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Response of chironomid species (Diptera, Chironomidae)
to water temperature: effects on species distribution in specific habitats
L. Marziali,1 B. Rossaro2
1CNR-IRSA Water Research Institute, U.O.S. Brugherio, Brugherio (MB); 2Department of Food,
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Abstract 

The response of 443 chironomid species to water temperature was
analyzed, with the aim of defining their thermal optimum, tolerance
limits and thermal habitat. The database included 4442 samples main-
ly from Italian river catchments collected from the 1950s up to date.
Thermal preferences were calculated separately for larval and pupal
specimens and for different habitats: high altitude and lowland lakes
in the Alpine ecoregion; lowland lakes in the Mediterranean ecore-
gion; heavily modified water bodies; kryal, krenal, rhithral and potamal
in running waters. Optimum response was calculated as mean water
temperature, weighted by species abundances; tolerance as weighted
standard deviation; skewness and kurtosis as 3rd and 4th moment sta-
tistics. The responses were fitted to normal uni- or plurimodal
Gaussian models. Cold stenothermal species showed: i) unimodal
response, ii) tolerance for a narrow temperature range, iii) optima
closed to their minimum temperature values, iv) leptokurtic response.
Thermophilous species showed: i) optima at different temperature val-
ues, ii) wider tolerance, iii) optima near their maximum temperature
values, iv) platikurtic response, often fitting a plurimodal model. As
expected, lower optima values and narrower tolerance were obtained
for kryal and krenal, than for rhithral, potamal and lakes. Thermal

response curves were produced for each species and were discussed
according to species distribution (i.e. altitudinal range in running
water and water depth in lakes), voltinism and phylogeny. Thermal
optimum and tolerance limits and the definition of the thermal habi-
tat of species can help predicting the impact of global warming on
freshwater ecosystems.

Introduction

Global warming is affecting freshwater macroinvertebrate commu-
nities with alteration of species distribution and phenology. In partic-
ular, increased water temperature will induce a change in distribution
of species, which will react following their thermal optimum along an
altitudinal and/or latitudinal gradient (Hughes, 2000; Nyman et al.,
2005; Bonada et al., 2007; Sheldon, 2012).
According to species adaptations, each habitat will show different

sensibility: in Southern Europe, kryal, krenal, high altitude lakes and
ponds are supposed to be sensitive habitats, being characterized by
stenotopic taxa directly influenced by water temperature (Boggero et
al., 2006; Rossaro et al., 2006a; Tixier et al., 2009; Jacobsen et al., 2012;
Lencioni et al., 2012). A lot of species won’t probably survive global
warming, since spatial isolation may give little opportunity to migrate
elsewhere.
On the contrary, the response of habitats at lower altitude is poorly

understood, as species thermal optimum and tolerance are less known
and other factors generally contribute in structuring biotic communi-
ties (Jacobsen et al., 1997). Moreover, some studies showed that local
adaptations may induce different thermal sensibility of single species
at different sites and habitats. In particular, acclimation temperature
during lifetime was proved to affect tolerance of populations (Dallas &
Rivers-Moore, 2012). Besides, microevolutionary dynamics at local
scale may separate the response of populations, and consequently
their fitness (Hogg et al., 1998; Van Doorsalaen et al., 2009). Therefore
it is necessary to determine the extent to which thermal response of
species varies among habitats, to determine which communities are
more menaced by global warming.
Studies on aquatic organisms based on lethal or sub-lethal end-

points (e.g. death, ability to escape unfavourable conditions, growth,
reproduction, etc.) were carried out in experimental mesocosms or lab
tests to derive thermal performance curves that relate species
response to water temperature (Hester & Doyle, 2011; Dallas & Rivers-
Moore, 2012), with definition of critical thermal maxima or minima.
This approach may be successful to detect biological or physiological
processes mostly affected by altered temperature. Nonetheless thermal
history, acclimation, rate of temperature change, test duration, life
stage have been shown to affect results. Moreover, the difficulty of taxa
identification may hinder test application at species level, and many
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studies considered genera, families or even orders (Dallas & Rivers-
Moore, 2012).
More realism could be achieved determining the temperature range

that organisms experience in the field (Rossaro, 1991a, 1991b, 1991c).
Data from different ecological surveys in freshwater ecosystems could
be gained and specimens collected can be identified at species level. In
this way a large amount of data for each species can be gathered. This
approach could be successful to determine species thermal preferences
and tolerance limits (i.e. temperature beyond which organisms avoid)
in different habitats, seasons and life stages. In fact, empirical data
may allow going beyond local adaptations of taxa and drawbacks of
manipulation tests. This approach was recently adopted at European
scale (AQEM project) (Hering et al., 2004) for many macroinvertebrate
groups collecting published data to derive species’ ecological prefer-
ences (Schmidt-Kloiber & Hering, 2012). Nonetheless species respons-
es have been expressed as qualitative rather than quantitative fea-
tures, because most publications do not provide raw data. Therefore
much work is still needed to better quantify the response to natural and
anthropogenic factors, as a valuable tool for biomonitoring.
For what concerns water temperature, among macroinvertebrate taxa,

insects were shown to be mainly responsive to this pressure (Bonada et
al., 2007; Čiamporová-Zat’ovičová et al., 2010; Dallas & Rivers-Moore,
2012). In particular, chironomids are a suitable indicator group, being
characterized by a large number of species with a wide range of respons-
es to environmental factors (Lindegaard et al., 1995). Fossil remains of
these dipterans in lake sediments have been used as proxy to reconstruct
shifts in air and water temperature, since many species were shown to
respond rapidly to climatic fluctuations (Larocque et al., 2001; Lotter et
al., 2012). Moreover, they have been used as indicators of oxygen con-
centration (Rossaro et al., 2007b) and trophic levels in lakes (Sæther
1979, Rossaro et al., 2011) and as indicators of organic (Raunio et al.,
2007) and toxic (Cortelezzi et al., 2011) pollution in rivers. Nonetheless
many studies showed that water temperature is one of the main factors
determining taxa assemblages and species distribution (Rossaro, 1991a,
1991b, 1991c; Brooks & Birks, 2000; Medeiros & Quinlan, 2011). Lack of
information could be possibly filled by biogeographic studies considering
ecological equivalents in different regions (Jacobsen et al., 1997, 2012;
Hamerlik & Brodersen 2010; Hamerlik et al., 2011), but species names
are often not corresponding in different areas, since at large spatial scale
biogeographic gradients may be present (Catalan et al., 2009) or, at
smaller scale, taxonomic determination by different experts often affects
data comparability (Kernan et al., 2009; Heiri et al., 2011). Therefore at
present only data at regional scale can be likely compared.
The present research aims at quantitatively determine the thermal

response of chironomid species in different freshwater habitats in
Southern Europe, following the empirical approach. At this purpose,
chironomid samples collected in many surveys mostly from Italy but
also from other Alpine and Mediterranean countries are considered.
Species response to altitude, source distance in rivers and water depth
in lakes is also determined. Different life stages are analyzed.

Materials and methods

To investigate the thermal response of chironomid species the
CHIRDB database (Rossaro et al., 2006b) was used. This database con-
tains records about chironomid samples collected in freshwater ecosys-
tems mainly in Italy, but also in Algeria, Austria, France, Switzerland
and Germany from the 1950s up to date (Table 1). Other data were
derived from published papers (Table 1). 
A map of the sampling sites is shown in Figure 1.
Sampling sites were grouped into different habitats:

– kryal=glacial streams above the tree line (Rossaro et al., 2006b);

note that this definition of kryal is more extended than the one
given by Milner & Petts (1994) and water temperature can be
much higher than 2°C

– krenal=springs (Vannote et al., 1980)
– rhithral=mountain reach of rivers below the tree line (Vannote et

al., 1980)
– potamal=lowland reach of rivers (Vannote et al., 1980)
– Alpine lowland lakes=natural lakes within the Alpine ecoregion

(with latitude >44° 00’) with altitude below 800 m a.s.l. (Tartari et
al., 2006)

– Alpine high altitude lakes=natural lakes within the Alpine ecore-
gion (with latitude >44° 00’) with altitude above 800 m a.s.l.
(Tartari et al., 2006)

– Mediterranean lakes=natural lowland lakes within the
Mediterranean ecoregion (with latitude <44° 00’), with altitude
below 800 m a.s.l. (Tartari et al., 2006)

– heavily modified water bodies=reservoirs and artificial lakes
– brackish ponds=ponds with high salinity (water conductivity

>2500 µS cm–1 at 20°C) (Tartari et al., 2006)
Sampling sites are summarized in Table 2. Samples are grouped into

river catchments and the number of samples collected in each habitat
is reported.
The same site was generally sampled covering all seasons.

