

Response of chironomid species (Diptera, Chironomidae) to water temperature: effects on species distribution in specific habitats

L. Marziali,¹ B. Rossaro²

¹CNR-IRSA Water Research Institute, U.O.S. Brugherio, Brugherio (MB); ²Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy

Abstract

The response of 443 chironomid species to water temperature was analyzed, with the aim of defining their thermal optimum, tolerance limits and thermal habitat. The database included 4442 samples mainly from Italian river catchments collected from the 1950s up to date. Thermal preferences were calculated separately for larval and pupal specimens and for different habitats: high altitude and lowland lakes in the Alpine ecoregion; lowland lakes in the Mediterranean ecoregion; heavily modified water bodies; kryal, krenal, rhithral and potamal in running waters. Optimum response was calculated as mean water temperature, weighted by species abundances; tolerance as weighted standard deviation; skewness and kurtosis as 3rd and 4th moment statistics. The responses were fitted to normal uni- or plurimodal Gaussian models. Cold stenothermal species showed: i) unimodal response, ii) tolerance for a narrow temperature range, iii) optima closed to their minimum temperature values, iv) leptokurtic response. Thermophilous species showed: i) optima at different temperature values, ii) wider tolerance, iii) optima near their maximum temperature values, iv) platikurtic response, often fitting a plurimodal model. As expected, lower optima values and narrower tolerance were obtained for kryal and krenal, than for rhithral, potamal and lakes. Thermal

Correspondence: Laura Marziali, CNR-IRSA Water Research Institute, U.O.S. Brugherio, Via del Mulino 19, 20861 Brugherio (MB), Italy. Tel.: +39.039.21694207 - Fax: +39.039.2004692. E-mail: marziali@irsa.cnr.it

Key words: Chironomidae, thermal tolerance, ecological traits, global warming.

Acknowledgements: data stored in the CHIRDB were collected within sampling surveys supported by different grants. Details about the projects are in the publications of the first Author quoted in the reference paragraph.

Received for publication: 4 April 2013. Revision received: 29 April 2013. Accepted for publication: 30 May 2013.

©Copyright L. Marziali and B. Rossaro, 2013 Licensee PAGEPress, Italy Journal of Entomological and Acarological Research 2013; 45:e14 doi:10.4081/jear.2013.e14

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 3.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. response curves were produced for each species and were discussed according to species distribution (*i.e.* altitudinal range in running water and water depth in lakes), voltinism and phylogeny. Thermal optimum and tolerance limits and the definition of the thermal habitat of species can help predicting the impact of global warming on freshwater ecosystems.

Introduction

Global warming is affecting freshwater macroinvertebrate communities with alteration of species distribution and phenology. In particular, increased water temperature will induce a change in distribution of species, which will react following their thermal optimum along an altitudinal and/or latitudinal gradient (Hughes, 2000; Nyman *et al.*, 2005; Bonada *et al.*, 2007; Sheldon, 2012).

According to species adaptations, each habitat will show different sensibility: in Southern Europe, kryal, krenal, high altitude lakes and ponds are supposed to be sensitive habitats, being characterized by stenotopic taxa directly influenced by water temperature (Boggero *et al.*, 2006; Rossaro *et al.*, 2006a; Tixier *et al.*, 2009; Jacobsen *et al.*, 2012; Lencioni *et al.*, 2012). A lot of species won't probably survive global warming, since spatial isolation may give little opportunity to migrate elsewhere.

On the contrary, the response of habitats at lower altitude is poorly understood, as species thermal optimum and tolerance are less known and other factors generally contribute in structuring biotic communities (Jacobsen *et al.*, 1997). Moreover, some studies showed that local adaptations may induce different thermal sensibility of single species at different sites and habitats. In particular, acclimation temperature during lifetime was proved to affect tolerance of populations (Dallas & Rivers-Moore, 2012). Besides, microevolutionary dynamics at local scale may separate the response of populations, and consequently their fitness (Hogg *et al.*, 1998; Van Doorsalaen *et al.*, 2009). Therefore it is necessary to determine the extent to which thermal response of species varies among habitats, to determine which communities are more menaced by global warming.

Studies on aquatic organisms based on lethal or sub-lethal endpoints (*e.g.* death, ability to escape unfavourable conditions, growth, reproduction, etc.) were carried out in experimental mesocosms or lab tests to derive thermal performance curves that relate species response to water temperature (Hester & Doyle, 2011; Dallas & Rivers-Moore, 2012), with definition of critical thermal maxima or minima. This approach may be successful to detect biological or physiological processes mostly affected by altered temperature. Nonetheless thermal history, acclimation, rate of temperature change, test duration, life stage have been shown to affect results. Moreover, the difficulty of taxa identification may hinder test application at species level, and many

studies considered genera, families or even orders (Dallas & Rivers-Moore, 2012).

More realism could be achieved determining the temperature range that organisms experience in the field (Rossaro, 1991a, 1991b, 1991c). Data from different ecological surveys in freshwater ecosystems could be gained and specimens collected can be identified at species level. In this way a large amount of data for each species can be gathered. This approach could be successful to determine species thermal preferences and tolerance limits (*i.e.* temperature beyond which organisms avoid) in different habitats, seasons and life stages. In fact, empirical data may allow going beyond local adaptations of taxa and drawbacks of manipulation tests. This approach was recently adopted at European scale (AQEM project) (Hering et al., 2004) for many macroinvertebrate groups collecting published data to derive species' ecological preferences (Schmidt-Kloiber & Hering, 2012). Nonetheless species responses have been expressed as qualitative rather than quantitative features, because most publications do not provide raw data. Therefore much work is still needed to better quantify the response to natural and anthropogenic factors, as a valuable tool for biomonitoring.

For what concerns water temperature, among macroinvertebrate taxa, insects were shown to be mainly responsive to this pressure (Bonada et al., 2007; Čiamporová-Zaťovičová et al., 2010; Dallas & Rivers-Moore, 2012). In particular, chironomids are a suitable indicator group, being characterized by a large number of species with a wide range of responses to environmental factors (Lindegaard et al., 1995). Fossil remains of these dipterans in lake sediments have been used as proxy to reconstruct shifts in air and water temperature, since many species were shown to respond rapidly to climatic fluctuations (Larocque et al., 2001; Lotter et al., 2012). Moreover, they have been used as indicators of oxygen concentration (Rossaro et al., 2007b) and trophic levels in lakes (Sæther 1979, Rossaro et al., 2011) and as indicators of organic (Raunio et al., 2007) and toxic (Cortelezzi et al., 2011) pollution in rivers. Nonetheless many studies showed that water temperature is one of the main factors determining taxa assemblages and species distribution (Rossaro, 1991a, 1991b, 1991c; Brooks & Birks, 2000; Medeiros & Quinlan, 2011). Lack of information could be possibly filled by biogeographic studies considering ecological equivalents in different regions (Jacobsen et al., 1997, 2012; Hamerlik & Brodersen 2010; Hamerlik *et al.*, 2011), but species names are often not corresponding in different areas, since at large spatial scale biogeographic gradients may be present (Catalan et al., 2009) or, at smaller scale, taxonomic determination by different experts often affects data comparability (Kernan et al., 2009; Heiri et al., 2011). Therefore at present only data at regional scale can be likely compared.

The present research aims at quantitatively determine the thermal response of chironomid species in different freshwater habitats in Southern Europe, following the empirical approach. At this purpose, chironomid samples collected in many surveys mostly from Italy but also from other Alpine and Mediterranean countries are considered. Species response to altitude, source distance in rivers and water depth in lakes is also determined. Different life stages are analyzed.

Materials and methods

To investigate the thermal response of chironomid species the CHIRDB database (Rossaro *et al.*, 2006b) was used. This database contains records about chironomid samples collected in freshwater ecosystems mainly in Italy, but also in Algeria, Austria, France, Switzerland and Germany from the 1950s up to date (Table 1). Other data were derived from published papers (Table 1).

A map of the sampling sites is shown in Figure 1.

Sampling sites were grouped into different habitats:

kryal=glacial streams above the tree line (Rossaro et al., 2006b);

note that this definition of kryal is more extended than the one given by Milner & Petts (1994) and water temperature can be much higher than $2^\circ C$

- krenal=springs (Vannote et al., 1980)
- rhithral=mountain reach of rivers below the tree line (Vannote *et al.*, 1980)
- potamal=lowland reach of rivers (Vannote *et al.*, 1980)
- Alpine lowland lakes=natural lakes within the Alpine ecoregion (with latitude >44° 00') with altitude below 800 m a.s.l. (Tartari *et al.*, 2006)
- Alpine high altitude lakes=natural lakes within the Alpine ecoregion (with latitude >44° 00') with altitude above 800 m a.s.l. (Tartari *et al.*, 2006)
- Mediterranean lakes=natural lowland lakes within the Mediterranean ecoregion (with latitude <44° 00'), with altitude below 800 m a.s.l. (Tartari *et al.*, 2006)
- heavily modified water bodies=reservoirs and artificial lakes
- brackish ponds=ponds with high salinity (water conductivity >2500 μS cm⁻¹ at 20°C) (Tartari *et al.*, 2006)

Sampling sites are summarized in Table 2. Samples are grouped into river catchments and the number of samples collected in each habitat is reported.

The same site was generally sampled covering all seasons. Chironomid samples were collected using different tools, according to the habitat: i) pond net collections of larvae from small water bodies (krenal, kryal, high altitude Alpine lakes) (Rossaro *et al.*, 2006b); ii) surber net collections of larvae in stony bottom streams (rhithral) (Rossaro, 1991b, 1991c, 1992, 1993; Marziali *et al.*, 2010a, 2010b); iii) Ekman, Petersen, Ponar dredge samples of larvae from natural lowland lakes and heavily modified water bodies, brackish ponds and from large rivers (potamal) (Rossaro, 1988; Battegazzore *et al.*, 1992; Rossaro *et al.*, 2006a, 2011); iv) drift samples of pupal exuviae using a Brundin net (lakes, kryal, krenal, rhithral, potamal) (Rossaro, 1991b, 1991c); v) adult captures collected with hand nets, emergence traps or Malaise traps (Rossaro, 1987); imagines were used for confirming species identifications, but were not considered for data analysis.

For each sampling site latitude, longitude, altitude (m a.s.l.), distance from source (km) in running waters and sampling depth (m) in lakes were recorded in the field or were derived using geographic information system-based cartographic data (http://www.sinanet.isprambiente.it). Water temperature (°C) was measured with a field multiprobe during the samplings.

Chironomid samples were slide mounted and identified to species using specialized keys (Wiederholm 1980, 1983, 1986; Ferrarese & Rossaro, 1981; Ferrarese, 1983; Rossaro, 1982; Nocentini, 1985; Langton, 1991) and comparing different life stages (*e.g.* larval exuviae with pupae; pupal exuviae with imagines). In the present work, the abundances of 309 species as larvae (18,886 records) and 325 species as pupal exuviae (7619 records) from 4442 samples were considered.

Chironomid species nomenclature and systematics follow Sæther (1977), Rossaro (1991c), Sæther (2000), Cranston *et al.* (2012).

Data analysis

Data were stored in a Microsoft Access database (CHIRDB) (Rossaro *et al.*, 2006b). Data on larval samples were expressed as specimens per square meter when collected with Surber (rhithral) and dredge samples (lowland lakes, heavily modified water bodies, potamal, brackish ponds); and as number of specimens for unit of effort (about 15 min sampling) when collected with pond nets (high altitude lakes, kryal, krenal). Data on pupal exuviae samples collected with a Brundin net in all habitats were expressed as number of specimens per unit of effort (about 15 min sampling).

