

real line ℝ whose membership function is piecewise 

continuous and we show it as ℱ(Ω). A triangular fuzzy 

number �̃� is defined by three numbers 𝑎 < 𝑏 < 𝑐 where the 

base of the triangle is the interval [𝑎, 𝑐] and its vertex is at 
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𝑡 = 𝑏. Triangular fuzzy numbers will be written as �̃� =
(𝑎, 𝑏, 𝑐) (see[11]).  

 If �̃� is a fuzzy number then an 𝛼-cut of �̃�, written �̃�𝛼 is 

defined as:  

𝜇𝛼 = [𝜇]𝛼 = {
{𝑥 ∈ Ω|𝜇(𝑥) ≥ 𝛼}   , 0 < 𝛼 ≤ 1

{𝑥 ∈ Ω|𝜇(𝑥) > 0}    , 𝛼 = 0,
 

 

where �̅� denotes the closure of 𝐴 ⊂ Ω and �̃�0 is the support 

of �̃�, (see[12]). 

In this paper, we show the lower bound of �̃�𝛼 , as  �̃�𝛼 and the 

upper bound of it as �̅̃�𝛼.  

Definition 1 (Zadeh’s extension principle). Let Z be a 

cartesian product of universes, that is Z = Z1 × Z2 ×. . .× Zr 

and  μ̃1, μ̃2, . . . , μ̃r be r fuzzy sets in Z1, Z2, . . . , Zr 

respectively and  Y is a given space. Each function f: Z → Y 

induces corresponding function f̃ = ℱ(Z1) × ℱ(Z2) ×. . .×

ℱ(Zr) → ℱ(Y) (i.e., f̃ is a function mapping fuzzy sets in Z 

to fuzzy sets in Y) defined for each fuzzy set μ̃ ∈ Z by  

f̃(μ̃1, μ̃2, . . . , μ̃r)(y)

= {
sup

(Z1,Z2,...,Zr)=f−1(y)
min{μ̃1(z1), μ̃2(z2), . . . , μ̃r(zr)}, f −1(y) ≠ ϕ,

0 f −1(y) = ϕ,
 

 where 𝑓−1 is the inverse of 𝑓. The function 𝑓 is said to be 

obtained from 𝑓 by the extension principle.  

An important result of Zadeh’s extension principle is the 

characterization of the image levels of a fuzzy set through 𝑓, 

where 𝑓 is a continuous function. Therefore if 𝑓: ℝ × ℝ →
ℝ is a continuous function then according to Zadeh’s 

extension principle one can extend 𝑓 to 𝑓: ℱ(ℝ) × ℱ(ℝ) →
ℱ(ℝ) by the equation  

    𝑓(�̃�, 𝜈)(𝑧) = 𝑠𝑢𝑝𝑧=𝑓(𝑠,𝑡)𝑚𝑖𝑛(�̃�(𝑠), 𝜈(𝑡)).                         (1) 

 It is well known that  

  𝑓𝛼(�̃�, 𝜈) = 𝑓(�̃�𝛼 , 𝜈𝛼), 𝛼 ∈ [0,1], �̃� ∈ ℱ(ℝ), 𝜈 ∈ ℱ(ℝ).       (2) 

 Using Zadeh’s extension principle the operations of addition, 

⊕ , multiplication, ⊗, and scalar multiplication, ⨀, on the 

ℱ(ℝ) are defined respectively by 

(�̃� ⊕ 𝜈)(𝑠) = 𝑠𝑢𝑝𝑡∈ℝ𝑚𝑖𝑛{�̃�(𝑡), 𝜈(𝑠 − 𝑡)}, 
(𝜇 ⊗ 𝜈)(𝑠) = 𝑠𝑢𝑝𝑡∈ℝ𝑚𝑖𝑛{�̃�(𝑡), 𝜈(𝑠/𝑡)}, 