Chironomid samples were collected using different tools, according to
the habitat: i) pond net collections of larvae from small water bodies
(krenal, kryal, high altitude Alpine lakes) (Rossaro et al., 2006b); ii)
surber net collections of larvae in stony bottom streams (rhithral)
(Rossaro, 1991b, 1991c, 1992, 1993; Marziali et al., 2010a, 2010b); iii)
Ekman, Petersen, Ponar dredge samples of larvae from natural lowland
lakes and heavily modified water bodies, brackish ponds and from large
rivers (potamal) (Rossaro, 1988; Battegazzore et al., 1992; Rossaro et
al., 2006a, 2011); iv) drift samples of pupal exuviae using a Brundin net
(lakes, kryal, krenal, rhithral, potamal) (Rossaro, 1991b, 1991c); v)
adult captures collected with hand nets, emergence traps or Malaise
traps (Rossaro, 1987); imagines were used for confirming species
identifications, but were not considered for data analysis.
For each sampling site latitude, longitude, altitude (m a.s.l.), dis-

tance from source (km) in running waters and sampling depth (m) in
lakes were recorded in the field or were derived using geographic infor-
mation system-based cartographic data (http://www.sinanet.isprambi-
ente.it). Water temperature (°C) was measured with a field multiprobe
during the samplings.
Chironomid samples were slide mounted and identified to species

using specialized keys (Wiederholm 1980, 1983, 1986; Ferrarese &
Rossaro, 1981; Ferrarese, 1983; Rossaro, 1982; Nocentini, 1985;
Langton, 1991) and comparing different life stages (e.g. larval exuviae
with pupae; pupal exuviae with imagines). In the present work, the
abundances of 309 species as larvae (18,886 records) and 325 species
as pupal exuviae (7619 records) from 4442 samples were considered.
Chironomid species nomenclature and systematics follow Sæther

(1977), Rossaro (1991c), Sæther (2000), Cranston et al. (2012).

Data analysis
Data were stored in a Microsoft Access database (CHIRDB) (Rossaro

et al., 2006b). Data on larval samples were expressed as specimens per
square meter when collected with Surber (rhithral) and dredge sam-
ples (lowland lakes, heavily modified water bodies, potamal, brackish
ponds); and as number of specimens for unit of effort (about 15 min
sampling) when collected with pond nets (high altitude lakes, kryal,
krenal). Data on pupal exuviae samples collected with a Brundin net in
all habitats were expressed as number of specimens per unit of effort
(about 15 min sampling). 
Records of species abundances matching water temperature meas-

ures were selected using MS-Access queries and were imported into

Article
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Matlab environment for statistical analyses. The moment statistics,
used for describing probability distributions, were then calculated. The
expected value of a random variable (the mean) is derived by the first
moment, the variance by the second moment, the skewness (i.e. the
asymmetry of the probability distribution) by the third moment, the
kurtosis (i.e. the peakedness of the probability distribution) by the
fourth moment (Khurshid, 2007).

The water temperature range experienced by each species was divided
into 20 equally-ranged classes and the frequency of the species in each of
the 20 classes was calculated. A thermal response curve was then pro-
duced for each species relating species abundance to water temperature. 
The formulae used to calculate the first (weighted average), second

(weighted standard deviation), third (skewness=g1) and fourth (kur-
tosis=g2) central moments can be found in Sokal & Rohlf (1981).
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Table 1. Data stored in the CHIRDB database are derived from different surveys here summarized.

Country Region River catchment Sampling years References

Italy Aosta Valley Dora Baltea river 1995-98 Rossaro et al., 2006b; unpublished data
Trentino-Alto Adige Sarca, Adige and Noce rivers 1990, 1996-98, 2005 Boggero et al., 2006; Lencioni et al., 2007 

Lakes Lases, Lamar, Caldonazzo 1996, 2000, 2004-07 Lencioni et al., 2006
and Tenno (Brenta river)

Lombardy Oglio and Mincio rivers 1978-83, 2006 Rossaro, 1991c
Lambro and Olona rivers 1977-78, 1986-87, 2003 Unpublished data
Brembo and Serio rivers 1980-81, 2003

Po river 1977-93 Rossaro 1987, 1988; Battegazzorre et al., 1992
Adda river 1977, 1988-89, 2001-07 Unpublished data
Ticino river 1979, 1985, 2001-04, 2009-10 Berra et al., 2004
Lake Garda 1970-71, 1982, 2004, 2007, 2011 Rossaro et al., 2006a, 2011; Bonomi, 1974

Lakes Viverone and Avigliana 2005-06 Rossaro et al., 2006a, 2011
Lake Varese 1987, 1994-97, 2002-05 Rossaro et al., 2006a, 2011
Lake Monate 1977, 2004-05 Rossaro et al., 2006a, 2011; Nocentini, 1979
Lake Como 1980-84, 2004-05, 2007 Unpublished data

Lakes Comabbio, Alserio, Pusiano and Annone 1967, 1977, 2004-07 Rossaro et al., 2006a, 2011
Lake Iseo 1967, 2003-04 Unpublished data

Piedmont Lake Mergozzo 1963-64, 1971-72, 1975, 1994, 2010 Rossaro et al., 2006a, 2011; Nocentini, 1979
Lake Maggiore 1953-54, 1960-61, 1966-67, 1985-88, Rossaro et al., 2006a, 2011; Nocentini, 1963

1995-96, 2004, 2007, 2009-10
Ticino river 1985-87, 1991-94, 2000, 2007 Boggero et al., 2006; Unpublished data

Dora Baltea river 2005 Boggero et al., 2006
Agogna river 1976-77, 1981-82 Rossaro, 1991c
Toce river 1991-94, 2000 Unpublished data
Sesia river 1987 Unpublished data
Lake Lugano 2004-04 Unpublished data

Po and Tanaro rivers 1989-90 Unpublished data
Lake Orta 1976 Unpublished data

Emilia Romagna Po and Trebbia river 1977-83 Rossaro 1987, 1988; Battegazzore et al., 1992
Taro river 2001-03 Marziali et al., 2010b

Liguria Danè river 1998-99 Unpublished data
Toscana Magra river 2001 Unpublished data
Marche Potenza river 1986 Rossaro, 1988
Abruzzo Tordino, Vomano and Aterno rivers 1978, 1986-92, 1995, 2010 Unpublished data
Lazio Tevere and Nera rivers 1989-90 Unpublished data

Trasimeno river 2003 Unpublished data
Lakes Bolsena, Bracciano and Vico 1970-73 Rossaro et al., 2006a, 2007a

Umbria Tevere river 1977-03
Campania Sele river 2000-01 Marziali et al., 2010a
Puglia Ofanto river 1990 Unpublished data
Sardinia Cedrino and Rio Mannu rivers 1978, 1986 Unpublished data

Lazio, Abruzzo, Heavily modified water bodies 1976-77, 1934-85, 1989, 1991 Unpublished data
Basilicata, (Fibreno, Brasimone, Scontrone,
Puglia, Sicily Pertusillo, Occhito, Dirillo)

Switzerland Ticino river 2005 Boggero et al., 2006
France Garonna river 2004 Unpublished data
Germany Donau river 2006 Free et al., 2009
Austria Donau river 2006 Free et al., 2009
Algeria Algerian wadi 2007 Zerguine et al., 2009; Chaib et al., 2011
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Figure 1. Map of the sampling sites.

Table 2. River catchments with mean latitude and longitude, and number of samples collected in each habitat.