Records of species abundances matching water temperature measures were selected using MS-Access queries and were imported into

Matlab environment for statistical analyses. The moment statistics, used for describing probability distributions, were then calculated. The expected value of a random variable (the mean) is derived by the first moment, the variance by the second moment, the skewness (*i.e.* the asymmetry of the probability distribution) by the third moment, the kurtosis (*i.e.* the peakedness of the probability distribution) by the fourth moment (Khurshid, 2007).

The water temperature range experienced by each species was divided into 20 equally-ranged classes and the frequency of the species in each of the 20 classes was calculated. A thermal response curve was then produced for each species relating species abundance to water temperature.

The formulae used to calculate the first (weighted average), second (weighted standard deviation), third (skewness=g1) and fourth (kurtosis=g2) central moments can be found in Sokal & Rohlf (1981).

Table 1. Data stored in the CHIRDB database are derived from different surveys here summarized.

Countr	y Region	River catchme	ıt	Sampling years	References
Italy	Aosta Valley	Dora Baltea rive	•	1995-98	Rossaro et al., 2006b; unpublished data
	Trentino-Alto Adige	Sarca, Adige and Noce	rivers	1990, 1996-98, 2005	Boggero <i>et al.</i> , 2006: Lencioni <i>et al.</i> , 2007
	5	Lakes Lases, Lamar, Cal	donazzo	1996, 2000, 2004-07	Lencioni et al., 2006
		and Tenno (Brenta r	iver)	, ,	
	Lombardy	Oglio and Mincio riv	vers	1978-83, 2006	Rossaro, 1991c
	·	Lambro and Olona r	vers	1977-78, 1986-87, 2003	Unpublished data
		Brembo and Serio ri	vers	1980-81, 2003	
		Poriver		1977-93	Rossaro 1987, 1988; Battegazzorre <i>et al.</i> , 1992
		Adda river	1	1977, 1988-89, 2001-07	Unpublished data
		Lake Garda	1 10	979, 1965, 2001-04, 2009-10 70_71 1982 2004 2007 2011	Berra et al. 2006a 2011: Bonomi 1974
		Lakes Viverone and Av	ioliana	2005-06	Rossaro <i>et al.</i> 2006a 2011
		Lake Varese	15110110	1987, 1994-97, 2002-05	Rossaro <i>et al.</i> , 2006a, 2011
		Lake Monate		1977, 2004-05	Rossaro <i>et al.</i> , 2006a, 2011; Nocentini, 1979
		Lake Como		1980-84, 2004-05, 2007	Unpublished data
		Lakes Comabbio, Alserio, Pusia	no and Annone	1967, 1977, 2004-07	Rossaro <i>et al.</i> , 2006a, 2011
-		Lake Iseo		1967, 2003-04	Unpublished data
	Piedmont	Lake Mergozzo	1963	3-64, 1971-7 2, 1975, 1994, 2010	Rossaro et al., 2006a, 2011; Nocentini, 1979
		Lake Maggiore	1953 1	-54, 1960-61, 1966-67, 1985-88 995-96, 2004, 2007, 2009-10	, Rossaro <i>et al.</i> , 2006a, 2011; Nocentini, 1963
		Ticino river		985-87, 1991-94, 2000, 2007	Boggero et al., 2006; Unpublished data
		Dora Baltea rive		2005	Boggero et al., 2006
		Agogna river	\sim	1976-77, 1981-82	Rossaro, 1991c
		loce river		1991-94, 2000	Unpublished data
		Sesia river	ь ^т	1987	Unpublished data
		Po and Tanaro rive	re	2004-04 1989-90	Unpublished data
		Lake Orta	15	1976	Unpublished data
	Emilia Romagna	Po and Trebbia riv	er	1977-83	Rossaro 1987, 1988; Battegazzore <i>et al.</i> , 1992
		Taro river		2001-03	Marziali <i>et al.</i> , 2010b
	Liguria	Danè river		1998-99	Unpublished data
	Toscana	Magra river		2001	Unpublished data
	Marche	Potenza river		1986	Rossaro, 1988
	Abruzzo	Tordino, Vomano and Ate	no rivers	1978, 1986-92, 1995, 2010	Unpublished data
	Lazio	Tevere and Nera riv	ers	1989-90	Unpublished data
		Trasimeno river	1 7 7	2003	Unpublished data
		Lakes Boisena, Bracciano	and vico	1970-73	Kossaro <i>et al.</i> , 2006a, 2007a
	Umbria	Tevere river		1977-03	
	Campania	Sele river		2000-01	Marzıalı <i>et al.</i> , 2010a
	Puglia	Ofanto river		1990	Unpublished data
	Sardinia	Cedrino and Rio Mannu	ı rivers	1978, 1986	Unpublished data
	Lazio, Abruzzo, Basilicata.	Heavily modified water (Fibreno, Brasimone, Sc	bodies 1 ontrone.	976-77, 1934-85, 1989, 1991	Unpublished data
	Puglia, Sicily	Pertusillo, Occhito, D	irillo)		
Switzerl	and	Ticino river		2005	Boggero et al., 2006
France		Garonna river		2004	Unpublished data
German	у	Donau river		2006	Free <i>et al.</i> , 2009
Austria		Donau river		2006	Free <i>et al.</i> , 2009
Algeria		Algerian wadi		2007	Zerguine et al., 2009; Chaib et al., 2011

Figure 1. Map of the sampling sites.

TILAD	. 1 . •.1	1 1	11 N Y. 1	1 1	C 1	11 . 1 .	1 1 1 1
lable / Kiver	catchments with	i mean latitiide	and longitude	and number	of complex	collected in	each habitat
Table 2. Revel	catchinchits with	i mean iatitude	and iongitudes	and number	or samples	conceica m	. cacii nabitati

River catchment	lat	long	kn	kr	rh	pt	AL	al	ME	hm	br
Garonna (France)	44°00'00"	02°00'00"	0	0	10	0	0	0	0	0	0
Donau (Germany)	47°41'19"	11°26'16"	0	0	0	0	50	0	0	0	0
Donau (Austria)	47°47'17"	13°20'17"	0	0	0	0	41	0	0	0	0
Dora Baltea	45°37'24"	07°35'14"	7	44	29	1	0	47	0	0	0
Sesia	45°38'00"	07°55'00"	0	0	0	0	1	0	0	0	0
Orta	45°49'00"	08°24'00"	0	0	0	0	1	0	0	0	0
Agogna	45°36'02"	08°28'03"	17	0	107	0	0	0	0	0	0
Ticino (CH)	46°24'33"	08°36'25"	0	0	4	0	0	14	0	0	0
Ticino (NO)	45°37'00"	08°38'00"	0	0	0	9	0	0	0	0	0
Ticino (MI)	45°22'33"	09°24'28"	37	0	0	35	0	0	0	0	0
Toce	46°15'35"	08°16'27"	0	0	11	0	19	0	0	0	0
Maggiore (CH)	46°26'09"	08°48'11"	0	0	0	0	18	0	0	0	0
Maggiore (VB)	45°48'21"	08°34'16"	0	0	0	0	303	0	0	0	0
Maggiore (VA)	45°51'12"	08°40'10"	0	0	0	0	78	0	0	0	0
Mergozzo	45°57'21"	08°27'36"	0	0	0	0	162	0	0	0	0
Varese	45°50'96"	08°43'73"	0	0	1	0	119	0	0	0	0
Lugano	46°28'06"	09°38'12"	0	0	3	0	14	0	0	0	0
Olona	45°30'11"	09°20'52"	0	0	0	43	0	0	0	0	0
Lambro	45°48'37"	09°16'60"	0	0	0	1	163	0	0	0	0
Adda (SO)	46°19'02"	09°43'01"	1	24	0	0	0	0	0	0	0

To be continued on next page

Table 2. Continued from previous page.

River catchment	lat	long	kn	kr	rh	pt	AL	al	ME	hm	br
Adda (LC)	45°48'16"	09°23'27"	0	0	3	0	21	0	0	0	0
Adda (MI)	45°37'00"	09°29'97"	0	0	0	17	0	0	0	0	0
Adda (LO)	45°16'02"	09°37'00"	0	0	1	19	4	0	0	0	0
Adda (CR)	45°28'00"	09°31'00"	0	0	0	18	0	0	0	0	0
Adda (BG)	46°07'00"	09°53'00"	13	0	0	1	0	0	0	0	0
Sarca	46°08'02"	10°37'32"	87	206	115	0	0	15	0	0	0
Noce	46°17'00"	10°40'00"	0	3	0	0	1	0	0	0	0
Adige (BZ)	46°02'41"	11°15'33"	0	0	0	0	4	0	0	0	0
Adige (TN)	46°20'25"	10°29'21"	0	0	1	0	114	38	0	0	0
Brenta	46°01'34"	11°19'39"	0	0	0	0	78	0	0	0	0
Como	45°40'01"	09°17'02"	0	0	0	0	107	0	0	0	0
Brembo	45°42'46"	09°38'39"	1	0	56	0	0	0	0	1	0
Serio	45°30'10"	09°44'12"	1	0	36	0	0	0	0	0	0
Iseo	45°40'24"	09°35'38"	0	0	0	0	28	0	0	0	0
Oglio	45°35'17"	09°45'14"	2	4	25	2	51	0	0	0	0
Mincio (MN)	45°33'32"	10°39'45"	0	0	0	0	6	0	0	0	0
Garda(VR)	45°41'00"	10°41'01"	0	0	0	0	353	0	0	0	0
Po (MI and PV)	45°41'05"	09°16'02"	0	0	216	103	46	0	0	0	0
Po (PC)	45°07'00"	10°25'06"	0	0	0	427	0	0	0	0	0
Po (FE)	44°10'00"	12°00'00"	0	0	0	1	0	0	0	0	0
Tanaro	44°21'00"	08°11'04"	0	0	85	27	0	0	0	0	0
Danè	44°16'00"	08°25'00"	0	0	95	0	0	0	0	0	0
Trebbia	44°29'16"	09°21'18"	4	0	11	0	5	0	0	0	0
Taro	44°35'30"	09 21 10	2	0	31	28	0	0	0	0	0
Magra	44°22'00"	09 53 21	0	0	1	0	0	0	0	0	0
Reno (Brasimone)	11 22 00 11 22 00	11°08'00"	0	0	0	0	0	0	0	1	0
Potenza	43°19'00"	13°24'00"	0	0	10	10	0	0	0	0	0
Tovere (PG)	43°18'00"	15 24 00 12°18'00"	0	0	10	3	0	0	0	0	0
Trasimono	43 10 00	12 10 00	0	0	0	0	0	0	2	0	0
Roleona	42°35'00"	11°55'00"	0	0	0	0	0	0	102	0	0
Bracciano	42 00 00	12°14'00"	0	0	0	0	0	0	50	0	0
Vico	42 07 00	12 14 00	0	0	0	0	0	0	39 40	0	0
Tordino Vomano	42 10 00	12 10 00	0	0	0 0	2	0	0	40	0	0
Nora	42 30 00	13 05 00	0	0	2	0	0	0	0	0	0
Atorno Pocorro	42 23 00	12 00 00	19	0	4	0	0	0	0	0	0
Alerno-rescara	42 20 00	13 22 00	14	0	9	1	0	0	0	1	0
Fortoro (Occhito)	41 04 00	14°57'00"	0	0	0	0	0	0	0	1/	0
Lini (Eibrono)	41 00 00	14 57 00	0	0	0	0	0	0	0	14	0
Ofanto	41 30 00	15 22 00 15°0E'00"	0	0	0	0	0	0	0	0	0
Oldillo	40 32 00	15 05 00	0	0	1	0	0	0	0	0	0
Cedrino	40°35 00	15910/00"	1	0	0	0	0	0	0	0	0
Jele	40 33 00	15 19 00	0	0	55	0	U	0	0	U 100	0
Agri (Pertusilio)	40 10 00	10 00 00 00 00 00 00 00 00 00 00 00 00 0	0	0	0	0	0	0	0	105	0
	99-19 00	09-08-00	U	U	4	U	U	U	U	U	3
Dirillo	37°08'00"	14°45'00"	0	0	0	0	0	0	0	4	0
Kebir (Algeria)	36°46'38"	08°19'31"	0	0	90	0	0	0	0	0	0

lat, latitude; long, longitude; kn, krenal; kr, kryal; rh, rhithral; pt, potamal; AL, Alpine ecoregion lowland lakes; al, Alpine ecoregion high altitude lakes; ME, Mediterranean ecoregion lakes; hm, heavily modified water bodies; br, brackish ponds. Abbreviations in brackets are Italian provinces.