 and  

(𝜆⨀𝜇)(𝑠) = {
𝜇(

𝑠

𝜆
),    𝜆 ≠ 0,

𝜒{0},    𝜆 = 0
 

 where 𝜒{0} is the characteristic function of 0. It is clear that the 

following properties are true for all 𝛼-cuts  

[𝜇 ⊕ 𝜈]𝛼 = 𝜇𝛼 + 𝜈𝛼    , [𝜆 ⊙ 𝜇]𝛼 = 𝜆𝜇𝛼    , 𝛼 ∈ [0,1], 
 and  
[𝜇 ⊗ 𝜈]𝛼

= [𝑚𝑖𝑛{𝜇𝛼𝜈𝛼 , 𝜇𝛼�̅�𝛼 , �̅�𝛼𝜈𝛼 , �̅�𝛼�̅�𝛼}, 𝑚𝑎𝑥{𝜇𝛼𝜈𝛼 , 𝜇𝛼�̅�𝛼 , �̅�𝛼𝜈𝛼 , �̅�𝛼�̅�𝛼}]. 

 According to the definition of operations of addition, scaler 

multiplication, the operation subtraction, ⊖, is similarly 

defined .  

Definition 2 [5] Let ũ, υ̃ ∈ ℱ(ℝ) . If there exists w̃ ∈ ℱ(ℝ) 

such that ũ = υ̃ ⊕ w̃, then w̃ is called the Hukuhara-

difference of ũ and υ̃ and it is denoted by  ũ ⊖H υ̃. 

Definition 3 [5]. Let x̃: T ∈ ℝ → ℱ(ℝ) and t0 ∈ T. We say 
that x̃ is differentiable at t0 if :   

 (I) there exists an element �̇̃�(𝑡0) ∈ ℱ(ℝ) such that, for         
all ℎ > 0 sufficiently near to 0, there are �̃�(𝑡0 +
ℎ) ⊖𝐻 𝑥(𝑡0), 𝑥(𝑡0) ⊝𝐻 �̃�(𝑡0 − ℎ) and the limits  
 

𝑙𝑖𝑚ℎ→0+

�̃�(𝑡0 + ℎ) ⊖𝐻 �̃�(𝑡0)

ℎ
= 𝑙𝑖𝑚ℎ→0+

�̃�(𝑡0) ⊖𝐻 �̃�(𝑡0 − ℎ)

ℎ
= �̇̃�(𝑡0), 

 or  

  (II) there is an element �̇̃�(𝑡0) ∈ ℱ(ℝ) such that, for all ℎ <
0 sufficiently near to 0, there are �̃�(𝑡0 +
ℎ) ⊖𝐻 �̃�(𝑡0), �̃�(𝑡0) ⊝𝐻 �̃�(𝑡0 − ℎ) and the limits 
  

𝑙𝑖𝑚ℎ→0−

�̃�(𝑡0 + ℎ) ⊖𝐻 �̃�(𝑡0)

ℎ
= 𝑙𝑖𝑚ℎ→0−

�̃�(𝑡0) ⊝𝐻 �̃�(𝑡0 − ℎ)

ℎ
= �̇̃�(𝑡0). 

 

Theorem 1 [12]. Let �̃�: 𝑇 → ℱ(ℝ) be a function and denote 

�̃�𝛼(𝑡) = [𝑥𝛼(𝑡), �̅�𝛼(𝑡)] for each 𝛼 ∈ [0,1] . Then:   

 (i)  If �̃� is differentiable in the first form (I), then 𝑥𝛼  and �̅�𝛼  

are differentiable functions and �̇̃�𝛼(𝑡) = [𝑥𝛼(𝑡), �̇̅�𝛼(𝑡)]. 

 (ii)  If �̃� is differentiable in the second form (II), then 𝑥𝛼  

and �̅�𝛼  are differentiable functions and �̇̃�𝛼(𝑡) =
[�̇̅�𝛼(𝑡), 𝑥𝛼(𝑡)]. 
 Now we consider the fuzzy initial value problem  

�̇̃�(𝑡) = 𝑓(𝑡, �̃�(𝑡)), �̃�(0) = �̃�0                                                              (3) 

where 𝑓: [0, 𝑇] × ℱ(ℝ) → ℱ(ℝ) is obtained by Zadeh’s 

extension principle from a continuous function 𝑓: [0, 𝑇] × ℝ →

ℝ, Note that 𝑓 is continuous because 𝑓 is continuous (see [13]), 

and by (2) we have 𝑓𝛼(𝑡, �̃�) = 𝑓(𝑡, �̃�𝛼) where 𝑓(𝑡, 𝐴) =
{𝑓(𝑡, 𝑎)|𝑎 ∈ 𝐴}. Associated with (3) we can consider the 

following crisp differential equation  

�̇� = 𝑓(𝑡, 𝑥(𝑡)), 𝑥(0) = 𝑥0                                    (4) 

 where �̇�(𝑡) is the derivative of a crisp function 𝑥: [0, 𝑇] → ℝ . 
For more details see [14].  