River catchment lat long kn kr rh pt AL al ME hm br

Garonna (France) 44°00’00’’ 02°00’00’’ 0 0 10 0 0 0 0 0 0
Donau (Germany) 47°41’19’’ 11°26’16’’ 0 0 0 0 50 0 0 0 0
Donau (Austria) 47°47’17’’ 13°20’17’’ 0 0 0 0 41 0 0 0 0
Dora Baltea 45°37’24’’ 07°35’14’’ 7 44 29 1 0 47 0 0 0
Sesia 45°38’00’’ 07°55’00’’ 0 0 0 0 1 0 0 0 0
Orta 45°49’00’’ 08°24’00’’ 0 0 0 0 1 0 0 0 0
Agogna 45°36’02’’ 08°28’03’’ 17 0 107 0 0 0 0 0 0
Ticino (CH) 46°24’33’’ 08°36’25’’ 0 0 4 0 0 14 0 0 0
Ticino (NO) 45°37’00’’ 08°38’00’’ 0 0 0 9 0 0 0 0 0
Ticino (MI) 45°22’33’’ 09°24’28’’ 37 0 0 35 0 0 0 0 0
Toce 46°15’35’’ 08°16’27’’ 0 0 11 0 19 0 0 0 0
Maggiore (CH) 46°26’09’’ 08°48’11’’ 0 0 0 0 18 0 0 0 0
Maggiore (VB) 45°48’21’’ 08°34’16’’ 0 0 0 0 303 0 0 0 0
Maggiore (VA) 45°51’12’’ 08°40’10’’ 0 0 0 0 78 0 0 0 0
Mergozzo 45°57’21’’ 08°27’36’’ 0 0 0 0 162 0 0 0 0
Varese 45°50’96’’ 08°43’73’’ 0 0 1 0 119 0 0 0 0
Lugano 46°28’06’’ 09°38’12’’ 0 0 3 0 14 0 0 0 0
Olona 45°30’11’’ 09°20’52’’ 0 0 0 43 0 0 0 0 0
Lambro 45°48’37’’ 09°16’60’’ 0 0 0 1 163 0 0 0 0
Adda (SO) 46°19’02’’ 09°43’01’’ 1 24 0 0 0 0 0 0 0

To be continued on next page
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The first central moment has the meaning of optimum response
value, the second moment can be interpreted as a measure of tolerance
(Ter Braak & Prentice, 1988). A positive value of g1 means a response
curve skewed to the right, i.e. the optimum value is closer to the mini-
mum response value. A negative value of g1 means a response curve
skewed to the left, i.e. optimum water temperature is closer to the max-
imum response value. A positive value of g2 is a measure of the peaked-

ness of a curve. A curve with a high g2 (>3) is called leptokurtic and it
has a defined peak, i.e. the species has a defined optimum tempera-
ture. A negative value of g2 means a platykurtic response or flat
response, i.e. the species is present over a wide range of water temper-
ature values. In general, a negative value of g2 suggests a bi- or pluri-
modal Gaussian distribution (Khurshid, 2007).
Moment calculations were performed converting in Matlab® envi-
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Table 2. Continued from previous page.

River catchment lat long kn kr rh pt AL al ME hm br

Adda (LC) 45°48’16’’ 09°23’27’’ 0 0 3 0 21 0 0 0 0
Adda (MI) 45°37’00’’ 09°29’97’’ 0 0 0 17 0 0 0 0 0
Adda (LO) 45°16’02’’ 09°37’00’’ 0 0 1 19 4 0 0 0 0
Adda (CR) 45°28’00’’ 09°31’00’’ 0 0 0 18 0 0 0 0 0
Adda (BG) 46°07’00’’ 09°53’00’’ 13 0 0 1 0 0 0 0 0
Sarca 46°08’02’’ 10°37’32’’ 87 206 115 0 0 15 0 0 0
Noce 46°17’00’’ 10°40’00’’ 0 3 0 0 1 0 0 0 0
Adige (BZ) 46°02’41’’ 11°15’33’’ 0 0 0 0 4 0 0 0 0
Adige (TN) 46°20’25’’ 10°29’21’’ 0 0 1 0 114 38 0 0 0
Brenta 46°01’34’’ 11°19’39’’ 0 0 0 0 78 0 0 0 0
Como 45°40’01’’ 09°17’02’’ 0 0 0 0 107 0 0 0 0
Brembo 45°42’46’’ 09°38’39’’ 1 0 56 0 0 0 0 1 0
Serio 45°30’10’’ 09°44’12’’ 1 0 36 0 0 0 0 0 0
Iseo 45°40’24’’ 09°35’38’’ 0 0 0 0 28 0 0 0 0
Oglio 45°35’17’’ 09°45’14’’ 2 4 25 2 51 0 0 0 0
Mincio (MN) 45°33’32’’ 10°39’45’’ 0 0 0 0 6 0 0 0 0
Garda(VR) 45°41’00’’ 10°41’01’’ 0 0 0 0 353 0 0 0 0
Po (MI and PV) 45°41’05’’ 09°16’02’’ 0 0 216 103 46 0 0 0 0
Po (PC) 45°07’00’’ 10°25’06’’ 0 0 0 427 0 0 0 0 0
Po (FE) 44°10’00’’ 12°00’00’’ 0 0 0 1 0 0 0 0 0
Tanaro 44°21’00’’ 08°11’04’’ 0 0 85 27 0 0 0 0 0
Danè 44°16’00’’ 08°25’00’’ 0 0 95 0 0 0 0 0 0
Trebbia 44°29’16’’ 09°21’18’’ 4 0 11 0 5 0 0 0 0
Taro 44°35’30’’ 09°33’21’’ 2 0 31 28 0 0 0 0 0
Magra 44°22’00’’ 09°53’00’’ 0 0 1 0 0 0 0 0 0
Reno (Brasimone) 44°08’00’’ 11°08’00’’ 0 0 0 0 0 0 0 1 0
Potenza 43°19’00’’ 13°24’00’’ 0 0 10 10 0 0 0 0 0
Tevere (PG) 43°18’00’’ 12°18’00’’ 0 0 0 3 0 0 0 0 0
Trasimeno 43°10’00’’ 12°00’00’’ 0 0 0 0 0 0 2 0 0
Bolsena 42°35’00’’ 11°55’00’’ 0 0 0 0 0 0 102 0 0
Bracciano 42°07’00’’ 12°14’00’’ 0 0 0 0 0 0 59 0 0
Vico 42°18’00’’ 12°10’00’’ 0 0 0 0 0 0 40 0 0
Tordino-Vomano 42°36’00’’ 13°38’00’’ 0 0 2 3 0 0 0 1 0
Nera 42°25’00’’ 13°05’00’’ 0 0 2 0 0 0 0 0 0
Aterno-Pescara 42°26’00’’ 13°22’00’’ 12 0 4 0 0 0 0 1 0
Sangro (Scontrone) 41°34’00’’ 13°38’00’’ 1 0 2 1 2 0 0 4 0
Fortore (Occhito) 41°35’00’’ 14°57’00’’ 0 0 0 0 0 0 0 14 0
Liri (Fibreno) 41°38’00’’ 13°22’00’’ 0 0 0 0 0 0 1 0 0
Ofanto 40°52’00’’ 15°05’00’’ 0 0 1 0 0 0 0 0 0
Cedrino 40°35’00’’ 09°42’00’’ 1 0 0 0 0 0 0 0 0
Sele 40°33’00’’ 15°19’00’’ 0 0 33 0 0 0 0 0 0
Agri (Pertusillo) 40°16’00’’ 15°56’00’’ 0 0 0 0 0 0 0 103 0
rio Mannu 39°18’00’’ 09°08’00’’ 0 0 2 0 0 0 0 0 3
Dirillo 37°08’00’’ 14°45’00’’ 0 0 0 0 0 0 0 4 0
Kebir (Algeria) 36°46’38’’ 08°19’31’’ 0 0 90 0 0 0 0 0 0
lat, latitude; long, longitude; kn, krenal; kr, kryal; rh, rhithral; pt, potamal; AL, Alpine ecoregion lowland lakes; al, Alpine ecoregion high altitude lakes; ME, Mediterranean ecoregion lakes; hm, heavily modified water
bodies; br, brackish ponds. Abbreviations in brackets are Italian provinces.
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ronment, version R2012a, some FORTRAN programs, program 9
(Davies, 1971) and program STATFD (Rohlf, 1987). 
The central moment calculation formulae were used also to analyze

the response of species to altitude, water depth (for lacustrine
species) and distance from source (for lotic species). Regression
between species optima for water temperature and standard devia-
tion, g1 or g2 was also calculated to relate species optimum and toler-
ance characters.
To represent graphically species response to water temperature the

Curve-Fitting Matlab® toolbox was used, fitting species abundances
against water temperature values; the toolbox allows to fit many dif-
ferent models, in particular the one-, two- or n-term Gaussian library
model:

y = a1 * e – ((x–m1)/s1)
2+... an * e – ((x–mn)/sn)2

where 1 and n are the peaks to be fitted, a1 and an are the amplitude, m1

and mn the centroid (location), s1 and sn are coefficients related to the
peak width. Separate models were tested for each species collected as
larvae and pupal exuviae in the different habitats.
The fitted curves given in Figures 2-11 are the ones giving the best

fit (i.e. the lowest mean square error). Models with more than three
terms (see formula) were not considered to avoid overfitting. 
Regression curves between optima for water temperature (as

dependent variable) and optima for altitude, water depth, distance from
source (as independent variables) were calculated. 