The first central moment has the meaning of optimum response value, the second moment can be interpreted as a measure of tolerance (Ter Braak & Prentice, 1988). A positive value of g1 means a response curve skewed to the right, *i.e.* the optimum value is closer to the minimum response value. A negative value of g1 means a response curve skewed to the left, *i.e.* optimum water temperature is closer to the maximum response value. A positive value of g2 is a measure of the peaked-

ness of a curve. A curve with a high g2 (>3) is called *leptokurtic* and it has a defined peak, *i.e.* the species has a defined optimum temperature. A negative value of g2 means a *platykurtic* response or flat response, *i.e.* the species is present over a wide range of water temperature values. In general, a negative value of g2 suggests a bi- or plurimodal Gaussian distribution (Khurshid, 2007).

Moment calculations were performed converting in Matlab® envi-

ronment, version R2012a, some FORTRAN programs, program 9 (Davies, 1971) and program STATFD (Rohlf, 1987).

The central moment calculation formulae were used also to analyze the response of species to altitude, water depth (for lacustrine species) and distance from source (for lotic species). Regression between species optima for water temperature and standard deviation, g1 or g2 was also calculated to relate species optimum and tolerance characters.

To represent graphically species response to water temperature the Curve-Fitting Matlab® toolbox was used, fitting species abundances against water temperature values; the toolbox allows to fit many different models, in particular the one-, two- or n-term Gaussian library model:

$$y = a_1 * e^{-((x-m_1)/s_1)^2} + \dots a_n * e^{-((x-m_n)/s_n)^2}$$

where $_1$ and $_n$ are the peaks to be fitted, a_1 and a_n are the amplitude, m_1 and m_n the centroid (location), s_1 and s_n are coefficients related to the peak width. Separate models were tested for each species collected as larvae and pupal exuviae in the different habitats.

The fitted curves given in Figures 2-11 are the ones giving the best fit (*i.e.* the lowest mean square error). Models with more than three terms (see formula) were not considered to avoid overfitting.

Regression curves between optima for water temperature (as dependent variable) and optima for altitude, water depth, distance from source (as independent variables) were calculated.

Results

Of all available data, 281 samples were from kryal, 186 from krenal, 987 from rhithral, 749 from potamal, 1903 from lakes in the Alpine ecoregion (*i.e.* 114 from high altitude lakes and 1789 from lowland lakes), 204 from natural lakes in the Mediterranean ecoregion, 129 from heavily modified water bodies, 3 from brackish ponds (Table 2). A total of 443 chironomid species were present in the sampling sites.

Water temperature

Thermal response was first calculated considering all data on larvae (*i.e.* joining all habitats) to generally characterize each species' preferences for water temperature. Results for the 55 species present in ≥ 100 records are given in Table 3. For each species the number of samples used to calculate the weighted mean, standard deviation, skewness and kurtosis are reported. In general, species with preference for low temperature had a lower standard deviation than species with optima in warm waters. For this reason the former can be defined as cold stenothermal, the latter as warm eurithermal. In fact, the r² value obtained regressing optimum water temperature of each species with its standard deviation was significant [r²=0.48, 53 degree of freedom (df), P<0.01].

The regression between optimum for water temperature (m°C) and skewness (g1) (Table 3) gave an inverse relation (r^2 =0.34, 53 df, P<0.01). As well, optimum for water temperature (m°C) and kurtosis (g2) were inversely related (r^2 =0.22, 53 df, P<0.01). These relations suggest that cold stenothermal species generally show a response curve skewed to the right, with optimum value closed to minimum values, and leptokurtic (*i.e.* unimodal trend); whereas thermophilous species generally show a curve skewed to the left, with optimum value closed to maximum values, and platykurtic (*i.e.* bi- or plurimodal trend).

Thermal response was then calculated for each separate habitat to better characterize each species' preferences (*i.e.* using data on larvae collected with the same sampling method) (Appendix).

The thermal response of some species is represented in Figures 2-9. For example, thermal curves for *Conchapelopia pallidula* are shown in Figure 2. Optimum response calculated from 615 records (all habitats pooled, Figure 2A) was 13.54°C, with a standard deviation of 5.93°C, a small positive skewness of 0.34 and a negative kurtosis of 1.03 (Table 3). The negative kurtosis suggested a trimodal response with three peaks at 8.13°C (main peak), 11.39°C and 22.42°C (secondary peaks). Peaks were at 4.93°C (main peak), 7.45°C and 20.77°C considering only samples from Alpine lowland lakes (Figure 2B). Optimum for rhithral samples was 13.9 °C (unimodal response with peaks at 11.5 °C, 18.64 °C and 23.89 °C (Figure 2D).

