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Empirical Capacitive Deionization ANN Nonparametric Modeling 

for Desalination Purpose  
Adel El Shahat 

Abstract— This paper proposes Capacitive Deionization (CDI) Operational Conditions Nonparametric 
Modeling for desalination purposes. CDI technique is advantageous due to its low energy consumption, low 
environmental pollution, and low fouling potential. The objective of this paper is to model the investigation of 
different operational conditions (Total Dissolved Solids (TDS) concentration, temperature, flow rate) effect on 
the CDI electrosorption efficiency and energy consumption. The modeling based on real experimental data with 
Laboratory scale experiments were conducted by using a commercial CDI with activated carbon electrodes 
developed by Aque EWP [1], as a training data and express them as algebraic functions to connect between 
various operational characteristics. This is done by developing four models with the aid of Artificial Neural 
Network (ANN). First one to express electrosorptive performance of CDI at different solution temperatures with 
Temperature and Time as inputs and TDS as output. Second one for Efficiency as output with Temperature, Time 
and TDS as inputs. Third one to illustrate effect of flow rate on electrosorption efficiency and energy 
consumption with Flow Rate and Time as inputs and TDS as output. Forth one for Energy Consumption as 
output and Operational Flow Rate, Time and TDS as inputs. All characteristics are well depicted in the form of 
3D figures as the training data for ANN models to show the validity of the proposed technique in interpolations 
and estimations. ANN technique models are adopted for various characteristics estimation process and 
generation of functions for theses experimental data due to its advantages. ANN models are created with suitable 
numbers of layers and neurons, which trained, simulated, checked, verified and their algebraic equations are 
concluded accurately with excellent regression constants.   

 
 Index Terms— Capacitive Deionization (CDI), modeling, neural network, and estimation. 

 

 

I INTRODUCTION 

 
       The clean water is one of the key technological, social, 

and economical challenges of the 21st century. It is 

acknowledged as a basic human right by the United Nations 

[5]. Currently techniques such as reversible osmosis, electro 

dialysis or distillation are applied to desalinate salty water. 

Capacitive Deionization (CDI) has emerged over the years 

as a robust, energy efficient, and cost effective technology 

for desalination of water with a low or moderate salt content 

[1]-[3], and as promising energy efficient method. A simple 

operational principle is shown in Fig. 1. The system consists 

of a fluidic in- and outlet with channel in between. Within 

the channel two desalination electrodes are situated which in 

our case are situated within the same plane. Salt water enters 

the channel and a potential is applied across the electrodes. 

The cations and anions will be attracted to oppositely 

charged electrodes and are stored in the electrical double 

layer. After the electrodes are saturated, the system is regen-

erated [2], [4]. This technique is specifically interesting for 

portable desalination units.  

 
Figure 1 Capacitive deionization. A potential is applied across two elec-

trodes. Ions are attracted to the oppositely charged electrode. Fresh water 

exits the system. After the electrodes are saturated, the system is regenerat-

ed. 

CDI operates at a relatively low electrical voltage for the 

removal of ions and it doesn’t produce any secondary regen-

eration wastes [4], [6]. In addition, CDI doesn’t require pres-

sure driven membranes or high pressure pumps so that it 

avoids the scaling problems that always occur with conven-

tional membrane based technologies for desalination [7], [8]. 

Regeneration of electrodes is then required by applying a 

reverse potential to the electrodes to get rid of the adsorbed 

ions into the waste stream [9]. Electrosorptive performance 

with modified activated carbon cloth as CDI electrodes was 

also investigated [10]. Some papers paid attention on the 

effect of operational conditions to CDI, efficiency and ener-

gy consumption [11] – [14]. Some researches depend on 

Artificial Neural Network too for modeling desalination 

techniques [15]. Response surface methodology (RSM) and 
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artificial neural network (ANN) have been used to develop 

predictive models for simulation and optimization of reverse 

osmosis (RO) desalination process [16]. A solar powered 

membrane distillation system has been used for developing 

an optimizing control strategy using ANN model of the sys-

tem based on experimental data under various operating 

conditions [17]. Comparative energy consumption analysis 

study of capacitive deionization are adopted [18]. A nonline-

ar inverse model control strategy based on neural network is 

proposed for desalination plant to handle complex and non-

linear process relationships [19]. Many benefits drawn from 

previous works were applied to this work. This work ad-

dresses the nonparametric modeling of Capacitive Deioniza-

tion (CDI) Operational Conditions. This model investigates 

the effects operational conditions like: Total Dissolved Sol-

ids (TDS) concentration, temperature, and flow rate on the 

CDI electrosorption efficiency and energy consumption. The 

modeling here based on several electrosorption experiments 

were conducted by using a commercial CDI technology 

AQUA EWP at different flow rates, feed solution TDS con-

centrations and solution temperatures as shown in [1]. This 

real experimental data is used as a training data to be ex-

pressed as algebraic functions to connect between various 

operational characteristics. Four ANN models are developed 

to predict and estimate the performance within the range of 

the training data for the measured and unmeasured values. 