Results

Of all available data, 281 samples were from kryal, 186 from krenal,
987 from rhithral, 749 from potamal, 1903 from lakes in the Alpine
ecoregion (i.e. 114 from high altitude lakes and 1789 from lowland
lakes), 204 from natural lakes in the Mediterranean ecoregion, 129
from heavily modified water bodies, 3 from brackish ponds (Table 2). A
total of 443 chironomid species were present in the sampling sites.

Water temperature
Thermal response was first calculated considering all data on larvae

(i.e. joining all habitats) to generally characterize each species’ prefer-
ences for water temperature. Results for the 55 species present in ≥100
records are given in Table 3. For each species the number of samples
used to calculate the weighted mean, standard deviation, skewness and
kurtosis are reported. In general, species with preference for low temper-
ature had a lower standard deviation than species with optima in warm
waters. For this reason the former can be defined as cold stenothermal,
the latter as warm eurithermal. In fact, the r2 value obtained regressing
optimum water temperature of each species with its standard deviation
was significant [r2=0.48, 53 degree of freedom (df), P<0.01].
The regression between optimum for water temperature (m°C) and

skewness (g1) (Table 3) gave an inverse relation (r2=0.34, 53 df,
P<0.01). As well, optimum for water temperature (m°C) and kurtosis
(g2) were inversely related (r2=0.22, 53 df, P<0.01). These relations sug-
gest that cold stenothermal species generally show a response curve
skewed to the right, with optimum value closed to minimum values, and
leptokurtic (i.e. unimodal trend); whereas thermophilous species gener-
ally show a curve skewed to the left, with optimum value closed to maxi-
mum values, and platykurtic (i.e. bi- or plurimodal trend).
Thermal response was then calculated for each separate habitat to

better characterize each species’ preferences (i.e. using data on larvae
collected with the same sampling method) (Appendix).
The thermal response of some species is represented in Figures 2-9.

For example, thermal curves for Conchapelopia pallidula are shown in
Figure 2. Optimum response calculated from 615 records (all habitats
pooled, Figure 2A) was 13.54°C, with a standard deviation of 5.93°C, a
small positive skewness of 0.34 and a negative kurtosis of �1.03 (Table 3).
The negative kurtosis suggested a trimodal response with three peaks at
8.13°C (main peak), 11.39°C and 22.42°C (secondary peaks). Peaks were
at 4.93°C (main peak), 7.45°C and 20.77°C considering only samples
from Alpine lowland lakes (Figure 2B). Optimum for rhithral samples
was 13.9 °C (unimodal response) (Figure 2C, Appendix), while potamal
samples gave a trimodal response with peaks at 11.5 °C, 18.64 °C and
23.89 °C (Figure 2D).

Article

Figure 2. Response of Conchapelopia pallidula larvae (number of
individuals m–2) to water temperature (°C) in all habitats (A),
Alpine ecoregion lowland lakes (B), rhithral (C) and potamal (D).

Figure 3. Thermal response of Diamesini larvae. Response of
Diamesa bertrami (number of individuals m–2) to water tempera-
ture (°C) in all habitats (A), kyral (B), krenal (C) and rhithral (D).
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Table 3. Thermal response (°C) of species (larvae) in all habitats: number of samples, weighted mean, standard deviation, skewness and
kurtosis of species abundance vs water temperature values. Only the species with ≥100 records in the dataset are reported. Species are
in phylogenetic order.

Species n m (°C) SD (°C) g1 g2
Procladius choreus 1018 13.39 5.7 0.63 −0.65
Macropelopia nebulosa 127 10.5 5.17 0.47 −0.63
Zavrelimyia barbatipes 128 11.58 4.11 −0.21 0.45
Conchapelopia pallidula 615 13.54 5.93 0.34 −1.03
Rheopelopia ornata 111 14.77 4.3 −0.19 −1.15
Pseudodiamesa branickii 115 5.63 3.08 0.8 0.71
Diamesa steinboecki 106 1.98 1.45 1.06 1.19
Diamesa latitarsis 134 3.43 1.97 0.85 0.27
Diamesa bertrami 200 2.68 1.96 1.16 0.79
Diamesa tonsa 186 7.19 4.66 0.61 −0.18
Diamesa zernyi 215 3.72 2.51 1.62 8.22
Prodiamesa olivacea 246 9.48 4.33 1.79 3.56
Brillia bifida 202 11.38 4.76 0.19 −0.69
Tvetenia calvescens 537 11.08 5.81 0.06 −1.24
Eukiefferiella brevicalcar 133 4.51 1.94 1.66 6.37
Eukiefferiella claripennis 215 14.7 4.41 −0.49 −0.3
Eukiefferiella minor 176 6.8 3.78 0.72 0.41
Psectrocladius (Psectrocladius) oxyura 283 12.17 6.22 0.43 −1.04
Rheocricotopus effusus 124 13.15 5.83 −0.16 −0.49
Rheocricotopus fuscipes 245 16.97 7.97 0.06 −1.49
Synorthocladius semivirens 128 13.38 4.42 −0.16 −0.78
Orthocladius (Euorthocladius) rivicola 366 9.85 4.7 0.52 −0.01
Orthocladius frigidus 261 6.17 3.72 1.25 1.4
Orthocladius oblidens 138 9.18 5.5 1.16 0.21
Orthocladius rhyacobius 212 12.14 4.02 −0.15 −0.24
Orthocladius rubicundus 111 12.45 3.19 0.55 0.91
Paratrichocladius rufiventris 253 17.33 6.32 0.17 −0.82
Cricotopus annulator 161 14.24 4.79 0.09 0.16
Cricotopus bicinctus 276 14.63 5.08 −0.23 −1.04
Cricotopus (Isocladius) sylvestris 183 11.19 5.08 0.82 −0.09
Parametriocnemus stylatus 218 11.14 4.97 0.36 −0.83
Parakiefferiella bathophila 117 5.89 3.69 3.66 12.52
Thienemanniella partita 107 7.73 4.08 0.93 0.3
Corynoneura scutellata 259 11.07 4.06 −0.5 −0.35
Tanytarsus gregarius 421 11.11 6.8 0.72 −1.07
Cladotanytarsus atridorsum 268 14.59 5.11 0.63 −1.05
Paratanytarsus lauterborni 101 10.53 3.01 3.1 9.11
Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88
Micropsectra pallidula 125 6.3 3.58 1.1 0.44
Pagastiella orophila 115 8.12 4.63 1.43 0.75
Pseudochironomus prasinatus 209 13.95 6.56 0.02 −1.37
Paratendipes albimanus 351 12.22 4.43 1.35 0.65
Microtendipes pedellus 394 12.29 2.73 0.6 1.06
Polypedilum convictum 138 15.44 4.07 −0.61 0.44
Polypedilum laetum 112 16.65 5.52 −0.14 −0.38
Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58
Endochironomus tendens 106 12.51 3.91 0.8 0.08
Dicrotendipes nervosus 276 10.08 5.24 0.86 0
Glyptotendipes pallens 154 13.88 7.65 0.08 −1.25
Chironomus anthracinus 525 13.54 6.35 0.5 −1.44
Chironomus plumosus 571 11.19 6.1 0.67 −0.59
Chironomus riparius 333 15.28 4.65 0.32 1.44
Cladopelma viridulum 294 13.63 5.98 0.51 −0.7
Cryptochironomus defectus 473 13.86 5.67 0.43 −0.74
Demicryptochironomus vulneratus 143 12.96 7.28 0.44 −1.36
n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis.
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Many cold stenothermal species such as Diamesa zernyi and
Pseudokiefferiella parva showed only one maximum, with a high g2, i.e.
leptokurtic response (Table 3, Appendix).
Species with low temperature optimum (cold stenothermal) showed a

response curve skewed to the right (g1>0). Diamesa bertrami showed a
moderately platykurtic response (g2=0.79), with a trimodal curve consid-
ering all habitats (Figure 3A), a bimodal curve with main peak at 2.76°C
in kryal samples (with a second peak at 0.93°C) (Figure 3B), a unimodal
response in krenal with peak at 3.90°C (Figure 3C), a trimodal response
in rhithral with peaks at 3.67°C, 6.79°C and 8.52°C (Figure 3D). 
Species with optimum at high temperatures (thermophilous

species) showed a response curve skewed to the left (g1<0). For exam-
ple, Cricotopus (Isocladius) sylvestris in potamal (Figure 4C, Appendix)
showed optimum at 17.80°C and g1=2.13; Paratanytarsus mediterra-
neus in potamal (Figure 5D; Appendix) had optimum at 19.42°C and a
g1=1.59. Tanytarsus brundini in rhithral with optimum at 14.37°C and
a negative g1 (g1=0.29) is an example of a curve moderately skewed to
the left (Figure 5B; Appendix). 
Some exceptions were shown: Paratrichocladius rufiventris (Figure