Theorem 2 Let �̃� ∈ ℱ(ℝ). Suppose that 𝑓 is a continuous 

function and for each 𝑥0 ∈ ℝ there exists a unique solution 

𝑥(. , 𝑥0) for (4) and that 𝑥(𝑡, . ) is continuous in ℝ for each 

𝑡 ∈ [0, 𝑇]. Then:   

(i) If 𝑓 is nondecreasing with respect to the second 

argument, then the fuzzy solution of (3) and the solution of 

(4) via the derivative in the first from (I) are identical.  

(ii) If 𝑓 is nonincreasing with respect to the second 

argument, then the fuzzy solution of (3) and the solution of 

(4) via the derivative in the second from (II), if it exists, are 

identical.  

 

Proof 1 See [12]  

3 Optimal control of the poisoning-pest model 

In this section we present a fuzzy optimal control for the 

poisoning-pest model. we are going to determine the 

sufficient amount of poison to kill the approximate number 

of pests. Suppose that �̃�(𝑡) is the pest density, �̃�(𝑡) is the 

speed of poison insufflation at time 𝑡 ≥ 0 , where �̃� and �̃� 

are fuzzy numbers. So we hope that in interval time [0, 𝑡𝑓], 

the pest density is reduced desirable. Consider the pest 

density at 𝑡 = 0 is �̃�1. We want to minimize the cost of the 

poison and the harm done to the crop. The fuzzy control 
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model of the poisoning-pest is as follows:  

�̇̃�(𝑡) = �̃�(�̃�(𝑡)) ⊖  �̃�(𝑡) ⊗ �̃�(𝑡),                         (5) 

 where the initial condition �̃�(0) = �̃�1, and the final 

condition is �̃�(𝑡𝑓) = �̃�𝑓 . The function �̃�(�̃�(𝑡)) can be 

written as   𝑟⨀(𝑥 ̃ ⊕ (𝑥 ̃ ⊗ 𝑥 ̃ )⨀
−1

𝑘
),where 𝑟 is the growth 

rate of the pest density and 𝑘 is the maximum pest density of 

the environment (see [15] for more details). The objective 

function is as:  

     min    𝐽(�̃�(𝑡), �̃�(𝑡)) = ∫
𝑇

0
[�̃�(�̃�(𝑡)) ⊕ ℎ̃(�̃�(𝑡))]𝑑𝑡.    (6) 

 Suppose that the function �̃�(�̃�(𝑡)) denote the cost of pest 

harm and the function ℎ̃(�̃�(𝑡)) denotes the expense of the 

poison at the time 𝑡 ≥ 0. 

 4    Application 

We consider the following fuzzy optimal control problem 

(see[15]):  

�̇̃�(𝑡) = 𝑟⨀ (�̃� ⊕ (�̃� ⊗ �̃�)⨀
−1

𝑘
) ⊝ �̃�(𝑡) ⊗ �̃�(𝑡)                            (7) 

 with cost function:  

𝐽(�̃�(𝑡), �̃�(𝑡)) = ∫
𝑡𝑓

0
[�̃�(�̃�(𝑡)) + ℎ̃(�̃�(𝑡))]𝑑𝑡  ,                   (8)  

  

 where 𝑟 =
10

9
, 𝑘 = 20, 𝑡𝑓 = 10 ,�̃�(0) = 5̃ = (4,5,6), 

�̃�(𝑡𝑓 = 10) = 1̃ = (0,1,2), �̃�(�̃�(𝑡)) = 10⨀�̃�(𝑡), and 

ℎ̃(�̃�(𝑡)) = 2⨀�̃�(𝑡). 