Procedure 1013 13.3 5.7 0.63 -0.65 Decompeting and behavia 127 10.5 5.17 0.47 -0.63 Concretapoles for behavia 128 1.138 4.11 -0.21 0.45 Concretapoles for behavia 115 5.83 0.34 -0.19 -1.15 Peacediationes transchit 115 5.83 0.88 0.80 0.11 Dimmes attrans 134 3.43 1.97 0.85 0.97 Dimmes attrans 136 7.19 4.66 0.61 -0.19 Dimmes attrans 136 7.19 4.66 0.61 -0.18 Dimmes attrans 136 7.19 4.66 0.61 -0.18 Dimmes attrans 126 3.72 2.51 1.6.2 3.22 Diation bridis 128 1.33 4.51 0.46 0.61 -0.48 Diation bridis 125 1.47 4.41 -0.49 -0.43 Diabefereicity incretapor	Species	n	m (°C)	SD (°C)	gl	g2
Maconglogia nublication 127 10.5 5.17 0.47 0.483 Concluspics pathetics 113 1.15 5.13 0.14 -1.05 Concluspics pathetics 115 5.83 0.34 -1.05 Dimensa isothoecki 116 1.83 4.83 0.81 0.11 Dimensa isothoecki 106 1.98 1.45 1.06 1.13 Dimensa isothoecki 106 7.93 4.66 0.61 -0.18 Dimensa isothoecki 106 7.93 4.66 0.61 -0.18 Dimensa isothoecki 215 3.72 2.51 1.62 8.22 Distribution 215 1.47 4.41 -0.49 -0.60 Testessi cabrecens 337 1.08 5.81 0.65 -1.21 Distributional isothoecolar 183 4.51 1.91 1.66 -0.67 Distributional isothoecolars 215 1.47 4.41 -0.41 -0.15 Distributional isothoecolars	Procladius choreus	1018	13.39	5.7	0.63	-0.65
Zavelimity barbaipes 128 11.58 4.11 -0.21 0.46 Construgeting barbaits 111 14.77 4.3 -0.19 -1.15 Pseudodianesa brainčkii 115 5.63 3.06 0.8 0.71 Diamas stehovecki 106 1.98 1.45 1.66 1.19 Diamas a tertorisi 200 2.68 1.96 0.41 0.79 Diamas a tertorisi 201 2.68 1.96 0.42 8.2 Podiamas a tertorisi 215 3.72 2.51 1.62 8.22 Podiamas a tertorisi 216 3.43 1.79 -0.68 Tectoris colseccus 337 1.18 5.81 0.06 -0.71 Diakteristica teriopencia 175 6.8 3.78 0.62 -0.41 Diakteristica teriopencia 176 6.8 3.78 0.67 -0.41 Diakteristica teriopencia 176 6.8 3.74 -0.22 -0.01 Orticolatis stepicona teriopencia <td>Macropelopia nebulosa</td> <td>127</td> <td>10.5</td> <td>5.17</td> <td>0.47</td> <td>-0.63</td>	Macropelopia nebulosa	127	10.5	5.17	0.47	-0.63
Canchargedipping pulledida 615 13.51 5.93 0.34 -1.13 Precededpia montari 111 14.77 4.3 -0.19 -1.15 Precededpia montari 115 5.63 3.08 0.8 0.71 Diamesa isotitoccki 106 1.89 1.45 1.06 1.18 Diamesa isotitoccki 106 1.89 1.45 1.06 0.17 Diamesa isotitoccki 106 1.89 1.64 0.47 0.45 0.27 Diamesa isotitoccki 200 2.68 1.94 0.46 0.01 -0.18 Diamesa isotitoccki 302 1.13 4.51 1.44 0.49 -0.43 Dialeferreita montari 317 1.98 5.81 0.06 -1.24 Dialeferreita carinemosi 213 1.51 1.41 -0.49 -0.43 Dialeferreita montarine 176 6.8 3.37 0.72 0.41 Percetotopias finecipes 245 1.877 797 0.06	Zavrelimyia barbatipes	128	11.58	4.11	-0.21	0.45
Respective annual 111 14.77 4.3 -0.19 -1.15 Pseudodiamesa branckii 115 5.63 3.08 0.8 0.01 Diames distitutis 134 3.43 1.97 0.85 0.27 Diames derivatis 134 3.43 1.97 0.85 0.27 Diames atoma 186 7.19 4.66 0.61 -0.13 Diames atoma 186 7.12 9.51 1.82 8.22 Prediames diacea 246 9.48 4.33 1.73 3.56 Billis bifdia 020 1.13 4.76 0.13 -0.69 Texterist cattescars 3.37 1.105 5.81 0.066 -1.24 Diale foreitic diarization 1.31 4.51 1.44 1.46 6.37 Diale foreitic diarization 2.35 1.17 6.22 0.41 Percenclastic foreitic diarization -0.44 Biocritorisa foreipeits 2.85 1.87 7.97 0.06 -1.49	Conchapelopia pallidula	615	13.54	5.93	0.34	-1.03
Pseudodamesa banaksi 115 5.63 3.88 0.8 0.71 Diamesa tatinaks 134 3.43 1.97 0.65 0.27 Diamesa tatinaks 134 3.43 1.97 0.65 0.27 Diamesa bortani 200 2.83 1.56 1.16 0.73 Diamesa torsa 186 7.13 4.66 0.61 -0.18 Diamesa torsa 186 7.13 4.66 0.61 -0.18 Diamesa torsa 106 5.81 0.06 -1.24 8.2 Pacification albecace 215 1.47 4.41 -0.49 -0.63 Electricito barcicabcar 133 4.51 1.94 1.66 6.37 Electricitopae fistas 215 1.47 4.41 -0.49 -0.43 Electricitopae fistas 121 1.51 5.53 -0.16 -0.78 Molectitag fistarchars 128 1.33 4.42 -0.16 -0.78 Orthoclatitis relations 116 <td>Rheopelopia ornata</td> <td>111</td> <td>14.77</td> <td>4.3</td> <td>-0.19</td> <td>-1.15</td>	Rheopelopia ornata	111	14.77	4.3	-0.19	-1.15
Damase steinbecki 105 1.98 1.45 1.06 1.19 Diamese latitansis 134 3.43 1.97 0.85 0.27 Diamese torisat 120 2.68 1.56 0.116 0.39 Diamese average 246 9.48 4.33 1.79 3.56 Diamese oblicace 246 9.48 4.33 1.79 3.56 Dialita bifida 202 1.13 4.76 0.19 -0.68 Existence 246 9.48 4.33 1.79 3.56 Dialita bifida 202 1.13 4.76 0.19 -0.68 Existence 245 1.57 7.44 -0.49 3.45 Existence 245 1.67 7.97 0.06 -1.49 Spectrocolatits grange matches 128 1.38 4.47 -0.16 -0.78 Orthocolatits frainchocolatus oritocha 266 9.85 47 0.52 -0.01 Orthocolatits frainchocolatus oritocha 266 </td <td>Pseudodiamesa branickii</td> <td>115</td> <td>5.63</td> <td>3.08</td> <td>0.8</td> <td>0.71</td>	Pseudodiamesa branickii	115	5.63	3.08	0.8	0.71
Damese texturnis 134 4.43 197 0.85 0.27 Damese texturni 200 2.63 1.96 1.16 0.73 Damese texturni 200 2.63 1.96 0.18 0.18 Damese texture 215 3.72 2.51 1.62 8.22 Poldamese attenese 246 9.48 3.33 1.79 3.55 Britts bifda 212 1.33 4.76 0.19 -0.89 Texturitizate dampeonits 215 1.47 4.41 -0.49 -0.3 Existeficient annor 176 6.6 3.73 0.06 -1.44 Existeficient annor 176 6.6 3.73 0.06 -1.44 Existeficient annor 176 6.8 3.76 0.014 -0.49 Existence annor 176 6.8 3.78 0.06 -1.44 Synortholodius synicoins 121 13.3 4.42 -0.16 -0.73 Exitere annore 133 9.18	Diamesa steinboecki	106	1.98	1.45	1.06	1.19
Diamesa bertrami 200 2.68 1.96 1.16 0.79 Diamesa tona 186 7.19 4.86 0.61 -0.18 Diamesa tona 125 3.72 2.51 1.82 8.22 Prodiamesa tona 246 9.48 4.33 1.73 3.56 Britic hiftida 202 1.13 4.76 0.19 -0.63 Device colores 537 1.08 5.81 0.66 -1.24 Britic hiftida 202 1.13 4.74 4.41 -0.49 -0.3 Eduic fiete ant concentra 133 4.51 1.94 -1.66 6.37 Britic hiftida -0.49 -0.3 Eduic fiete ant concentra 125 1.47 4.41 -4.49 -0.3 Eduic fiete ant concentra 126 13.38 4.42 -0.16 -0.43 Orthocolatis sentions 126 13.38 4.42 -0.16 -0.24 Orthocolatis sentions 126 13.38 4.42 -0.15 <td>Diamesa latitarsis</td> <td>134</td> <td>3.43</td> <td>1.97</td> <td>0.85</td> <td>0.27</td>	Diamesa latitarsis	134	3.43	1.97	0.85	0.27
Diamesa tonsa 185 7.19 4.65 0.61 -0.18 Diamesa tonyi 215 3.72 2.51 1.62 8.22 Paralamesa olazeoa 246 9.48 4.33 1.79 3.56 Brillis bifda 202 11.38 4.76 0.19 -0.69 Teletria calexecens 537 11.08 5.81 0.06 -1.24 Exhiefferiella braicalcar 133 4.51 1.94 4.66 6.37 Exhiefferiella hinor 176 6.8 3.78 0.67 0.41 Peetrocolatius (Peetrocolatius orgun 283 12.17 6.22 0.43 -1.04 Recoricotops fuscions 124 13.15 5.83 -0.16 -0.49 Recoricotops fuscions 124 13.15 5.33 -0.16 -0.49 Orthocolatius (Exorthocolatus is viscions 138 9.18 5.5 1.16 0.21 Orthocolatius indications 111 12.45 4.02 -0.16 -0.23	Diamesa bertrami	200	2.68	1.96	1.16	0.79
Dimesa zenryi 215 3.72 2.51 1.62 8.22 Prodianesa oticaca 246 9.48 4.33 1.79 3.56 Britla biffad 202 11.38 4.76 0.19 -0.69 Textenic acleasceris 337 11.08 5.81 0.06 -1.24 Bukiefferiel breachar 133 4.51 1.94 1.66 6.37 Bukiefferiel breachar 215 1.47 4.41 -0.49 -0.3 Bukiefferiel breachar 233 12.17 6.22 0.43 -1.04 Recorciopus effusus 243 13.15 5.83 -0.16 -0.49 Sporthoctodius sentierens 128 13.38 4.42 -0.16 -0.78 Orthoctadius figitals 261 6.17 3.72 1.25 1.4 Orthoctadius phytochias 212 12.14 4.42 4.02 -0.15 -0.24 Orthoctadius phytochias 212 12.14 4.02 -0.15 -0.42	Diamesa tonsa	186	7.19	4.66	0.61	-0.18
Prodomesa of locacea 246 9.48 4.33 1.79 3.56 Drilla Difda 202 11.38 4.76 0.19 -0.69 Detenia calescens 537 11.18 5.81 0.06 -1.24 Diskiefferiella broicalcar 133 4.51 1.94 1.66 6.37 Diskiefferiella claripensis 215 1.47 4.41 -0.49 -0.3 Diskiefferiella minor 176 6.8 3.78 0.72 0.41 Pectrodadius (Psectrocladius) ayura 283 12.17 6.22 0.43 -1.04 Recorcloopus efficus 124 13.15 5.53 -0.16 -0.78 Orthocladius sinterus 124 13.33 4.42 -0.16 -0.78 Orthocladius pricobits 212 12.14 4.02 -0.15 -0.24 Orthocladius rhyacobius 212 12.14 4.02 -0.15 -0.24 Orthocladius rhyacobius 212 12.14 4.02 -0.15 -0.24	Diamesa zernyi	215	3.72	2.51	1.62	8.22
brillic britlic $brillic britlic brillic britlic britlic britlic britlic$	Prodiamesa olivacea	246	9.48	4 33	1 79	3.56
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Brillia hifida	202	11.38	4 76	0.19	-0.69
Archinectastacta 263 125 147 144 166 6.37 Exhifteriella brevicalcar133 451 194 166 6.57 Exhifteriella brevicalcar215 147 441 -0.49 -0.3 Exhifteriella minor 176 6.8 378 072 041 Psectocladius (Psectrocladius) oxyura283 1217 622 043 -104 Recoricotopus fluxus 124 1515 5.83 -0.16 -0.49 Recoricotopus fluxus 81692 687 797 006 -1.49 Synotrhocladius senivirens 128 1338 442 -0.16 -0.78 Orthocladius fixidus 261 617 372 125 1.4 Orthocladius hynotobia 212 12.14 402 -0.15 -0.24 Orthocladius hynotobia 212 12.14 402 -0.15 -0.24 Orthocladius nutrentis 233 733 632 0.17 -0.82 Orthocladius nutrentis 213 111 1245 319 0.55 091 Parantriocnemists 218 1114 497 0.36 -0.83 Parantriocladius sylotextis 218 1114 497 0.36 -0.83 Paranteriocnemis sylotars 218 1114 497 0.36 -0.83 Paranteriocnemis sylotars 218 1114 497 0.36 -0.83 Paranteriocnemis sylotars 218 1107 $7.$	Tuetenia calvescens	537	11.00	5.81	0.06	_1 24
Labor Los Los <thlos< th=""> <thlos< td="" td<=""><td>Fubiofferiella brevicalcar</td><td>133</td><td>4.51</td><td>1 9/</td><td>1.66</td><td>6.37</td></thlos<></thlos<>	Fubiofferiella brevicalcar	133	4.51	1 9/	1.66	6.37
Lancentreal dampenns 213 113 113 114 113 114 114 114 114 114 114 114 114 114 114 114 115 533 116 -104 Recoricologus fascipes 245 16.97 7.97 0.06 -1.49 Synorbochalus sentiteres 128 13.38 4.42 -0.16 -0.78 Orthocladius Genothecalius sentiteres 128 13.38 4.42 -0.16 -0.73 Orthocladius Soluties 128 12.14 4.02 -0.15 -0.24 Orthocladius physicabias 1212 12.14 4.02 -0.15 -0.24 Orthocladius physicabias 111 12.45 3.19 0.55 0.91 Paratrichocladius niticentris 233 17,33 6.32 0.17 -0.82 Orthocladius physicabias 218 11.14 4.97 0.36 -0.83 Parametriconemus stylatis 218 11.14 4.97 0.36 -0.23	Eubiofferiella claripannis	915	1.01	1.54	0.40	0.01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Eukienenena cianpennis	176	6.8	3.78	0.72	0.41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Departmentella million	110	19.17	5.10	0.12	1.04
Interchance 124 13.3 3.53 -0.13 -0.19 Recor:colorps insighes 245 1697 7.37 0.06 -1.49 Synorthocladius seninirens 128 13.38 4.42 -0.16 -0.78 Orthocladius figitas 261 6.17 3.72 1.25 1.4 Orthocladius rigitas 261 6.17 3.72 1.25 1.4 Orthocladius rigitas 212 12.14 4.02 -0.15 -0.24 Orthocladius nulciandus 111 12.45 3.19 0.55 0.91 Paratrichocladius nulciandus 111 12.45 3.19 0.56 0.91 Paratrichocladius nulciandus 111 12.45 3.19 0.55 0.91 Paratrichocladius nulciandus 216 14.63 5.08 -0.23 -1.04 Cricotopus lonicitus 276 14.63 5.08 -0.35 1.03 Paratricheriella bathophila 117 5.89 3.66 12.52 Thie	Deservice to pue offueue	194	12.17	0.22 E 02	0.45	-1.04
$\begin{aligned} & \text{Arecercologies} & \text{Idec}(pes) & 243 & 10.54 & 1.54 & 0.00 & -1.49 \\ & \text{Synorhocladius} senitivens & 1128 & 13.38 & 4.42 & -0.16 & -0.78 \\ & \text{Orthocladus senitivens } & 128 & 13.38 & 4.42 & -0.16 & -0.73 \\ & \text{Orthocladus senitivens } & 212 & 12.1 & 3.72 & 1.25 & 1.14 \\ & \text{Orthocladus solitens } & 138 & 9.18 & 5.5 & 1.16 & 0.21 \\ & \text{Orthocladus solitens } & 138 & 9.18 & 5.5 & 1.16 & 0.21 \\ & \text{Orthocladus solitens } & 111 & 12.45 & 3.19 & 0.55 & 0.91 \\ & \text{Paratrichocladus nuluentris } & 253 & 77.33 & 6.52 & 0.01 & -0.24 \\ & \text{Orthocladus solutens nuluentris } & 253 & 77.33 & 6.52 & 0.01 & -0.24 \\ & \text{Orthocladus nuluentris } & 253 & 77.33 & 6.52 & 0.01 & -0.24 \\ & \text{Orthocladus nuluentris } & 253 & 77.33 & 6.52 & 0.01 & -0.28 \\ & \text{Cricotopus solutions nuluentris } & 276 & 14.63 & 5.08 & -0.23 & -1.04 \\ & \text{Cricotopus bicinctus } & 276 & 14.63 & 5.08 & -0.23 & -1.04 \\ & \text{Cricotopus bicinctus } & 218 & 11.14 & 4.97 & 0.36 & -0.83 \\ & \text{Parametriconenus sylextris } & 183 & 11.19 & 5.08 & 0.82 & -0.09 \\ & Parametriconenus sylextris & 113 & 11.14 & 4.97 & 0.36 & -0.83 \\ & \text{Coryoneem scutellata } & 259 & 11.07 & 4.06 & -0.5 & -0.35 \\ & \text{Coryone scutellata } & 259 & 11.07 & 4.06 & -0.5 & -0.35 \\ & \text{Coryoneus scutellata } & 259 & 11.07 & 4.06 & -0.5 & -0.35 \\ & \text{Tarytarsus fridorsum } & 268 & 14.59 & 5.11 & 0.63 & -1.05 \\ & \text{Paratarytarsus lateborni } & 101 & 10.53 & 3.01 & 3.1 & 9.11 \\ & \text{Micropsectra antofasciata } & 490 & 13.79 & 5.33 & 0.52 & 0.88 \\ & \text{Micropsectra paltidula } & 125 & 6.3 & 3.58 & 1.1 & 0.44 \\ & \text{Pagostiella coophila } & 115 & 8.12 & 4.63 & 1.43 & 0.75 \\ & \text{Peudochronomus praindus } & 351 & 12.22 & 4.43 & 1.35 & 0.65 \\ & \text{Microtondipes pelefulus } & 341 & 12.29 & 2.73 & 0.6 & 1.06 \\ & \text{Polypedilum nubcalosum } & 566 & 12.06 & 5.52 & -0.14 & -0.38 \\ & \text{Polypedilum nubcalosum } & 566 & 12.08 & 4.09 & 1.26 & 1.58 \\ & \text{Endochronomus planosus } & 751 & 11.19 & 6.1 & 0.67 & -0.59 \\ & \text{Chinonomus planosus } & 571 & 11.19 & 6.1 & 0.67 & -0.59 \\ & \text{Chinonomus planosus } & 571 &$	Rheocricolopus enusus	124	10.10	J.0J	-0.10	-0.49