4A) had optimum temperature value of 17.33°C and a response curve
skewed to the right (g1>0, i.e. g1=0.17) (Table 3). A negative value of
g2 was an index of a bi- or plurimodal response; Tanytarsus gregarius in
Alpine ecoregion lakes with a negative g2 (g2=1.09; Appendix) had a
bimodal response with two peaks at 5.68°C and 20.66°C (Figure 5C);
the very different optima suggest the presence of two populations, the
former inhabiting high depth habitats (down to 350 m depth) charac-
terized by low temperatures.
Similarly, it was possible to compare the response of Polypedilum

nubeculosum larvae in different habitats (Figure 8). A plurimodal
response was evident, with different peaks in different habitats.
The response of the larval and pupal stages was compared in different

habitats (Figures 6-7, Table 4). For example, larvae of Micropsectra atro-
fasciata in rhithral showed peaks at 6.63°C, 11.83°C and 17.84°C (Figure
6C), while pupal exuviae at 8.91°C, 12.65°C and 15.92°C (Figure 7C); in
potamal larvae had peaks at 6.26°C, 9.43°C and 17.95°C (Figure 6D),
while pupal exuviae at 9.40°C, 13.53°C and 18.39°C (Figure 7D). 
The response of species belonging to the same genus was also ana-

lyzed (Figures 7 and 9). Chironomus anthracinus showed a bimodal

response in Alpine lowland lakes (Figure 9A). Chironomus plumosus
had a trimodal response in Alpine lowland lakes, and the main peak
was at the lowest temperature (Figure 9B); a similar response was
observed in Mediterranean lakes (Figure 9C). Chironomus riparius
showed a unimodal response in the rhithral habitat (optimum at 15 °C)
(Figure 9D, Appendix).

Altitude
The response to altitude for the most frequently captured species is

reported in Table 5. All data on larvae were used (i.e. all habitats). The
regression between optima for altitude and for water temperature was
calculated selecting 78 species present in at least 66 samples, for which
both altitude and water temperature values were available. This selection
gave the highest r2. Regression coefficient was negative (r2=0.60, 76 df,
P<0.01, Figure 10). At high altitudes, Zavrelimyia barbatipes,
Corynoneura scutellata, Paratanytarsus austriacus showed an optimum
water temperature higher than predicted by altitude, whereas D. bertra-
mi, Paratrichocladius skirwithensis, Orthocladius (Eudactylocladius)
fuscimanus had temperature optima lower than expected by altitude; at

Article

Figure 4. Thermal response of Orthocladiini larvae. Response of
Paratrichocladius rufiventris (number of individuals m–2) to water
temperature (°C) in all habitats (A) and rhithral (B); response of
Cricotopus (Isocladius) sylvestris in potamal (C); response of
Corynoneura scutellata in Alpine ecoregion high altitude lakes (D).

Table 4. Thermal response (°C) of Micropsectra atrofasciata
(Chironominae) in specific habitats at different life stages: num-
ber of samples, weighted mean, standard deviation, skewness and
kurtosis of species abundance vs water temperature values. 

Life stage Habitat n m (°C) SD (°C) g1 g2

Larvae Rhythral 363 14.20 6.17 0.42 −0.33
Pupal exuviae Rhythral 89 13.24 4.11 0.45 0.50
Larvae Potamal 37 13.50 5.48 −0.03 −1.02
Pupal exuviae Potamal 79 14.86 5.87 −0.06 −1.09
Larvae Alpine lakes 48 14.05 4.62 0.67 2.47
Pupal exuviae Alpine lakes 56 16.31 7.54 0.58 −1.38
n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis; Alpine
lakes, Alpine ecoregion lowland lakes.

Figure 5. Thermal response of Tanytarsini larvae. Response of
Tanytarsus brundini (number of individuals m–2) to water temper-
ature (°C) in all habitats (A) and rhithral (B); response of
Tanytarsus gregarius in Alpine ecoregion lowland lakes (C);
response of Paratanytarsus mediterraneus in potamal (D).
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Table 5. Response of species (larvae) to altitude (m a.s.l.) in all habitats: number of samples, weighted mean, standard deviation, skew-
ness and kurtosis of species abundance vs site altitude values. Only the species with ≥100 records in the dataset are reported. Species
are in phylogenetic order.

Species n m (m a.s.l.) SD (m a.s.l.) g1 g2

Tanypus punctipennis 118 237 207 2.78 16.96
Procladius choreus 1530 437 303 2.42 7.53
Macropelopia nebulosa 274 1278 524 −0.95 −0.67
Ablabesmyia monilis 143 662 513 1.97 3.43
Zavrelimyia barbatipes 243 1961 540 −2.09 3.16
Conchapelopia pallidula 1005 363 285 3.14 14.63
Rheopelopia ornata 137 177 160 2.22 8.04
Pseudodiamesa branickii 262 1913 611 −1.09 0.11
Diamesa steinboecki 119 2559 221 −2.42 8.87
Diamesa latitarsis 171 2213 572 −1.60 2.59
Diamesa bertrami 277 1933 653 −0.86 0.04
Diamesa tonsa 409 897 654 1.27 0.75
Diamesa zernyi 353 2145 564 −1.14 1.04
Pseudokiefferiella parva 119 2348 475 −1.52 2.49
Prodiamesa olivacea 393 300 421 3.56 12.80
Brillia longifurca 100 458 264 0.87 0.95
Brillia bifida 413 434 298 1.76 6.13
Cardiocladius fuscus 148 677 750 1.60 0.77
Tvetenia calvescens 840 1281 945 0.14 −1.81
Eukiefferiella brevicalcar 162 2013 461 −1.55 2.01
Eukiefferiella claripennis 353 651 691 2.00 2.23
Eukiefferiella minor 324 1489 772 −0.39 −1.52
Psectrocladius (Psectrocladius) oxyura 334 272 373 4.56 20.39
Rheocricotopus chalybeatus 116 342 168 1.50 5.34
Rheocricotopus effusus 205 866 743 1.17 −0.33
Rheocricotopus fuscipes 515 361 242 3.10 17.76
Synorthocladius semivirens 212 451 280 4.10 22.43
Orthocladius (Eudactylocladius) fuscimanus 124 1825 709 −1.25 −0.09
Orthocladius (Euorthocladius) rivicola 618 1052 902 0.66 −1.40
Orthocladius excavatus 141 335 152 1.96 15.17
Orthocladius frigidus 463 1767 743 −0.90 −0.49
Orthocladius oblidens 179 305 188 1.73 2.60
Orthocladius rhyacobius 312 422 228 0.79 1.82
Orthocladius rubicundus 204 409 214 1.19 6.43
Paratrichocladius rufiventris 456 737 610 0.81 −1.18
Paratrichocladius skirwithensis 210 1849 538 −1.57 1.75
Cricotopus annulator 245 412 335 3.81 17.08
Cricotopus bicinctus 422 189 198 1.31 5.93
Cricotopus fuscus 169 1067 624 0.17 −1.18
Cricotopus tremulus 126 968 725 0.75 −0.27
Cricotopus triannulatus 220 220 231 2.56 8.14
Cricotopus (Isocladius) sylvestris 276 322 593 2.89 6.69
Metriocnemus hygropetricus 180 937 685 0.88 −0.59
Chaetocladius laminatus 142 1628 913 −0.44 −1.62
Paratrissocladius excerptus 114 434 242 −0.07 −0.01
Heterotrissocladius marcidus 174 1936 595 −1.45 1.02
Parametriocnemus stylatus 349 1137 878 0.51 −1.19
Parakiefferiella bathophila 165 226 138 4.06 28.87
Thienemanniella partita 173 1141 904 0.19 −1.69
Corynoneura scutellata 395 2130 447 −3.37 11.70
Stempellina bausei 115 426 209 0.00 −1.67
Tanytarsus gregarius 652 561 577 1.21 −0.31
Cladotanytarsus atridorsum 342 406 136 1.92 17.06
Paratanytarsus austriacus 135 2087 311 −2.58 8.72