1st model for electrosorptive performance of CDI at different 

solution temperatures which take Temperature and Time as 

inputs and TDS as output. 2nd model for Efficiency as output 

with Temperature, Time and TDS as inputs. 3rd model for 

effect of flow rate on electrosorption efficiency and energy 

consumption with Flow Rate and Time as inputs and TDS as 

output. 4th model for Energy Consumption as output and 

Operational Flow Rate, Time and TDS as inputs. All charac-

teristics are well depicted in the form of 3D figures as the 

training data for ANN models. ANN technique models are 

adopted for various characteristics estimation process and 

generation of functions for theses experimental data due to 

its advantages. ANN models with Back - Propagation (BP) 

technique are created with suitable numbers of layers and 

neurons, which trained, simulated, checked, verified and 

their algebraic equations are concluded accurately with ex-

cellent regression constants. The ANN models' algebraic 

equations are deduced for use directly. These models are 

validated in the means of comparisons between real data and 

simulated corresponding data from ANN model with excel-

lent acceptable error between targets and outputs.  

II THE COMMERCIAL CDI PILOT PLANT [1] 

      The commercial CDI unit used in this research [1], was 

developed by AQUA EWP, USA. Fig. 2 shows a schematic 

diagram of the used CDI unit. As shown in it, the influent 

water is pumped from a storage tank through a pre-filter and 

afterwards passes over a flow weir to measure the influent 

flow to two carbon electrode cells connected in series. The 

electrodes within the cell are chargeable by applied DC po-

tential in the range of 1 to 1.5 VDC. The whole operational 

cycle of the CDI takes 2.5 minutes. The cycle consists of 

two main steps, the regeneration mode step and the purifica-

tion mode step [1]. The regeneration step commences with 

30 seconds when the effluent solenoid valve (SV1) and the 

influent solenoid valve (SV0) are closed and the supplied 

power is off, followed by another 30 seconds when the ef-

fluent waste solenoid valve (SV2) and the influent solenoid 

valve (SV0) are opened and the power is turned on with 

opposite polarity of 1.5 VDC. After 60 seconds the regen-

eration step finished. The purification step is started imme-

diately following this and it takes 90 seconds to purify the 

feed solution. Here the influent solenoid valve (SV0) and the 

effluent solenoid valve (SV1) are opened. The CDI contains 

a critical acid cleaning tank for the cleaning of the electrodes 

when the purification doesn’t meet the standards. A heater 

was supplied to maintain the required temperature for the 

feed solution [1]. 

 
Figure 2 CDI schematic diagram 

        Fig. 3. Shows a schematic diagram of the CDI cells 

construction. The electrodes are mainly composed of acti-

vated carbon with an organic binder. Each cell contains a 

mass of 1354 grams of activated carbon. The electrodes 

within the cell consist of a conductive surface sandwiched 

between layers of activated carbon. A nonconductive spacer 

material separates the plates from each other. These elec-

trodes are connected to two sides of DC power supply by 

using connecting leads [1].  

 
Figure 3 CDI construction schematic diagram 

III Experimental Data 

     A series of laboratory experiments were conducted to 

investigate the effect of operational conditions (TDS con-

centration, flow rate, temperature) on the CDI electrosorp-

tion efficiency and energy consumption [1].  

A  Electrosorptive performance of CDI at different 

temp.s 

      Fig. 4. Shows the purified stream TDS concentration of 

the CDI unit at different temperatures. It is shown that puri-
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fied stream TDS concentration increases gradually by in-

creasing solution temperature. These results in [1], are con-

sistent with the results reported by Xu et al. [7] in treating 

brackish produced water from a natural gas operation site. 

 
Figure 4 TDS at different feed solution temperatures [1], [7] 

 

       Fig. 5. Shows the relationship of electrosorption remov-

al efficiency and solution temperature [1]. It can be noticed 

that the electrosorption removal efficiency is inversely pro-

portional to solution temperature. As a result, higher electro-

sorption removal efficiency at low temperature may be 

caused by the transition from hydrophobic to hydrophilic 

transitions on the surface of the activated carbon [20].   

 
Figure 5 Removal efficiency as a function of solution temperature [1], [20] 

 

It is notified from figure 5, the removal efficiency is 
changed from 90% to 80% when the temperature changed 
from 20 to 50 degree. The change in the removal efficiency 
is not so significant comparing with the change of the 
temperature as one of the advantages of this experimental 
apparatus as shown from these measured results.   

B Effect of flow rate on elec.efficiency & energy consum. 