Synothocidalitis Sentilivents 128 13.88 4.42 -0.16 -0.18 Orthockadius (Buothocidalius) rivicola 366 9.85 4.47 0.52 -0.01 Orthockadius (Buothocidalius) rivicola 366 9.85 4.47 0.52 -0.01 Orthockadius rigidus 261 6.17 3.72 1.25 1.4 Orthockadius riviexobius 212 12.14 4.02 -0.15 -0.24 Orthockadius noicundus 111 12.45 3.19 0.55 0.91 Paratrichochadius noicundus 111 12.45 3.19 0.09 0.16 Cricotopus clascidus noicundus 276 14.63 5.08 -0.23 -1.04 Cricotopus clascidus sylvestris 183 11.19 5.08 0.82 -0.09 Parakrieffreile bathophila 117 5.89 3.89 3.66 12.52 Thienemaniella partita 107 7.73 4.08 0.33 0.3 Coryonoeura scutellata 259 11.07 4.06	Rheocricotopus ruscipes	245	10.97	1.91	0.00	-1.49
Orthocidatis Particularity Sob 9.85 4.7 0.32 -0.01 Orthocidatis Sigilar 261 6.17 3.72 1.25 1.4 Orthocidatis Sigilar 5.5 1.16 0.21 Orthocidatis Sigilar 5.5 1.16 0.21 Orthocidatis Orthocidatis 9.18 5.5 0.91 Paratrichocidatis Nitocons 253 17.33 6.32 0.17 -0.82 Cricotopus bicinctus 276 14.63 5.08 -0.23 -1.04 Cricotopus bicinctus 276 14.63 5.08 -0.23 -0.09 Parametriconenus sylatus 218 11.14 4.97 0.36 -0.33 Parakiefferiella bathophila 117 5.89 3.69 3.66 12.52 Thieemanniella parita 107 7.73 4.08 0.33 0.3 Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Taratarytarsus greg	Synorthociaalus semibirens	128	13.38	4.42	-0.10	-0.78
Orthocladius oblidens 261 6.17 5.17 1.42 1.23 1.14 Orthocladius oblidens 138 9.18 5.5 1.16 0.21 Orthocladius nubicundus 111 12.45 3.19 0.55 0.91 Paratrichocladius nubicundus 111 12.45 3.19 0.55 0.91 Paratrichocladius nubicundus 161 14.24 4.79 0.09 0.16 Cricotopus munitator 161 14.24 4.79 0.09 0.16 Cricotopus bicinctus 276 14.63 5.08 -0.23 -1.04 Cricotopus unsumator 183 11.14 4.97 0.36 -0.83 Parakiefferiella bathophila 117 5.89 3.69 3.66 12.52 Thienenanniella paritia 107 7.73 4.08 0.33 0.3 Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Tarytarsus gregarius 421 11.11 6.8 0.72 -1.07 </td <td>Orthociaaius (Euorthociaaius) rivicola</td> <td>300</td> <td>9.85</td> <td>4.7</td> <td>0.52</td> <td>-0.01</td>	Orthociaaius (Euorthociaaius) rivicola	300	9.85	4.7	0.52	-0.01
Orthocladius oblidens 138 9.18 5.5 1.16 0.21 Orthocladius nyacobius 212 12.14 4.02 -0.15 -0.24 Orthocladius nitreentris 253 17,33 6.32 0.17 -0.82 Cricotopus intricondus 111 12.45 3.19 0.55 0.91 Paratrichocladius nitreentris 253 17,33 6.32 0.17 -0.82 Cricotopus ficientus 276 14.63 5.08 -0.23 -1.04 Cricotopus (Isocladius) sylvestris 183 11.19 5.08 0.82 -0.09 Parametriconemus stylatus 218 11.14 4.97 0.36 -0.83 Coryononeura scutellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.	Orthocladius frigidus	261	6.17	3.72	1.25	1.4
Orthocladius rhyacobuis 212 12.14 4.02 -0.15 -0.24 Orthocladius nuticandus 111 12.45 3.19 0.55 0.91 Paratrichocladius nuticentris 253 17,33 6.32 0.17 -0.82 Cricotopus chicinctus 276 14.63 5.08 -0.23 -1.04 Cricotopus (locidatus) sylvestris 183 11.19 5.08 0.82 -0.09 Parametriocnemus stylatus 218 11.14 4.97 0.36 -0.83 Parametrionemus stylatus 218 11.14 4.97 0.36 -0.09 Parametrionemus stylatus 218 11.14 4.97 0.36 -0.03 Thienemanniella partita 107 7.73 4.08 0.93 0.3 Coryonoeur scutellata 259 1.107 4.06 -0.5 -0.35 Tartytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotarytarsus attridorsam 268 14.59 5.11 0.63 <t< td=""><td>Orthocladius oblidens</td><td>138</td><td>9.18</td><td>5.5</td><td>1.16</td><td>0.21</td></t<>	Orthocladius oblidens	138	9.18	5.5	1.16	0.21
Orthocladius rubicundus 111 12.45 3.19 0.55 0.91 Paratrichocladius rubicentris 253 17.33 6.32 0.17 -0.82 Cricotopus annulator 161 14.24 4.79 0.09 0.16 Cricotopus (Isocladius) sylvestris 183 11.19 5.08 -0.23 -1.04 Cricotopus (Isocladius) sylvestris 183 11.14 4.97 0.36 -0.83 Parametriconemus stylatus 218 11.14 4.97 0.36 -0.83 Parakiefferiella bathophila 117 5.89 3.69 3.66 12.52 Thienemanniella partita 107 7.73 4.08 0.93 0.3 Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cadatarytarsus tatidorsum 268 14.59 5.11 0.63 -1.05 Paratanytarsus lauterborni 101 10.53 3.01 3.1	Orthocladius rhyacobius	212	12.14	4.02	-0.15	-0.24
Paratrichocladius nificentris 253 17,33 6.52 0.17 -0.82 Cricotopus annulator 161 14.24 4.79 0.09 0.16 Cricotopus bicinctus 276 14.63 5.08 -0.23 -1.04 Cricotopus (Isocladius) sylvestris 183 11.19 5.08 0.82 -0.09 Parametriconemus sylatus 218 11.14 4.97 0.36 -0.83 Parakiferiella bathophila 117 5.89 3.69 3.66 12.52 Thienemanniella partita 107 7.73 4.08 0.93 0.3 Coryonoeur scutellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladatarytarsus athiforsum 268 14.59 5.11 0.63 -1.05 Paratanytarsus athiforsum 268 14.59 5.11 0.63 -1.07 Cladatarytarsus athiforsum 208 1.37 9.33 0.52 0.88 Micropsectra atorlasciata 490 13.79 5.33	Orthocladius rubicundus	111	12.45	3.19	0.55	0.91
Cricotopus annulator16114244.790.090.16Cricotopus bicinctus27614.635.08 -0.23 -1.04 Cricotopus (kocladius) sylestris18311.195.080.82 -0.09 Parametriocnemus stylatus21811.144.970.36 -0.83 Parakiefferiella bathophila1175.893.693.6612.52Thienemanniella partita1077.734.080.930.3Corynoneura scutellata25911.074.06 -0.5 -0.35 Tarytarsus gregarius42111.116.80.72 -1.07 Cladotanytarsus lauterborni10110.533.013.19.11Micropsectra atridorsum26814.595.110.63 -1.05 Paratendipes adbinanus1256.33.581.10.44Pagastiella orophila1158.124.631.430.75Paratendipes adbinanus35112.224.431.350.65Microtendipes pedellus39412.292.730.61.06Polypedilum nubeculosum56612.084.091.261.58Polypedilum nubeculosum56612.084.091.261.58Polypedilum nubeculosum56612.084.091.261.58Polypedilum nubeculosum56612.084.091.261.58Chironomus athracinus27610.085.240.860Oryp	Paratrichocladius rufiventris	253	17.33	6.32	0.17	-0.82
Cricotopus bicinctus 276 14.63 5.08 -0.23 -1.04 Cricotopus (Isocladius) sylvestris 183 11.19 5.08 0.82 -0.09 Parametriconemus sylutus 218 11.14 4.97 0.36 -0.83 Parakiefferiella bathophila 117 5.89 3.69 3.66 12.52 Thienemanniella partita 107 7.73 4.08 0.93 0.3 Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotanytarsus atridorsum 268 14.59 5.11 0.63 -1.05 Paratanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Paratendipes albinanus 351 12.22 4.43 1.35	Cricotopus annulator	161	14.24	4.79	0.09	0.16
Cricotopus (Isocladius) sylaestris 183 11.19 5.08 0.82 -0.09 Parametriconemus sylatus 218 11.14 4.97 0.36 -0.83 Parakiefferiella bathophila 117 5.89 3.66 12.52 Thienemaniella paritia 107 7.73 4.08 0.93 0.3 Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladatanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Peudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 <	Cricotopus bicinctus	276	14.63	5.08	-0.23	-1.04
Parametriocnemus stylatus 218 11.14 4.97 0.36 -0.83 Parakiefferiella bathophila 117 5.89 3.69 3.66 12.52 Thienemanniella partita 107 7.73 4.08 0.93 0.3 Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotanytarsus latterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pullidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Partendipes albimanus 351 12.22 4.43 1.35	Cricotopus (Isocladius) sylvestris	183	11.19	5.08	0.82	-0.09
Parakiefferiella bathophila 117 5.89 3.69 3.66 12.52 Thienemanniella partia 107 7.73 4.08 0.93 0.3 Corynoneura scuttellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotanytarsus attridorsum 268 14.59 5.11 0.63 -1.05 Paratanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra atofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Microtendiges pedellus 394 12.29 2.73 0.6 1.06 Polypedilum connictum 138 15.44 4.07 -0.61 0.44 Polypedilum nubeculosum 566 12.08 4.09 1.26 <td< td=""><td>Parametriocnemus stylatus</td><td>218</td><td>11.14</td><td>4.97</td><td>0.36</td><td>-0.83</td></td<>	Parametriocnemus stylatus	218	11.14	4.97	0.36	-0.83
Thienemanniella partita 107 7.73 4.08 0.93 0.3 Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Tarytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotanytarsus atridorsum 268 14.59 5.11 0.63 -1.05 Partanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Partantipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38	Parakiefferiella bathophila	117	5.89	3.69	3.66	12.52
Corynoneura scutellata 259 11.07 4.06 -0.5 -0.35 Tanytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotanytarsus atridorsum 268 14.59 5.11 0.63 -1.05 Paratanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum naturu 112 16.65 5.52 -0.14 -0.38	Thienemanniella partita	107	7.73	4.08	0.93	0.3
Tarytarsus gregarius 421 11.11 6.8 0.72 -1.07 Cladotanytarsus atridorsum 268 14.59 5.11 0.63 -1.05 Paratanytarsus latterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 <td>Corynoneura scutellata</td> <td>259</td> <td>11.07</td> <td>4.06</td> <td>-0.5</td> <td>-0.35</td>	Corynoneura scutellata	259	11.07	4.06	-0.5	-0.35
Cladotanytarsus atridorsum 268 14.59 5.11 0.63 -1.05 Paratanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08	Tanytarsus gregarius	421	11.11	6.8	0.72	-1.07
Paratanytarsus lauterborni 101 10.53 3.01 3.1 9.11 Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus endens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25	Cladotanytarsus atridorsum	268	14.59	5.11	0.63	-1.05
Micropsectra atrofasciata 490 13.79 5.33 0.52 0.88 Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glypottendipes pallens 154 13.88 7.65 0.08 -1.25 <	Paratanytarsus lauterborni	101	10.53	3.01	3.1	9.11
Micropsectra pallidula 125 6.3 3.58 1.1 0.44 Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chir	Micropsectra atrofasciata	490	13.79	5.33	0.52	0.88
Pagastiella orophila 115 8.12 4.63 1.43 0.75 Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus sultracinus 525 13.54 6.35 0.5 -1.44 Chironomus riparius 333 15.28 4.65 0.32 1.44	Micropsectra pallidula	125	6.3	3.58	1.1	0.44
Pseudochironomus prasinatus 209 13.95 6.56 0.02 -1.37 Paratendipes albimanus 351 12.22 4.43 1.35 0.65 Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7	Pagastiella orophila	115	8.12	4.63	1.43	0.75
Paratendipes albimanus35112.224.431.350.65Microtendipes pedellus39412.292.730.61.06Polypedilum convictum13815.444.07-0.610.44Polypedilum laetum11216.655.52-0.14-0.38Polypedilum nubeculosum56612.084.091.261.58Endochironomus tendens10612.513.910.80.08Dicrotendipes nervosus27610.085.240.860Glyptotendipes pallens15413.887.650.08-1.25Chironomus plumosus57111.196.10.67-0.59Chironomus riparius33315.284.650.321.44Cladopelma viridulum29413.635.980.51-0.7Cryptochironomus vulneratus14312.967.280.44-1.36	Pseudochironomus prasinatus	209	13.95	6.56	0.02	-1.37
Microtendipes pedellus 394 12.29 2.73 0.6 1.06 Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Paratendipes albimanus	351	12.22	4.43	1.35	0.65
Polypedilum convictum 138 15.44 4.07 -0.61 0.44 Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus riparius 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Microtendipes pedellus	394	12.29	2.73	0.6	1.06
Polypedilum laetum 112 16.65 5.52 -0.14 -0.38 Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Polypedilum convictum	138	15.44	4.07	-0.61	0.44
Polypedilum nubeculosum 566 12.08 4.09 1.26 1.58 Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Polypedilum laetum	112	16.65	5.52	-0.14	-0.38
Endochironomus tendens 106 12.51 3.91 0.8 0.08 Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Polypedilum nubeculosum	566	12.08	4.09	1.26	1.58
Dicrotendipes nervosus 276 10.08 5.24 0.86 0 Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Endochironomus tendens	106	12.51	3.91	0.8	0.08
Glyptotendipes pallens 154 13.88 7.65 0.08 -1.25 Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Dicrotendipes nervosus	276	10.08	5.24	0.86	0
Chironomus anthracinus 525 13.54 6.35 0.5 -1.44 Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Glyptotendipes pallens	154	13.88	7.65	0.08	-1.25
Chironomus plumosus 571 11.19 6.1 0.67 -0.59 Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Chironomus anthracinus	525	13.54	6.35	0.5	-1.44
Chironomus riparius 333 15.28 4.65 0.32 1.44 Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Chironomus plumosus	571	11.19	6.1	0.67	-0.59
Cladopelma viridulum 294 13.63 5.98 0.51 -0.7 Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Chironomus riparius	333	15.28	4.65	0.32	1.44
Cryptochironomus defectus 473 13.86 5.67 0.43 -0.74 Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Cladopelma viridulum	294	13.63	5.98	0.51	-0.7
Demicryptochironomus vulneratus 143 12.96 7.28 0.44 -1.36	Cryptochironomus defectus	473	13.86	5.67	0.43	-0.74
	Demicryptochironomus vulneratus	143	12.96	7.28	0.44	-1.36