To be continued on next page
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Table 5. Continued from previous page.
Species n m (m a.s.l.) SD (m a.s.l.) g1 g2

Paratanytarsus lauterborni 125 410 549 1.76 1.19
Micropsectra atrofasciata 890 425 361 3.06 10.30
Micropsectra contracta 386 402 114 8.52 93.32
Micropsectra notescens 108 527 313 0.31 1.08
Micropsectra pallidula 166 2184 293 −1.55 3.46
Pagastiella orophila 127 575 245 −0.77 −0.90
Pseudochironomus prasinatus 256 396 202 0.30 −1.74
Paratendipes albimanus 464 308 172 2.83 17.00
Microtendipes pedellus 510 204 213 3.86 18.41
Polypedilum convictum 145 347 167 −0.32 −1.23
Polypedilum laetum 199 340 294 3.06 15.31
Polypedilum cultellatum 100 142 153 1.68 2.34
Polypedilum nubeculosum 812 228 143 5.21 61.77
Phaenopsectra flavipes 149 399 429 2.03 3.05
Endochironomus tendens 140 148 198 6.14 57.78
Stictochironomus pictulus 101 460 443 2.21 2.90
Dicrotendipes nervosus 373 270 104 1.28 1.94
Glyptotendipes pallens 237 241 67 1.56 18.49
Chironomus anthracinus 751 482 356 1.79 3.65
Chironomus plumosus 762 283 132 2.04 7.37
Chironomus riparius 521 229 199 0.93 −0.24
Cladopelma viridulum 390 238 133 6.26 70.75
Parachironomus arcuatus 113 195 98 2.73 16.60
Paracladopelma camptolabis 107 631 546 1.21 0.57
Paracladopelma nigritulum 188 388 55 10.07 221.97
Cryptochironomus defectus 606 305 156 0.93 0.25
Demicryptochironomus vulneratus 163 226 88 3.18 12.09
n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis. 

Figure 6. Thermal response of Polypedilum nubeculosum larvae
(number of individuals m–2) to water temperature (°C) in Alpine
ecoregion lowland lakes (A), Mediterranean ecoregion lakes (B),
rhithral (C) and potamal (D).

Figure 7. Thermal response of Micropsectra spp. larvae. Response
of M. pallidula (number of individuals m–2) to water temperature
(°C) in krenal (A); response of M. atrofasciata in Alpine ecoregion
lowland lakes (B), rhithral (C) and potamal (D).

Jear_2013_2:Hrev_master  16/09/13  13.56  Pagina 82

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 
226

Non
-co

mmerc
ial

 
226

Non
-co

mmerc
ial

 us
e 

us
e 

us
e 

us
e 

us
e 133

us
e 133

us
e 

98us
e 

98us
e 

us
e 

546us
e 

546
55us

e 
55

on
ly

on
ly

on
ly

2.21

on
ly

2.21
1.28

on
ly1.28

on
ly

on
ly1.56

on
ly1.56

1.79on
ly

1.79on
ly

on
ly

2.04on
ly

2.04



lower altitudes, the higher temperature optima were observed for P.
mediterraneus, P. rufiventris and Tanypus punctipennis and the lower for
Orthocladius oblidens, Pagastiella orophila, Parakiefferiella bathophila,
Prodiamesa olivacea, Diamesa tonsa. 

Depth
Response of lacustrine species (i.e. larvae in Alpine ecoregion lowland

lakes) to depth is summarized in Table 6. Only few species showed opti-
mum at >40 m depth (Micropsectra contracta, Paracladopelma nigritulum),
others had maxima at lower depth (e.g. at 20-25 m, Procladius choreus,
Prodiamesa olivacea). Response curves of some species are shown in
Figure 11. C. plumosus, C. anthracinus, Demicryptochironomus vulneratus
and T. gregarius showed a wide range of depth tolerance (Table 6).

Source distance
The optimum values for source distance were calculated for species

(i.e. larvae in running water habitats) for which at least 100 samples
were available (Table 7). A relation between optimum for water temper-
ature and for source distance was calculated for the 75 species present
in ≥81 samples. The relation is shown in Figure 12, with r2=0.33 (73 df,
P<0.01) fitting a linear model. As expected, cold stenothermal species
had optimum near the stream source (e.g. Diamesa species) while
eurithermal ones (Endochironomus tendens, C. riparius, Glyptotendipes
pallens, C. I. sylvestris, Cricotopus triannulatus, Cricotopus bicinctus)
showed optimum at high distance from source. 

Discussion

Notwithstanding the approximation of joining data collected with
different sampling methods in different habitats, some generalizations
could be argued by the analysis of the dataset on larvae collections.
Thermophilous species often showed platikurtic responses, fitting plu-
rimodal Gaussian models, with: i) optima closed to their maximum
temperature values, ii) wide tolerance, iii) negative skewness and neg-
ative kurtosis (Rossaro, 1991a, 1991c). On the contrary, species
restricted to few habitats, such as kryal (e.g. Diamesa steinboecki,
Diamesa latitarsis) or krenal (e.g. Chaetocladius laminatus,
Micropsectra pallidula), showed low optima for water temperature
(cold stenothermal) and low tolerance (stenoecious). These species
often showed: i) optima closed to their minimum temperature values,
ii) tolerance for a narrow temperature range, iii) positive skewness
and positive kurtosis (Rossaro, 1991c). Even if a bimodal response can
be fitted, the two maxima are generally rather closed to each other
(Figure 3). These species could be thus more sensitive to an increas-
ing trend of temperature (Hester & Doyle, 2011).
For a better approximation of species preferences and tolerance,

optima for water temperature were calculated for each species in dif-
ferent habitats, thus considering data collected with the same sampling
strategy (Appendix). As expected, lower values were obtained for kryal
and krenal, and higher values for rhithral, potamal and lakes. Most taxa
showed different responses according to the habitat. When data are
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Table 6. Response of lacustrine species (larvae) to water depth (m depth) in Alpine ecoregion lowland lakes: number of samples, weight-
ed mean, standard deviation, skewness and kurtosis of species abundance vs sampling depth values Only the species with ≥100 records
in the dataset are reported. Species are in phylogenetic order.

Species n m (m depth) SD (m depth) g1 g2

Procladius choreus 1046 21.02 23.02 3.17 23.24
Conchapelopia pallidula 232 4.87 3.34 4.05 31.03
Prodiamesa olivacea 179 21.70 17.71 1.08 1.21
Psectrocladius (Psectrocladius) oxyura 255 4.97 2.39 1.67 4.75
Orthocladius oblidens 110 4.99 2.14 1.97 20.31
Parakiefferiella bathophila 113 5.86 3.27 2.22 5.64
Tanytarsus gregarius 459 10.15 32.08 4.62 23.67
Cladotanytarsus atridorsum 253 3.62 2.38 2.65 17.66
Micropsectra contracta 359 84.91 56.80 1.33 1.62
Pagastiella orophila 116 7.10 2.77 2.69 13.03
Pseudochironomus prasinatus 212 4.26 3.04 6.85 140.29
Paratendipes albimanus 295 4.44 8.81 7.69 152.02
Microtendipes pedellus 228 6.06 4.29 1.54 3.00
Polypedilum nubeculosum 377 3.27 7.90 8.12 126.29
Dicrotendipes nervosus 232 5.70 3.88 2.05 4.46
Chironomus anthracinus 529 13.39 18.62 8.41 113.15
Chironomus plumosus 480 9.73 49.52 7.03 51.04
Cladopelma viridulum 270 8.34 16.38 10.19 163.69
Paracladopelma nigritulum 171 73.31 41.44 0.88 −0.64
Cryptochironomus defectus 423 6.51 4.75 3.70 52.20
Demicryptochironomus vulneratus 144 4.06 24.24 11.46 138.48
n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis.

