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Abstract 

Effect of host-generated cues on foraging speed of herbivore as well
as its natural enemies was studied under net house conditions in
Meghalaya, India. Foraging speed of P. brassicae was significantly
higher towards the healthy plants, whereas it was lowest towards the
damaged plants along with herbivore cues. In contrast foraging speed
of parasitoids H. ebeninus and C. glomerata was highest towards dam-
aged plants along with herbivore cues and lowest towards healthy
plants. It indicates that herbivore and its parasitoids respond to the
volatiles generated by their host. In addition to host plants natural ene-
mies also utilize herbivore-generated cues for their detection.

Introduction

Cabbage white butterfly, Pieris brassicae (Linnæus) is a major pest
of several economically important brassicaceous crops in hilly regions
of India including north eastern states (Sachan & Gangwar, 1980).
Although chemical pesticides are very effective, several times they are
hazardous to the human as well as natural enemies of crop pests.

Therefore biological control based on parasitoids, predators and
pathogens are gaining prime importance. Parasitoids play an impor-
tant role in reducing the population density of P. brassicae as well as
generalist predators such as spiders, Chrysopids, staphylinids and
carabids also attack the eggs and larvae (Pfiffner et al., 2009).
Ichneuomonid wasp, Hyposoter ebeninus (Gravenhorst) and braconid
wasp, Cotesia glomerata (Linnæus) are two well known parasitoids of
P. brassicae and attempts are being made to properly utilize them into
the biological control programs against the crop pests. Though bio-
control is an old practice, it is however not much popular due to sever-
al limiting factors including knowledge on parasitoid ecology, behavior,
plant-insect interactions and the role played by the parasitoids. 
Plants can protect themselves from insect pests by attracting their

natural enemies with the help of different cues. These cues can be
herbivore induced plant volatiles or herbivore emitted volatiles.
Compounds released by the plants in response to insect damage per-
mit parasitoids to differentiate between healthy and damaged plants
and thus it helps in finding their host. The chemical defense mecha-
nisms of plants are either direct or indirect (Dicke & Sabelis, 1988; Vet
& Dicke, 1992; Cartesero et al., 2000; Dicke & Van Loon, 2000; Van
Loon et al., 2000; Kessler & Baldwin, 2002; Shiojiri, 2002). Direct
defense mechanism occurs when secondary metabolites produced by
the plants repel or avoid insect pests from feeding on them or kills this
herbivore after ingestion of a plant parts (Van Loon et al., 2000).
Conversely indirect chemical defense mechanism utilizes provision of
herbivore specific foraging cues to natural enemies of the feeding
insects (Takabayashi et al., 1991; Hoballah & Turlings, 2001; Dicke et
al., 2003; Turlings & Wackers, 2004; Schnee et al., 2006). Many studies
indicating tri-trophic relationship in cole crops ecosystems exist, par-
ticularly with cabbage plants species P. brassicae, C. glomerata
(Fatouros et al., 2012) and H. ebeninus. However, the basic knowledge
on impact of different host generated cues on herbivore and their nat-
ural enemies is not available. Therefore the present investigation was
carried out to generate the information on influence of different cues
(plant and herbivore volatiles, herbivore excreta, etc.) on foraging
behavior of herbivore and its natural enemies.

Materials and methods

All experiments were carried out inside the net house at entomolo-
gy farm, Division of Crop Improvement (Entomology), ICAR Research
Complex for NEH Region, Umiam, Meghalaya, India. Egg masses of the
cabbage butterfly P. brassicae were collected from the cabbage fields of
Division of Crop Improvement of the Institute and reared inside wood-
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en cages (30¥30¥45 cm) on live cabbage plants. After pupation all the
pupae were removed and kept separately inside the glass jar up to adult
emergence. Similarly first and second instar larvae of P. brassicae were
also collected from the same cabbage fields and reared inside the
cages. After two weeks parasitized larvae were removed and reared sep-
arately in plastic vials (100 mL) up to the emergence of either gregari-
ous larval parasitoid, C. glomerata or solitary larval parasitoid, H. eben-
inus. Honey solution (10%) was provided as a food to the adult insects.
Newly emerged insects after mating were used for the experiment.
One-month-old seedlings of cabbage plants (Hybrid: Wonder ball)

were transplanted into the plastic pots (30¥30 cm) and all the neces-
sary horticultural practices (i.e., irrigation, weeding and other intercul-
tural operations) were followed for healthy growth of the crop. The
experiment was conducted after 1.5 months of transplanting. Six differ-
ent treatments were considered in this study (Table 1) considering the
importance of host-plant, herbivore volatiles and herbivore products.
Accordingly six different groups of five plants were prepared inside the

net house, each plant in a group was separated by 15 cm and each group
was placed in different corners at 2 m distance (Figure 1). Wherever
required the fresh excreta of first instar larvae (2 g) were used during
the overall experiment. Five 3-day-old larvae were used in the experi-
ment and kept in the specialized vial (the lid made up of very fine nylon
net) during experiment. In mechanical damage treatment, the tender
leaves of appropriate size (two in each plant) were mechanically dam-
aged and they were exposed to the test insects after about one hour.
Newly hatched adults (less than 12 h of emergence) were used for this
study. After one hour, thirty adults of P. brassicae and both species of par-
asitoids were released from the center point of the net house in such a
way that the distance between the release point to all the treatments
should be similar (Figure 1). Six independent observers were appointed
for taking readings during the experiments. The observations on forag-
ing speed (number of visits per 5 min) were recorded in six different
groups of plants. The experiment was conducted for three times from