n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis.

Article

Many cold stenothermal species such as *Diamesa zernyi* and *Pseudokiefferiella parva* showed only one maximum, with a high g2, *i.e.* leptokurtic response (Table 3, Appendix).

Species with low temperature optimum (cold stenothermal) showed a response curve skewed to the right (g1>0). *Diamesa bertrami* showed a moderately platykurtic response (g2=0.79), with a trimodal curve considering all habitats (Figure 3A), a bimodal curve with main peak at 2.76° C in kryal samples (with a second peak at 0.93° C) (Figure 3B), a unimodal response in krenal with peak at 3.90° C (Figure 3C), a trimodal response in rhithral with peaks at 3.67° C, 6.79° C and 8.52° C (Figure 3D).

Species with optimum at high temperatures (thermophilous species) showed a response curve skewed to the left (g1<0). For example, *Cricotopus (Isocladius) sylvestris* in potamal (Figure 4C, Appendix) showed optimum at 17.80°C and g1=2.13; *Paratanytarsus mediterraneus* in potamal (Figure 5D; Appendix) had optimum at 19.42°C and a g1=1.59. *Tanytarsus brundini* in rhithral with optimum at 14.37°C and a negative g1 (g1=0.29) is an example of a curve moderately skewed to the left (Figure 5B; Appendix).

Some exceptions were shown: *Paratrichocladius rufiventris* (Figure 4A) had optimum temperature value of 17.33° C and a response curve skewed to the right (g1>0, *i.e.* g1=0.17) (Table 3). A negative value of g2 was an index of a bi- or plurimodal response; *Tanytarsus gregarius* in Alpine ecoregion lakes with a negative g2 (g2=1.09; Appendix) had a bimodal response with two peaks at 5.68°C and 20.66°C (Figure 5C); the very different optima suggest the presence of two populations, the former inhabiting high depth habitats (down to 350 m depth) characterized by low temperatures.

Similarly, it was possible to compare the response of *Polypedilum nubeculosum* larvae in different habitats (Figure 8). A plurimodal response was evident, with different peaks in different habitats.

The response of the larval and pupal stages was compared in different habitats (Figures 6-7, Table 4). For example, larvae of *Micropsectra atrofasciata* in rhithral showed peaks at 6.63°C, 11.83°C and 17.84°C (Figure 6C), while pupal exuviae at 8.91°C, 12.65°C and 15.92°C (Figure 7C); in potamal larvae had peaks at 6.26°C, 9.43°C and 17.95°C (Figure 6D), while pupal exuviae at 9.40°C, 13.53°C and 18.39°C (Figure 7D).

The response of species belonging to the same genus was also analyzed (Figures 7 and 9). *Chironomus anthracinus* showed a bimodal

Figure 4. Thermal response of Orthocladiini larvae. Response of *Paratrichocladius rufiventris* (number of individuals m^{-2}) to water temperature (°C) in all habitats (A) and rhithral (B); response of *Cricotopus (Isocladius) sylvestris* in potamal (C); response of *Corynoneura scutellata* in Alpine ecoregion high altitude lakes (D).

response in Alpine lowland lakes (Figure 9A). *Chironomus plumosus* had a trimodal response in Alpine lowland lakes, and the main peak was at the lowest temperature (Figure 9B); a similar response was observed in Mediterranean lakes (Figure 9C). *Chironomus riparius* showed a unimodal response in the rhithral habitat (optimum at 15 °C) (Figure 9D, Appendix).

Altitude

The response to altitude for the most frequently captured species is reported in Table 5. All data on larvae were used (*i.e.* all habitats). The regression between optima for altitude and for water temperature was calculated selecting 78 species present in at least 66 samples, for which both altitude and water temperature values were available. This selection gave the highest r^2 . Regression coefficient was negative ($r^2=0.60$, 76 df, P<0.01, Figure 10). At high altitudes, *Zavrelimyia barbatipes*, *Corynoneura scutellata, Paratanytarsus austriacus* showed an optimum water temperature higher than predicted by altitude, whereas *D. bertrami, Paratrichocladius skirwithensis, Orthocladius (Eudactylocladius) fuscimanus* had temperature optima lower than expected by altitude; at

Table 4. Thermal response (°C) of Micropsectra atrofasciata
(Chironominae) in specific habitats at different life stages: num-
ber of samples, weighted mean, standard deviation, skewness and
kurtosis of species abundance vs water temperature values.

Life stage	Habitat	n	m (°C)	SD (°C)	g1	g2
Larvae	Rhythral	363	14.20	6.17	0.42	-0.33
Pupal exuviae	Rhythral	89	13.24	4.11	0.45	0.50
Larvae	Potamal	37	13.50	5.48	-0.03	-1.02
Pupal exuviae	Potamal	79	14.86	5.87	-0.06	-1.09
Larvae	Alpine lakes	48	14.05	4.62	0.67	2.47
Pupal exuviae	Alpine lakes	56	16.31	7.54	0.58	-1.38

n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis; Alpine lakes, Alpine ecoregion lowland lakes.

Figure 5. Thermal response of Tanytarsini larvae. Response of *Tanytarsus brundini* (number of individuals m^{-2}) to water temperature (°C) in all habitats (A) and rhithral (B); response of *Tanytarsus gregarius* in Alpine ecoregion lowland lakes (C); response of *Paratanytarsus mediterraneus* in potamal (D).