Jear_2013_2:Hrev_master  16/09/13  13.56  Pagina 83

Non
-co

mmerc
ial

 
Table 6. Response of lacustrine species (larvae) to water depth (m depth) in Alpine ecoregion lowland lakes: number of samples, weight-

Non
-co

mmerc
ial

 
Table 6. Response of lacustrine species (larvae) to water depth (m depth) in Alpine ecoregion lowland lakes: number of samples, weight-
ed mean, standard deviation, skewness and kurtosis of species abundance 

Non
-co

mmerc
ial

 

ed mean, standard deviation, skewness and kurtosis of species abundance 
in the dataset are reported. Species are in phylogenetic order.

Non
-co

mmerc
ial

 

in the dataset are reported. Species are in phylogenetic order.

Non
-co

mmerc
ial

 

n m (m depth) SD (m depth) g1

Non
-co

mmerc
ial

 

n m (m depth) SD (m depth) g1

1046

Non
-co

mmerc
ial

 

1046

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

232

Non
-co

mmerc
ial

 

232

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

Psectrocladius (Psectrocladius) oxyura

Non
-co

mmerc
ial

 

Psectrocladius (Psectrocladius) oxyura

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 

Non
-co

mmerc
ial

 us
e strategy (Appendix). As expected, lower values were obtained for kryal

us
e strategy (Appendix). As expected, lower values were obtained for kryal

and krenal, and higher values for rhithral, potamal and lakes. Most taxa

us
e and krenal, and higher values for rhithral, potamal and lakes. Most taxa

showed different responses according to the habitat. When data are

us
e showed different responses according to the habitat. When data are

on
ly

(Figure 3). These species could be thus more sensitive to an increas-

on
ly

(Figure 3). These species could be thus more sensitive to an increas-
ing trend of temperature (Hester & Doyle, 2011).

on
lying trend of temperature (Hester & Doyle, 2011).

For a better approximation of species preferences and tolerance,

on
lyFor a better approximation of species preferences and tolerance,

optima for water temperature were calculated for each species in dif-

on
lyoptima for water temperature were calculated for each species in dif-

ferent habitats, thus considering data collected with the same samplingon
ly

ferent habitats, thus considering data collected with the same sampling
strategy (Appendix). As expected, lower values were obtained for kryalon

ly
strategy (Appendix). As expected, lower values were obtained for kryal
and krenal, and higher values for rhithral, potamal and lakes. Most taxa

on
ly

and krenal, and higher values for rhithral, potamal and lakes. Most taxa



[page 84] [Journal of Entomological and Acarological Research 2013; 45:e14]

available for the same species in different habitats, as for Orthocladius
(Euorthocladius) rivicola, optimum values are lower in krenal (2.83°C)
and kryal (5.23°C) than in rhithral (11.98°C), potamal or lakes. Other
species (e.g. M. atrofasciata) did not show significant differences
between optima values in different habitats, but the response curves
were very different (Figures 7-8). These species are euryecious and
eurythermal with more than one generation per year with different
water temperature optimum for the different populations developing
during the year. 
Among stenothermal taxa, some species at lower altitude habitats

(rhithral, potamal) showed restricted tolerance to temperature, being
potentially good indicators of climate change. For example,
Microtendipes pedellus showed optimum for warm temperature
(12.29°C), but a narrow range of tolerance (SD=2.73°C).
For these taxa, the increasing temperature trend may induce a migra-

tion toward higher elevations, changing in some years the response
curve to altitude (Nyman et al., 2005; Bonada et al., 2007) and increasing
species diversity at high elevation sites (Čiamporová-Zat’ovičová et al.,
2010; Jacobsen et al., 2012). Alternatively, species may adapt to higher
temperature, showing altered thermal curves in some years (Hogg et al.,
1998; Van Doorsalaen et al., 2009). In the case of cold stenothermal or
stenotopic species, a probable loss is expected (Jacobsen et al., 2012), as
was observed in some localities in the Apennines for some species, such
as Diamesa insignipes (Rossaro et al., 2006b). 
Even if species response to altitude is surely influenced by water

temperature, high elevations also imply different habitats and different
ecological conditions. Therefore species distribution could be con-
strained by other factors. For example, the CHIDB data showed that
some species colonizing high altitude lakes such as Zavrelimyia spp.,
Heterotrissoclaius marcidus, C. scutellata and P. austriacus are more
warm stenothermal than predicted by altitude, while species living in
kryal, krenal or rhithral habitats such as Diamesa spp., Pseudodiamesa
branickii and P. parva (Rossaro, 2006b) are more cold stenothermal
than expected.
Likewise, at lower altitude species living in the profundal zone of

lakes, such as P. olivacea, P. bathophila, Micropsectra radialis and C.

plumosus as well as species living in lowland springs such as Brillia
bifida, Chaetocladius perennis or in the interstitial habitats as
Hydrobaenus distylus are cold stenothermal. 
For what concerns lacustrine species, distribution could be affected

by water depth beside water temperature (Rossaro et al., 2006a; Luoto,
2012). Only few species showed an optimum depth below 20 m (e.g. M.
contracta, P. nigritulum). Their distribution plotted against depth
showed that they have more than one maximum, often with the main
peak at lower depth than the other peaks (Figure 11). Results suggest
that possibly depth does not influence species distribution directly, but
indirectly through temperature, dissolved oxygen or competition.
Different thermal optimum values were derived for different life

stages (i.e. larvae vs pupal exuviae), probably due to species phenolo-
gy. In particular, pupation in chironomids has a short duration, lasting
at most 72 h (Langton, 1995). Therefore pupal exuviae are found in
specific seasons and times. On the contrary, larval stage has a long
duration, lasting most lifetime.
According to species voltinism, more than one generation per year

was often observed. This occurs both in lacustrine and in lotic species.
This could explain bimodal or trimodal responses of species.
Lindegaard & Mortensen (1988) observed that chironomids generally
do not have more than four generations per year, but some species (e.g.
C. riparius) have surely more than four generation per year in
Southern Europe areas. Thus, a plurimodal response could also be
expected, but more data are needed to fit plurimodal models with a
higher number of parameters. 
Likewise, plurimodal response could be due to spatial distribution of

species, which may show preferences for more than one specific habi-
tat; local adaptations of single populations may as well be responsible
for plurimodal trends of some species (Dallas & Rivers-Moore, 2012).
In fact, such curves were mostly achieved for eurythermal and eurye-
cious species. Sometimes curves with two peaks might suggest the
presence of more than one species instead of more than one popula-
tion. This is the case of taxa belonging to genera rich in species, which
are not easily separated at the larval stage, such as Diamesa [e.g. D.
latitarsis/steinboecki (juvenilia), Appendix] and Tanytarsus spp.

Article

Figure 8. Thermal response of Micropsectra atrofasciata pupal
exuviae (number of individuals m–2) to water temperature (°C) in
all habitats (A), Alpine ecoregion lowland lakes (B), rhithral (C)
and potamal (D).

Figure 9. Thermal response of Chironomus spp. larvae. Response of
C. anthracinus (number of individuals m–2) to water temperature
(°C) in Alpine ecoregion lowland lakes (A); response of C. plumosus
in Alpine ecoregion lowland lakes (B), and Mediterranean ecoregion
lakes (C); response of C. riparius in rhithral (D).
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Table 7. Response of lotic species (larvae) to distance from source in all riverine habitats: number of samples, weighted mean, standard
deviation, skewness and kurtosis of species abundance vs distance from source values. Only the species with ≥100 records in the dataset
are reported. Species are in phylogenetic order.