So, the fuzzy optimal control problem can be written as:  

min    𝐽(�̃�(𝑡), �̃�(𝑡)) = ∫
10

0

[10⨀�̃�(𝑡) ⊕ �̃�(𝑡)]𝑑𝑡 

�̇̃�(𝑡) =
10

9
⨀(�̃� ⊕ (�̃� ⊗ �̃�)⨀

1

−20
) ⊖ �̃�(𝑡) ⊗ �̃�(𝑡) 

�̃�(0) = (4,5,6), �̃�(𝑇 = 10) = (0,1,2) 

 We solve this problem using 𝛼-cuts technique. We consider 

�̃�𝛼 = [𝑥𝛼 , �̅�𝛼] and �̃�𝛼 = [𝑢𝛼 , �̅�𝛼]. In the problem 𝑓(�̃�, �̃�) =
10

9
⨀(�̃� ⊖

1

20
⨀(�̃� ⊗ �̃�)) ⊖ �̃�(𝑡) ⊗ �̃�(𝑡), is obtained by 

Zadeh’s extension principle from a continuous function 

𝑓(𝑥, 𝑢) =
10

9
(𝑥(𝑡) −

1

20
𝑥2) − 𝑢(𝑡)𝑥(𝑡) , Since 𝑢(. ) is  a 

bounded function, it is not difficult to show that 𝑓(𝑥, 𝑢) is an 

increasing function with respect to 𝑥(𝑡) for all |𝑢(𝑡)| ≤ 1 in 

[0,10], so we must use the first form (I) derivative. Now 

�̇�𝛼 = 𝑓(𝑥𝛼 , 𝑢𝛼 , �̅�𝛼) and �̅̇�𝛼 = 𝑓(�̅�𝛼 , 𝑢𝛼 , �̅�𝛼). the objective 

function is the average of 10𝑥𝛼 + 2𝑢𝛼 and 10�̅�𝛼 + 2�̅�𝛼 . 
So one interfaces the following non-fuzzy optimal control 

problem:  

𝑚𝑖𝑛𝐽 =
1

2
∫

10

0
(10𝑥𝛼(𝑡) + 10�̅�𝛼(𝑡) + 2𝑢𝛼(𝑡) +

                                    2�̅�𝛼(𝑡)) 𝑑𝑡                                                (9) 

𝑠𝑡:    �̇�𝛼(𝑡) =
10

9
(𝑥𝛼(𝑡) −

(𝑥𝛼
2 )(𝑡)

20
) − �̅�𝛼(𝑡)𝑥𝛼(𝑡)            (10) 

�̅̇�𝛼(𝑡) =
10

9
(�̅�𝛼(𝑡) −

(�̅�𝛼)2(𝑡)

20
) − 𝑢𝛼(𝑡)�̅�𝛼(𝑡)                    (11) 

 where the initial conditions are 𝑥𝛼(0) = 5𝛼 + 4(1 −

𝛼), �̅�𝛼(0) = 5𝛼 + 6(1 − 𝛼) and final conditions are 

𝑥𝛼(10) = 𝛼, �̅�𝛼(10) = 𝛼 + 2(1 − 𝛼) for all 𝛼 ∈ [0,1]. 

Because 𝑢𝛼 ∈ [−1,1] and �̅�𝛼 ∈ [−1,1] ,so one can define 

function 𝑢𝛼 = 𝐴1sin(𝑡 ×
𝜋

4
), and �̅�𝛼 = 𝐴2sin(𝑡 ×

𝜋

4
) where 

𝐴1 ∈ [−1,1], 𝐴2 ∈ [−1,1]. We solve this problem by 

discretization method (see for more details [16]), the 

solutions have obtained for 𝛼 = 0,0.25,0.5,0.75,1. The 

solutions of 𝑥𝛼 , �̅�𝛼 and 𝑢𝛼 , �̅�𝛼 are shown in Figure 1 and 

Figure 2 respectively.  

 
 

 

 

5   CONCLUSION 

Optimal fuzzy control theory is applied to a poisoning-pest 

problem. By applying 𝛼-cuts, and using Zadeh’s extension 

principle the fuzzy optimal control of a poisoning-pest 

system, extended to a new form involve in lower and upper 

state and control.  

 Based on diseretization method, the above metioned non-

fuzzy optimal control problem is solved. 
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   Figure  1: The number of pests , 𝑥𝛼 , �̅�𝛼 

 

     Figure  2: The speed of poison, 𝑢𝛼 , �̅�𝛼 
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