Species	n	m (m a.s.l.)	SD (m a.s.l.)	gl	g2
Tanypus punctipennis	118	237	207	2.78	16.96
Procladius choreus	1530	437	303	2.42	7.53
Macropelopia nebulosa	274	1278	524	-0.95	-0.67
Ablabesmyia monilis	143	662	513	1.97	3.43
Zavrelimyia barbatipes	243	1961	540	-2.09	3.16
Conchapelopia pallidula	1005	363	285	3.14	14.63
Rheopelopia ornata	137	177	160	2.22	8.04
Pseudodiamesa branickii	262	1913	611	-1.09	0.11
Diamesa steinboecki	119	2559	221	-2.42	8.87
Diamesa latitarsis	171	2213	572	-1.60	2.59
Diamesa bertrami	277	1933	653	-0.86	0.04
Diamesa tonsa	409	897	654	1.27	0.75
Diamesa zernyi	353	2145	564	-1.14	1.04
Pseudokiefferiella parva	119	2348	475	-1.52	2.49
Prodiamesa olivacea	393	300	421	3.56	12.80
Brillia longifurca	100	458	264	0.87	0.95
Brillia bifida	413	434	298	1.76	6.13
Cardiocladius fuscus	148	677	750	1.60	0.77
Tvetenia calvescens	840	1281	945	0.14	-1.81
Eukiefferiella brevicalcar	162	2013	461	-1.55	2.01
Eukiefferiella claripennis	353	651	691	2.00	2.23
Eukiefferiella minor	324	1489	772	-0.39	-1.52
Psectrocladius (Psectrocladius) oxvura	334	272	373	4.56	20.39
Rheocricotopus chalvbeatus	116	342	168	1.50	5.34
Rheocricotopus effusus	205	866	743	1.17	-0.33
Rheocricotopus fuscines	515	361	242	3.10	17.76
Synorthocladius semivirens	212	451	280	4.10	22.43
Orthocladius (Eudactvlocladius) fuscimanus	124	1825	709	-1.25	-0.09
Orthocladius (Euorthocladius) rivicola	618	1052	902	0.66	-1.40
Orthocladius excavatus	141	335	152	1.96	15.17
Orthocladius frigidus	463	1767	743	-0.90	-0.49
Orthocladius oblidens	179	305	188	1.73	2.60
Orthocladius rhvacobius	312	422	228	0.79	1.82
Orthocladius rubicundus	204	409	214	1.19	6.43
Paratrichocladius rufiventris	456	737	610	0.81	-1.18
Paratrichocladius skirwithensis	210	1849	538	-1.57	1.75
Cricotopus annulator	245	412	335	3.81	17.08
Cricotopus bicinctus	422	189	198	1.31	5.93
Cricotopus fuscus	169	1067	624	0.17	-1.18
Cricotopus tremulus	126	968	725	0.75	-0.27
Cricotopus triannulatus	220	220	231	2.56	8.14
Cricotopus (Isocladius) svlvestris	276	322	593	2.89	6.69
Metriocnemus hygropetricus	180	937	685	0.88	-0.59
Chaetocladius laminatus	142	1628	913	-0.44	-1.62
Paratrissocladius excerptus	114	434	242	-0.07	-0.01
Heterotrissociadius marcidus	174	1936	595	-1.45	1.02
Parametriocnemus stylatus	349	1137	878	0.51	-1.19
Parakiefferiella bathophila	165	226	138	4.06	28.87
Thienemanniella partita	173	1141	904	0.19	-1.69
Corvnoneura scutellata	395	2130	447	-3.37	11.70
Stempellina hausei	115	426	2.09	0.00	_1 67
Tanytarsus gregarius	652	561	577	1.21	-0.31
Cladotanytarsus atridorsum	342	406	136	1 92	17.06
Paratanytarsus austriacus	135	2087	311	-2.58	8 72
. a. a. a. y tarouo auon raouo	100	2001	011	To be co	ntinued on next page

Article

Table 5. Continued from previous page.

Species	n	m (m a.s.l.)	SD (m a.s.l.)	g1	g2
Paratanytarsus lauterborni	125	410	549	1.76	1.19
Micropsectra atrofasciata	890	425	361	3.06	10.30
Micropsectra contracta	386	402	114	8.52	93.32
Micropsectra notescens	108	527	313	0.31	1.08
Micropsectra pallidula	166	2184	293	-1.55	3.46
Pagastiella orophila	127	575	245	-0.77	-0.90
Pseudochironomus prasinatus	256	396	202	0.30	-1.74
Paratendipes albimanus	464	308	172	2.83	17.00
Microtendipes pedellus	510	204	213	3.86	18.41
Polypedilum convictum	145	347	167	-0.32	-1.23
Polypedilum laetum	199	340	294	3.06	15.31
Polypedilum cultellatum	100	142	153	1.68	2.34
Polypedilum nubeculosum	812	228	143	5.21	61.77
Phaenopsectra flavipes	149	399	429	2.03	3.05
Endochironomus tendens	140	148	198	6.14	57.78
Stictochironomus pictulus	101	460	443	2.21	2.90
Dicrotendipes nervosus	373	270	104	1.28	1.94
Glyptotendipes pallens	237	241	67	1.56	18.49
Chironomus anthracinus	751	482	356	1.79	3.65
Chironomus plumosus	762	283	132	2.04	7.37
Chironomus riparius	521	229	199	0.93	-0.24
Cladopelma viridulum	390	238	133	6.26	70.75
Parachironomus arcuatus	113	195	98	2.73	16.60
Paracladopelma camptolabis	107	631	546	1.21	0.57
Paracladopelma nigritulum	188	388	55	10.07	221.97
Cryptochironomus defectus	606	305	156	0.93	0.25
Demicryptochironomus vulneratus	163	226	88	3.18	12.09
n, number of samples; m, weighted mean; SD, standard devia	ation; g1, skewness; g2, ku	irtosis.			

Figure 7. Thermal response of *Micropsectra* spp. larvae. Response of *M. pallidula* (number of individuals m^{-2}) to water temperature (°C) in krenal (A); response of *M. atrofasciata* in Alpine ecoregion lowland lakes (B), rhithral (C) and potamal (D).

lower altitudes, the higher temperature optima were observed for *P. mediterraneus*, *P. rufiventris* and *Tanypus punctipennis* and the lower for *Orthocladius oblidens*, *Pagastiella orophila*, *Parakiefferiella bathophila*, *Prodiamesa olivacea*, *Diamesa tonsa*.

Depth

Response of lacustrine species (*i.e.* larvae in Alpine ecoregion lowland lakes) to depth is summarized in Table 6. Only few species showed optimum at >40 m depth (*Micropsectra contracta*, *Paracladopelma nigritulum*), others had maxima at lower depth (*e.g.* at 20-25 m, *Procladius choreus*, *Prodiamesa olivacea*). Response curves of some species are shown in Figure 11. C. plumosus, C. anthracinus, Demicryptochironomus vulneratus and *T. gregarius* showed a wide range of depth tolerance (Table 6).

Source distance

The optimum values for source distance were calculated for species (*i.e.* larvae in running water habitats) for which at least 100 samples were available (Table 7). A relation between optimum for water temperature and for source distance was calculated for the 75 species present in \geq 81 samples. The relation is shown in Figure 12, with r²=0.33 (73 df, P<0.01) fitting a linear model. As expected, cold stenothermal species had optimum near the stream source (*e.g. Diamesa* species) while eurithermal ones (*Endochironomus tendens, C. riparius, Glyptotendipes pallens, C. I. sylvestris, Cricotopus triannulatus, Cricotopus bicinctus*) showed optimum at high distance from source.

Discussion

Notwithstanding the approximation of joining data collected with different sampling methods in different habitats, some generalizations could be argued by the analysis of the dataset on larvae collections. Thermophilous species often showed platikurtic responses, fitting plurimodal Gaussian models, with: i) optima closed to their maximum temperature values, ii) wide tolerance, iii) negative skewness and negative kurtosis (Rossaro, 1991a, 1991c). On the contrary, species restricted to few habitats, such as kryal (e.g. Diamesa steinboecki, Diamesa latitarsis) or krenal (e.g. Chaetocladius laminatus, Micropsectra pallidula), showed low optima for water temperature (cold stenothermal) and low tolerance (stenoecious). These species often showed: i) optima closed to their minimum temperature values, ii) tolerance for a narrow temperature range, iii) positive skewness and positive kurtosis (Rossaro, 1991c). Even if a bimodal response can be fitted, the two maxima are generally rather closed to each other (Figure 3). These species could be thus more sensitive to an increasing trend of temperature (Hester & Doyle, 2011).

For a better approximation of species preferences and tolerance, optima for water temperature were calculated for each species in different habitats, thus considering data collected with the same sampling strategy (Appendix). As expected, lower values were obtained for kryal and krenal, and higher values for rhithral, potamal and lakes. Most taxa showed different responses according to the habitat. When data are

Table 6. Response of lacustrine species (larvae) to water depth (m depth) in Alpine ecoregion lowland lakes: number of samples, weighted mean, standard deviation, skewness and kurtosis of species abundance vs sampling depth values Only the species with \geq 100 records in the dataset are reported. Species are in phylogenetic order.

Species	n	m (m depth)	SD (m depth)	g1	g2
Procladius choreus	1046	21.02	23.02	3.17	23.24
Conchapelopia pallidula	232	4.87	3.34	4.05	31.03
Prodiamesa olivacea	179	21.70	17.71	1.08	1.21
Psectrocladius (Psectrocladius) oxyura	255	4.97	2.39	1.67	4.75
Orthocladius oblidens	110	4.99	2.14	1.97	20.31
Parakiefferiella bathophila	113	5.86	3.27	2.22	5.64
Tanytarsus gregarius	459	10.15	32.08	4.62	23.67
Cladotanytarsus atridorsum	253	3.62	2.38	2.65	17.66
Micropsectra contracta	359	84.91	56.80	1.33	1.62
Pagastiella orophila	116	7.10	2.77	2.69	13.03
Pseudochironomus prasinatus	212	4.26	3.04	6.85	140.29
Paratendipes albimanus	295	4.44	8.81	7.69	152.02
Microtendipes pedellus	228	6.06	4.29	1.54	3.00
Polypedilum nubeculosum	377	3.27	7.90	8.12	126.29
Dicrotendipes nervosus	232	5.70	3.88	2.05	4.46
Chironomus anthracinus	529	13.39	18.62	8.41	113.15
Chironomus plumosus	480	9.73	49.52	7.03	51.04
Cladopelma viridulum	270	8.34	16.38	10.19	163.69
Paracladopelma nigritulum	171	73.31	41.44	0.88	-0.64
Cryptochironomus defectus	423	6.51	4.75	3.70	52.20
Demicryptochironomus vulneratus	144	4.06	24.24	11.46	138.48

n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis.

available for the same species in different habitats, as for *Orthocladius* (*Euorthocladius*) *rivicola*, optimum values are lower in krenal (2.83°C) and kryal (5.23°C) than in rhithral (11.98°C), potamal or lakes. Other species (*e.g. M. atrofasciata*) did not show significant differences between optima values in different habitats, but the response curves were very different (Figures 7-8). These species are euryecious and eurythermal with more than one generation per year with different water temperature optimum for the different populations developing during the year.

Among stenothermal taxa, some species at lower altitude habitats (rhithral, potamal) showed restricted tolerance to temperature, being potentially good indicators of climate change. For example, *Microtendipes pedellus* showed optimum for warm temperature (12.29°C), but a narrow range of tolerance (SD=2.73°C).

For these taxa, the increasing temperature trend may induce a migration toward higher elevations, changing in some years the response curve to altitude (Nyman *et al.*, 2005; Bonada *et al.*, 2007) and increasing species diversity at high elevation sites (Čiamporová-Zaťovičová *et al.*, 2010; Jacobsen *et al.*, 2012). Alternatively, species may adapt to higher temperature, showing altered thermal curves in some years (Hogg *et al.*, 1998; Van Doorsalaen *et al.*, 2009). In the case of cold stenothermal or stenotopic species, a probable loss is expected (Jacobsen *et al.*, 2012), as was observed in some localities in the Apennines for some species, such as *Diamesa insignipes* (Rossaro *et al.*, 2006b).

Even if species response to altitude is surely influenced by water temperature, high elevations also imply different habitats and different ecological conditions. Therefore species distribution could be constrained by other factors. For example, the CHIDB data showed that some species colonizing high altitude lakes such as *Zavrelimyia* spp., *Heterotrissoclaius marcidus*, *C. scutellata* and *P. austriacus* are more warm stenothermal than predicted by altitude, while species living in kryal, krenal or rhithral habitats such as *Diamesa* spp., *Pseudodiamesa branickii* and *P. parva* (Rossaro, 2006b) are more cold stenothermal than expected.

Likewise, at lower altitude species living in the profundal zone of lakes, such as *P. olivacea*, *P. bathophila*, *Micropsectra radialis* and *C.*

plumosus as well as species living in lowland springs such as *Brillia* bifida, Chaetocladius perennis or in the interstitial habitats as *Hydrobaenus distylus* are cold stenothermal.