      Fig. 6. Depicts the variation of the purified stream TDS 

concentration with different flow rates [1]. It is shown that 

the TDS concentration increases by increasing the flow rate. 

These results are consistent with the results reported by Li et 

al. [21].  

 
 
 
 

 
 

 

 

 

Figure 6 Purified stream TDS at different flow rates [1], [21] 

Fig. 7 shows the effect of different operational flow rates 

on the energy consumption. It is seen that as the flow rate 

increases the energy consumption decreases [1], [21]. 

 
Figure 7 Effect of operational flow rate on energy consumption [1], [21] 

 

      The previous figures are used as training or learning data 

for the ANN models as shown later. 

IV ARTIFICIAL NEURAL NETWORK MODELING 

         Using the Artificial Neural Network (ANN), with 

back-probagation technique [22]-[29] to implement four 

models; First one to express electrosorptive performance of 

CDI at different solution temperatures with Temperature and 

Time as inputs and TDS as output. Second one for Efficien-

cy as output with Temperature, Time and TDS as inputs. 

Third one to illustrate effect of flow rate on electrosorption 

efficiency and energy consumption with Flow Rate and 

Time as inputs and TDS as output. Forth one for Energy 

Consumption as output and Operational Flow Rate, Time 

and TDS as inputs, to help in modeling, parameters and 

characteristics estimation. This is done to make benefits 

from the ability of neural network of interpolation between 

points and also curves. Finally, the algebraic equations are 

deduced to use it without training the neural unit in each 

time.  

A CDI Temperatures Electrosorptive ANN Model  

      This model' inputs are the Temperature and Time and 

TDS as output as shown in Fig. 8. 

 

 
 

 

 

 

Figure 8 A schematic diagram of 1st ANN model 

The model algebraic equation is deduced as the following:  

 

(10.0722) / 35) - re(Temperatu = eTemperatur n
      (1)                                          

(7.3753) / 13.5288) - (Time = Timen
        (2)                                                                        

The previous Equations present the normalized inputs (sub-

script n denotes normalized variable) for the ANN model 

and the following equations lead to the required derived 

output equation. 

TDS

Temperature

Time

Hidden Layer

Logsig

19 Neurons

Output Layer

Purelin

1 Neurons
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10.0259- F19 0.5150- F18 0.4842- F17 0.1481-

  F16 2.2549- F15 1.8162 + F14 0.4592- 

 F13 0.2748- F12 3.3387- F11 1.8441 + F10 1.1421- 

 F9 9.3616 + F8 0.6728 + F7 11.5199 + F6 0.3082-  F5 0.2253

 + F4 0.5261 + F3 0.1498 + F2 0.3075 + F1 0.4576 = TDSn

   

(5) 

The un- normalized output 

 168.0582 + TDS 38.2848 =  T nDS           (6)                               

 

 
 

 

 

 

 

 

 

Figure 9 Output VS Target for 1st Model 

 
Figure 10 Training state and error for 1st Model 

 
Figure 11 Regression for 1st Model = 1 

B Electrosorption Removal Efficiency ANN Model  

     This model' inputs are Temperature, Time and TDS and 

the output is Electrosorption Efficiency as shown in Fig. 12.  

 

TDS

Temperature

Time
Hidden Layer

Logsig

3 Neurons

Output Layer

Purelin

1 Neurons

Efficiency

 
Figure 12 A schematic diagram of 2nd ANN model 

 

The model algebraic equation is deduced as the following 

with using the previous normalized Eq.s for inputs.                                                 

-26.0098                        

125.9409  -85.6763 -235.0903

 -1.1231    -0.0065    -0.0494

Temperaturen

    Timen

    TDSn

+

-39.8512

          

   -      

  E1

  E2

  E3

    

=E =

          
(7)                                                        

 ))E (- exp + (1 / 1=F 1,2,31,2,3
                                         (8) 

1.2829- + F3 3.7335 + F2 0.0157- + F1 3.2296 = E nfficiency    

(9) 

The un- normalized output 

 0.8386 + fficiency 0.0366 = fficiency nEE        (10)                

 
 

 

 

 

 

 

 

 

 

Figure 13 Output VS Target for 2nd Model 
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Figure 14 Training state and error for 2nd Model 

 
Figure 15 Regression for 2nd Model = 0.99983 

 

The data is well depicted in the following 3D figures for 

the inputs and targets (outputs) of the previous two models 

(1st and 2nd) to adequate with the function of ANN technique 

and cover all data as mapping surface.   
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Figure 16 3D relation for TDS, Temperature with time 
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Figure 17 3D relation for Efficiency, Temperature with time 
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Figure 18 3D relation for Efficiency, TDS with time 

C CDI Different flow rate Electrosorptive Perf. ANN 

Model  

       This model' inputs are Flow Rate and Time as in-

puts and TDS as output as shown in Fig. 19.  