Species n m (km) SD (km) g1 g2

Procladius choreus 497 84.56 83.31 1.27 0.06
Zavrelimyia barbatipes 118 3.86 20.05 9.52 123.78
Conchapelopia pallidula 663 81.40 134.03 3.35 10.99
Pseudodiamesa branickii 173 15.96 33.89 2.17 4.00
Diamesa steinboecki 108 0.69 7.32 15.03 226.29
Diamesa latitarsis 123 4.26 13.38 5.16 29.23
Diamesa bertrami 205 2.22 16.28 12.63 218.61
Diamesa tonsa 324 12.20 61.51 23.06 817.69
Diamesa zernyi 229 1.90 10.74 12.79 238.84
Prodiamesa olivacea 207 128.57 96.06 0.14 −1.76
Brillia bifida 302 19.64 31.95 3.35 19.85
Cardiocladius fuscus 115 18.68 79.56 13.42 331.58
Tvetenia calvescens 588 20.91 39.27 4.24 24.07
Eukiefferiella brevicalcar 131 0.81 11.87 20.57 475.86
Eukiefferiella claripennis 243 19.03 32.48 6.56 50.10
Eukiefferiella minor 216 8.79 19.15 4.85 46.65
Psectrocladius (Psectrocladius) oxyura 162 60.00 16.03 0.20 52.13
Rheocricotopus effusus 138 28.92 30.16 0.67 −0.12
Rheocricotopus fuscipes 391 48.28 98.83 5.40 30.02
Synorthocladius semivirens 163 22.23 40.18 3.74 24.97
Orthocladius (Euorthocladius) rivicola 457 28.15 66.53 6.22 42.93
Orthocladius excavatus 109 31.70 87.00 7.89 133.38
Orthocladius frigidus 322 6.39 52.28 33.79 1454.39
Orthocladius oblidens 121 55.14 26.38 0.47 7.27
Orthocladius rhyacobius 215 35.31 89.49 5.16 85.39
Orthocladius rubicundus 106 57.75 43.71 0.40 −0.22
Paratrichocladius rufiventris 317 3.76 35.13 29.05 1517.03
Paratrichocladius skirwithensis 134 14.01 23.29 2.15 3.32
Cricotopus annulator 176 34.10 68.19 7.05 60.01
Cricotopus bicinctus 241 128.77 120.05 1.29 2.98
Cricotopus triannulatus 197 131.92 128.18 1.72 5.47
Cricotopus (Isocladius) sylvestris 150 139.59 119.98 0.02 −0.86
Metriocnemus hygropetricus 132 31.94 50.11 4.62 42.91
Chaetocladius laminatus 117 13.86 30.01 5.65 45.96
Parametriocnemus stylatus 241 16.18 27.90 4.51 33.89
Parakiefferiella bathophila 101 63.12 1.86 −5.20 2484.04
Thienemanniella partita 133 12.60 53.86 9.37 101.81
Corynoneura scutellata 233 12.58 61.42 6.02 39.72
Tanytarsus gregarius 238 67.50 30.09 10.27 181.68
Cladotanytarsus atridorsum 104 57.74 17.82 7.56 111.14
Micropsectra atrofasciata 529 35.41 66.56 8.86 269.38
Micropsectra pallidula 120 1.54 2.29 2.80 15.69
Pseudochironomus prasinatus 119 54.93 5.42 −1.21 11.16
Paratendipes albimanus 130 32.79 28.69 5.33 95.49
Microtendipes pedellus 235 53.65 38.30 2.77 11.10
Polypedilum laetum 164 59.77 73.36 3.91 23.25
Polypedilum nubeculosum 434 90.31 86.70 2.38 9.45
Dicrotendipes nervosus 188 72.25 78.47 6.66 46.00
Glyptotendipes pallens 138 152.20 113.95 0.91 2.80
Chironomus anthracinus 273 57.22 19.98 −1.93 2.80
Chironomus plumosus 282 26.89 44.06 9.88 134.42
Chironomus riparius 227 213.81 69.27 −1.73 2.69
Cladopelma viridulum 131 50.98 23.96 −1.54 0.53
Cryptochironomus defectus 236 84.54 67.67 2.65 9.59
Demicryptochironomus vulneratus 134 53.81 16.62 −2.59 5.90
n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis.
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Conclusions

Chironomids are considered generalist, opportunistic, r-strategy
organisms and their distribution is driven by environmental variables,
such as water temperature (Rempel & Harrison, 1987), substrate com-
position (Rae, 1985), current velocity (Caspers, 1983) and other vari-
ables such as competition, parasitism, predation and other biological
constraints (Tokeshi, 1995; Vodopich & Cowell, 1984). Water tempera-
ture has been often recognized as the factor that accounts for the
largest percentage of variation in community composition (Heiri et al.,
2011). Beyond direct effects caused by increased water temperature,
such as distribution, phenology and adaptation, also indirect effects are
expected, such as different balance of inter- and intra-specific relation,
i.e. competition, predation and parasitism (Tixier et al., 2009). These
latter aspects still need to be investigated.
Some chironomid species showed unimodal response to water tem-

perature (Larocque et al., 2001), but bimodal and trimodal responses
were also frequently found. The present data emphasized that standard
deviation generally increased with optimum temperature, meaning
that eurythermal species are often warm-water adapted, while cold-
water dwellers are mostly stenothermal. Nonetheless some warm
stenothermal species were also found, being possibly good indicators of
water temperature in lowland habitats (e.g. M. pedellus).
Aquatic insect ecology can be interpreted by an evolutionary perspec-

tive. Entire orders of aquatic insects probably evolved in cool habitats.
Thus, groups inhabiting warmer waters are considered later descen-
dants of cool-adapted ancestral lines (Ward & Stanford, 1982; Ward,
1992). It is supposed that plesiomorphic species are cold stenothermal
while apomorphic species are warm stenothermal or eurythermal. The
chironomid ancestral habitat is supposed to be cool head-waters
(Brundin, 1966; Cranston & Oliver, 1987; Cranston et al., 2012) and
ecology and biogeography of Diamesinae gives support to this state-
ment (Serra-Tosio, 1973; Rossaro, 1995). A phylogenetic trend from
plesiomorphic cold-stenothermal species to apomorphic warm adapted
species was then hypothesized (Rossaro, 1991c), since a general trend
toward increasing adaptation to warm habitats was observed from cold
stenothermal Diamesini to warm eurythermal Chironomini (Rossaro et
al., 2007b). This was confirmed only in part, likely because: i) ecologi-
cal data on species are incomplete, ii) the evolutionary tree of chirono-
mids is not completely known (Cranston et al., 2012), iii) the relation

between thermal response and the position of a taxon in the phyloge-
netic tree may be observed at different taxonomic hierarchy, i.e. at the
level of populations within the same species, of species within the
same genus or of genus within the same tribe. 
In this paper emphasis is given to water temperature, with the aim of

quantifying the responses of single species in different habitats and to
describe the detailed pattern of response. The authors acknowledge that
results may be biased, being a different number of data available for each
species, with a different spatial and temporal resolution in different sites,
and thus optimum values must be interpreted with caution. Nevertheless
it must be considered the difficulty of selecting a balanced database for a
large number of species, some of which rare, living in specialized habi-
tats, others common and widespread, living in different habitats. The data
considered in the present paper are still fragmentary and will be revised
in the future, as soon as new information will become available. At pres-
ent, a comparison of quantitative results with other published papers is

Article

Figure 10. Correlation between
species optima for water tem-
perature (°C) vs optima for
altitude (m a.s.l.).

Figure 11. Response of Prodiamesa olivacea (A), Micropsectra
contracta (B), Paracladopelma nigritulum (C), Chironomus
anthracinus (D) larvae (number of individuals m–2) to water
depth (m) in Alpine ecoregion lowland lakes.
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recommended. For example, a comparison could be achieved with esti-
mated tolerance and optima for lacustrine species used as climate proxy
in palaeolimnological studies (Larocque et al., 2001; Larocque-Tobler et
al., 2012), even if available data are mainly from Northern areas.
Otherwise, a comparison could be carried out with sensitivity derived
from specific studies on existing chironomid communities (Tixier et al.,
2009; Čiamporová-Zat’ovičová et al., 2010; Hamerlik & Jacobsen, 2012). 
Knowledge on thermal tolerance of species is important for a long-

term management and monitoring of aquatic ecosystems exposed to
the effects of climate change. In fact, thermal curves can help antici-
pate impacts of climate change to various species by quantifying their
thermal habitat (Hester & Doyle, 2011). Species response under differ-
ent global change scenarios can thus be predicted (Bonada et al., 2007;
Sauer et al., 2011). To this purpose, more understanding into species
adaptations by acclimation and genetics is also needed (Hogg et al.,
1998; Van Doorsalaen et al., 2009). 
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Figure 12. Correlation between
species optima for water tem-
perature (°C) vs optima for dis-
tance from source (km) in run-
ning waters.
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