9.00 a.m. to 4.00 p.m. (3 h interval) in each day and the whole experi-
ment was repeated for three times at five days interval. 
The data were processed with SPSS version 13.0 (StataCorp., College

Station, TX, USA) for MS-Windows for all statistical analysis. The
homogeneity of variances between different treatments was tested
with Levene’s test, differences between treatments were afterward
tested using analysis of variance (ANOVA), at a P=0.05 significance
level. Tukey’s honestly significant difference (Tukey’s HSD) test was
used to find means that were significantly different from each other. 
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Table 1. Six different treatments used in the experiment.

Treatment Description

MDP Mechanically damaged plants (similar to first instar larval damage)
MDP+LE Mechanically damaged plants + larval excreta of first instar larvae
MDP+LE+L Mechanically damaged plants + larval excreta + 3-day-old first instar larvae (L) (inside the insect rearing vial to restrict the movement) 
HP+LE Healthy plants + larval excreta
HP+LE+L Healthy plants + larval excreta + 3-day-old first instar larvae (inside the insect rearing vial) 
HP Healthy plants
MDP, mechanically damaged plants; LE, larval excreta; L, larvae; HP, healthy plants.

Table 2. Behavioral response of P. brassicae (L.) and its natural enemies under the influence of plant and herbivore volatiles.

Treatments Number of visits per 5 min
P. brassicae H. ebeninus C. glomerata

MDP 2.00±0.19 11.67±0.38 13.22±0.06
MDP+LE 1.70±0.12 17.33±0.19 16.67±0.13
MDP+L+LE 0.40±0.04 23.12±0.07 25.33±0.04
HP+L+LE 3.82±0.02 12.33±0.19 10.33±0.19
HP+LE 3.28±0.35 7.16±0.10 9.12±0.07
HP 7.60±0.23 3.33±0.19 4.67±0.10
F value 167.34 1087.37 3241.28
F test <0.001* <0.001* <0.001*

MDP, mechanically damaged plants; LE, larval excreta; L, larvae; HP, healthy plants. *Significantly different at: P≤0.05.

Figure 1. Arrangement of six treatments inside the net house.
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Results

In Table 1 the different treatment are summarized with abbreviations.
Foraging speeds during different treatment are reported in Table 2.
Foraging speed of P. brassicae was significantly higher (F=167.34,
P<0.01) comparing the healthy plants (HP) (7.60±0.23 visits/5 min) with
HP+larvae (L)+larval excreta (LE) (3.82±0.02 visits/5 min), HP+LE
(3.28±0.35 visits/5 min), mechanically damaged plants (MDP)
(2.00±0.19 visits/5 min) and MDP+LE (1.70±0.12/5 min); foraging speed
was lowest towards the treatment MDP+L+LE (0.40±0.04 visits/5 min).
In contrast, foraging speed of H. ebeninus was highest (F=1087.37,
P<0.01) towards MDP+L+LE (23.12±0.07 visits/5 min) followed by treat-
ment MDP+LE (17.33±0.19 visits/5 min), HP+L+LE (12.33±0.19 visits/5
min), MDP (11.67±0.38 visits/5 min), HP+LE (7.16±0.10 visits/5 min)
and it was lowest towards the healthy plant (3.33±0.19 visits/5 min). A
similar trend was also observed in the case of gregarious larval para-
sitoid, C. glomerata (F=3241.28, P<0.01).

Discussion and conclusions

Insect pests use various cues to find out their host plants and sever-
al times these cues are the volatiles released by host plants in response
to the herbivore damage. In the present study butterfly visits were sig-
nificantly higher towards the healthy plants compared to damaged
plants. Therefore it is possible that several factors including host plant
damage, plant size, herbivore density and chemical composition of
plants are responsible of egg laying preference by female butterfly.
Higher visit frequency of butterfly towards undamaged and herbivore
free plants might be due to avoid intra-specific competition or aggrega-
tion of the offspring’s. Parasitoids also utilize different cues generated
by the host plants to locate their hosts i.e. herbivore (Vinson, 1976;
Turlings et al., 1990; Vet & Dicke, 1992; Dicke, 1999; Schnee et al.,
2006; Heil, 2008; Fatouros et al., 2012).
In the present study the parasitoids visited damaged plants with her-

bivores and their traces more frequently than healthy plants, indicating
that parasitoids respond to the volatiles generated by host plants in an
opposite direction respect to herbivores. Furthermore, likewise, dam-
aged plants with larval excreta were visited by parasitoids with higher
frequency respect to healthy plants with larval excreta. Therefore, in
addition to host plants, natural enemies also utilize herbivore generat-
ed cues for their detection, this statement is supported by previous
researches (Turlings et al., 1993). Mattiacci et al. (1994) also reported
that healthy plants treated with herbivore regurgitate, attract para-
sitoids. Further the number of visits by both the parasitoids was high-
er in damaged plants over healthy plants. These results are in agree-
ment with other findings (Geervliet et al., 1994; Potting et al., 1999),
where it was observed that C. glomerata along with C. rubecula pre-
ferred herbivore-damaged plants to undamaged HP. 
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