 

TDS

Flow Rate

Time

Hidden Layer

Logsig

19 Neurons

Output Layer

Purelin

1 Neurons

 
Figure 19 A schematic diagram of 3rd ANN model 

The model algebraic equation is deduced as the follow-

ing:  

 

(1.1529) / 2.75) - (F = F n lowRatelowRate                      (11)                    

 (7.2835) / 13.2811) - (Time = Timen
                     (12)                                                    

 

Eq. s (11), (12) present normalized inputs.  
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613.1402- F19 312- F18 312 + F17 0.4- 

+ F16 0.4 + F15 619.2+ F14 0.2 + F13 0.4- F12 0.2 

+ F11 5.3- F10 6.6- F9 0.7 + F8 0.4 +F7 0.5- F6 618.7 

+ F5 - F4 0.4 + F3 1.3 + F2 0.2- F1 1109.9= TDSn

 

(15) 
The un- normalized output 

 181.3325+ TDS 90.3743 =  T nDS                        (16)              

 
 

 

 

 

 

 

 

 

 

Figure 20 Output VS Target for 3rd Model 

 
Figure 21 Training state and error for 3rd Model 

 
Figure 22 Regression for 3rd Model = 0.99999 

D Energy Consumption ANN Model  

     This model' inputs are Operational Flow Rate, Time and 

TDS; Energy Consumption is the output as shown in Fig. 

23.  

TDS

Flow_Rate

Time
Hidden Layer

Logsig

3 Neurons

Output Layer

Purelin

1 Neurons

Energy 

Consumption

 
Figure 23 A schematic diagram of 4th ANN model 

The model algebraic equation is deduced as the following 

with using the previous normalized Eq.s for inputs.                                                 

Flow_Raten

    Timen

    TDSn

+

  E1

  E2

  E3

    

=E =

  -5.6641   -0.1956    3.0769

 -58.0280   -0.0159    0.1877   

 7.5388    0.4935   -7.0334

0.1002

-63.5309

-1.3085

  
(17)                

       ))E (- exp + (1 / 1=F 1,2,31,2,3
                                 (18) 

1.0036- F3 0.3765 + F2 2.127 + F1 1.1306= mptionergy_ConsuE nn        

(19) 

The un- normalized output 

 3.26 + _n 1.5219 =  _n nnConsumptioergyEnConsumptioergyE

                                          (20) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 Output VS Target for 4th Model 

 
Figure 25 Training state and error for 4th Model 

 
Figure 26 Regression for 4th Model = 0.9998 

The data is well depicted in the following 3D figures for 

the inputs and targets (outputs) of the previous two (3rd, and 

4th) models to adequate with the function of ANN technique 

and cover all data as mapping surface.   
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Figure 27 3D relation for TDS, Flow Rate with time 
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Figure 28 3D relation for Energy Consumption, Flow Rate with time 
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Figure 29 3D relation for Energy Consumption, TDS with time 

V  CONCLUSION 

This paper gives a point of view for CDI technology as a 

novel electrosorption process for water desalination. CDI 

has many advantages due to its low energy consumption, 

low environmental pollution, and low fouling potential. This 

work addresses the nonparametric modeling of Capacitive 

Deionization (CDI) Operational Conditions. The modeling 

here based on several electrosorption experiments were con-

ducted by using a commercial CDI technology AQUA EWP 

at different flow rates, feed solution TDS concentrations and 

solution temperatures as shown in [1]. Four ANN models 

are efficiently developed to predict and estimate the perfor-

mance within the range of training data for the measured and 

unmeasured values. 1st model takes Temperature and Time 

as inputs and TDS as output. 2nd model for Efficiency as 

output with Temperature, Time and TDS as inputs. 3rd mod-

el takes Flow Rate and Time as inputs and TDS as output. 

4th model for Energy Consumption as output and Operation-

al Flow Rate, Time and TDS as inputs. All characteristics 

are well depicted in the form of 3D figures. ANN models 

with Back - Propagation (BP) technique are created with 

suitable numbers of layers and neurons. The ANN models' 

algebraic equations are deduced for directly usage. The re-

sults obtained are sufficiently accurate to apply the models 

involving less computational efforts. These models are 

checked and verified by comparing actual and predicted 

ANN values, with a good errors values and excellent regres-

sion factors between 0.99983 to 1 imply accuracy. Artificial 

neural networks (ANNs) can handle complex and nonlinear 

process relationships, and are robust to noisy data. Also, the 

neural networks are trained for nearly 70% of these training 

data extracted and then checked for the rest 30 % with the 

70 %, i.e. for the whole 100 % range in the form of compari-

sons. The data used not only the dotted one but also some 

from in between the shoen points for more visiability. ANN 

is also used for all the whole ranges and in between curves 

(which we do not know) like the 3D figures shown for all 

parameters and characteristics.  
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