For what concerns lacustrine species, distribution could be affected by water depth beside water temperature (Rossaro *et al.*, 2006a; Luoto, 2012). Only few species showed an optimum depth below 20 m (*e.g. M. contracta*, *P. nigritulum*). Their distribution plotted against depth showed that they have more than one maximum, often with the main peak at lower depth than the other peaks (Figure 11). Results suggest that possibly depth does not influence species distribution directly, but indirectly through temperature, dissolved oxygen or competition.

Different thermal optimum values were derived for different life stages (*i.e.* larvae vs pupal exuviae), probably due to species phenology. In particular, pupation in chironomids has a short duration, lasting at most 72 h (Langton, 1995). Therefore pupal exuviae are found in specific seasons and times. On the contrary, larval stage has a long duration, lasting most lifetime.

According to species voltinism, more than one generation per year was often observed. This occurs both in lacustrine and in lotic species. This could explain bimodal or trimodal responses of species. Lindegaard & Mortensen (1988) observed that chironomids generally do not have more than four generations per year, but some species (*e.g. C. riparius*) have surely more than four generation per year in Southern Europe areas. Thus, a plurimodal response could also be expected, but more data are needed to fit plurimodal models with a higher number of parameters.

Likewise, plurimodal response could be due to spatial distribution of species, which may show preferences for more than one specific habitat; local adaptations of single populations may as well be responsible for plurimodal trends of some species (Dallas & Rivers-Moore, 2012). In fact, such curves were mostly achieved for eurythermal and euryecious species. Sometimes curves with two peaks might suggest the presence of more than one species instead of more than one population. This is the case of taxa belonging to genera rich in species, which are not easily separated at the larval stage, such as *Diamesa* [e.g. D. latitarsis/steinboecki (juvenilia), Appendix] and *Tanytarsus* spp.

Species	n	m (km)	SD (km)	gl	g2
Procladius choreus	497	84.56	83.31	1.27	0.06
Zavrelimyia barbatipes	118	3.86	20.05	9.52	123.78
Conchapelopia pallidula	663	81.40	134.03	3.35	10.99
Pseudodiamesa branickii	173	15.96	33.89	2.17	4.00
Diamesa steinboecki	108	0.69	7.32	15.03	226.29
Diamesa latitarsis	123	4.26	13.38	5.16	29.23
Diamesa bertrami	205	2.22	16.28	12.63	218.61
Diamesa tonsa	324	12.20	61.51	23.06	817.69
Diamesa zernyi	229	1.90	10.74	12.79	238.84
Prodiamesa olivacea	207	128.57	96.06	0.14	-1.76
Brillia bifida	302	19.64	31.95	3.35	19.85
Cardiocladius fuscus	115	18.68	79.56	13.42	331.58
Tvetenia calvescens	588	20.91	39.27	4.24	24.07
Eukiefferiella brevicalcar	131	0.81	11.87	20.57	475.86
Eukiefferiella claripennis	243	19.03	32,48	6.56	50.10
Eukiefferiella minor	216	8.79	19.15	4.85	46.65
Psectrocladius (Psectrocladius) oxvura	162	60.00	16.03	0.20	52.13
Rheocricotopus effusus	138	28.92	30.16	0.67	-0.12
Rheocricotopus fuscipes	391	48.28	98.83	5.40	30.02
Synorthocladius semivirens	163	22.23	40.18	3.74	24.97
Orthocladius (Euorthocladius) rivicola	457	28.15	66.53	6.22	42.93
Orthocladius excavatus	109	31.70	87.00	7.89	133.38
Orthocladius frigidus	322	6.39	52.28	33.79	1454.39
Orthocladius oblidens	121	55.14	26.38	0.47	7.27
Orthocladius rhvacobius	215	35.31	89.49	5.16	85.39
Orthocladius rubicundus	106	57 75	43.71	0.40	-0.22
Paratrichocladius rufiventris	317	3.76	35.13	29.05	1517.03
Paratrichocladius skirwithensis	134	14 01	23.29	2.15	3.32
Cricotonus annulator	176	34 10	68 19	7 05	60.01
Cricotopus hicinctus	241	128 77	120.05	1 29	2.98
Cricotopus triannulatus	197	131.92	128.18	1.20	5.47
Cricotopus (Isocladius) sylvestris	150	139 59	119.98	0.02	-0.86
Metriocnemus hydronetricus	132	31 94	50.11	4 62	42.91
Chaetocladius Iaminatus	117	13.86	30.01	5.65	45.96
Parametriocnemus stylatus	241	16.18	27.90	4 51	33.89
Parabiefferiella bathophila	101	63 12	1.86	-5.20	2484 04
Thienemanniella partita	133	12.60	53.86	9.37	101.81
Corynoneura scutellata	233	12.58	61 42	6.02	39.72
Tanytarsus gregarius	238	67.50	30.09	10.27	181.68
Cladotanytarsus atridorsum	104	57 74	17.82	7.56	111 14
Micronsectra atrofasciata	529	35.41	66.56	8.86	269.38
Micropsectra pallidula	120	1.54	2.2.9	2.80	15 69
Pseudochironomus prasinatus	119	54.93	5.42	-1.21	11.16
Paratendines alhimanus	130	32 79	28 69	5.33	95 49
Microtendines pedellus	235	53 65	38.30	2.77	11 10
Polypedilum laetum	164	59.77	73.36	3.91	23 25
Polypedilum nubeculosum	434	90.31	86.70	2.38	9.45
Dicrotendines pervosus	188	72.25	78 47	6.66	46.00
Glyptotendines pallens	138	152.20	113 95	0.91	2.80
Chironomus anthracinus	273	57.22	19.98	-1.93	2.80
Chironomus nhumosus	210	26.89	44.06	9.88	134 42
Chironomus riparius	202	213.81	69.27	_1 73	2 69
Cladopelma viridulum	131	50.98	23.96	_1 54	0.53
Cryptochironomus defectus	236	84 54	67.67	2.65	9.50
Demicrontochironomus vulnoratus	19/	52.81	16.69		5.00
Demoryprochironomus vuineratus	194	JJ.01	10.02	-4.03	0.00

n, number of samples; m, weighted mean; SD, standard deviation; g1, skewness; g2, kurtosis.

Article

Article

Conclusions

Chironomids are considered generalist, opportunistic, r-strategy organisms and their distribution is driven by environmental variables, such as water temperature (Rempel & Harrison, 1987), substrate composition (Rae, 1985), current velocity (Caspers, 1983) and other variables such as competition, parasitism, predation and other biological constraints (Tokeshi, 1995; Vodopich & Cowell, 1984). Water temperature has been often recognized as the factor that accounts for the largest percentage of variation in community composition (Heiri *et al.*, 2011). Beyond direct effects caused by increased water temperature, such as distribution, phenology and adaptation, also indirect effects are expected, such as different balance of inter- and intra-specific relation, *i.e.* competition, predation and parasitism (Tixier *et al.*, 2009). These latter aspects still need to be investigated.

Some chironomid species showed unimodal response to water temperature (Larocque *et al.*, 2001), but bimodal and trimodal responses were also frequently found. The present data emphasized that standard deviation generally increased with optimum temperature, meaning that eurythermal species are often warm-water adapted, while coldwater dwellers are mostly stenothermal. Nonetheless some warm stenothermal species were also found, being possibly good indicators of water temperature in lowland habitats (*e.g. M. pedellus*).

Aquatic insect ecology can be interpreted by an evolutionary perspective. Entire orders of aquatic insects probably evolved in cool habitats. Thus, groups inhabiting warmer waters are considered later descendants of cool-adapted ancestral lines (Ward & Stanford, 1982; Ward, 1992). It is supposed that plesiomorphic species are cold stenothermal while apomorphic species are warm stenothermal or eurythermal. The chironomid ancestral habitat is supposed to be cool head-waters (Brundin, 1966; Cranston & Oliver, 1987; Cranston et al., 2012) and ecology and biogeography of Diamesinae gives support to this statement (Serra-Tosio, 1973; Rossaro, 1995). A phylogenetic trend from plesiomorphic cold-stenothermal species to apomorphic warm adapted species was then hypothesized (Rossaro, 1991c), since a general trend toward increasing adaptation to warm habitats was observed from cold stenothermal Diamesini to warm eurythermal Chironomini (Rossaro et al., 2007b). This was confirmed only in part, likely because: i) ecological data on species are incomplete, ii) the evolutionary tree of chironomids is not completely known (Cranston et al., 2012), iii) the relation

Figure 11. Response of *Prodiamesa olivacea* (A), *Micropsectra contracta* (B), *Paracladopelma nigritulum* (C), *Chironomus anthracinus* (D) larvae (number of individuals m⁻²) to water depth (m) in Alpine ecoregion lowland lakes.

between thermal response and the position of a taxon in the phylogenetic tree may be observed at different taxonomic hierarchy, *i.e.* at the level of populations within the same species, of species within the same genus or of genus within the same tribe.

In this paper emphasis is given to water temperature, with the aim of quantifying the responses of single species in different habitats and to describe the detailed pattern of response. The authors acknowledge that results may be biased, being a different number of data available for each species, with a different spatial and temporal resolution in different sites, and thus optimum values must be interpreted with caution. Nevertheless it must be considered the difficulty of selecting a balanced database for a large number of species, some of which rare, living in specialized habitats, others common and widespread, living in different habitats. The data considered in the present paper are still fragmentary and will be revised in the future, as soon as new information will become available. At present, a comparison of quantitative results with other published papers is

recommended. For example, a comparison could be achieved with estimated tolerance and optima for lacustrine species used as climate proxy in palaeolimnological studies (Larocque *et al.*, 2001; Larocque-Tobler *et al.*, 2012), even if available data are mainly from Northern areas. Otherwise, a comparison could be carried out with sensitivity derived from specific studies on existing chironomid communities (Tixier *et al.*, 2009; Čiamporová-Zaťovičová *et al.*, 2010; Hamerlik & Jacobsen, 2012).

Knowledge on thermal tolerance of species is important for a longterm management and monitoring of aquatic ecosystems exposed to the effects of climate change. In fact, thermal curves can help anticipate impacts of climate change to various species by quantifying their thermal habitat (Hester & Doyle, 2011). Species response under different global change scenarios can thus be predicted (Bonada *et al.*, 2007; Sauer *et al.*, 2011). To this purpose, more understanding into species adaptations by acclimation and genetics is also needed (Hogg *et al.*, 1998; Van Doorsalaen *et al.*, 2009).

References

press

- BATTEGAZZORE M., PETERSEN R.C., MORETTI G.P., ROSSARO B., 1992 - An evaluation of the environmental quality of the river Po using benthic macroinvertebrates. - Arch. Hydrobiol. 125: 175-206.
- BERRA E., FORCELLA M., GIACCHINI R., MARZIALI L., ROSSARO B., PARENTI P., 2004 - Evaluation of enzyme biomarkers in freshwater macroinvertebrates of Taro and Ticino river, Italy. - Int. J. Lim. 40: 169-180.
- BOGGERO A., FÜREDER L., LENCIONI V., SIMCIC B., THALER B., FER-RARESE U., et al., 2006 - Littoral Chironomid community of Alpine lakes in relation to environmental factors. - Hydrobiologia. 562: 145-165.
- BONADA N., DOLÉDEC S., STATZNER B., 2007 Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. - Glob. Change Biol. 13: 1658-1671.
- BONOMI G., 1974 Benton profondo. Indagini sul lago di Garda. -Quaderni dell'Istituto di Ricerca sulle Acque. 18: 211-223.
- BROOKS S.J., BIRKS H.J.B., 2000 Chironomid-inferred late-glacial and early Holocene mean July air temperature from Kråkanes lake, Western Norway. - J. Paleolimnol. 23: 77-89.

- BRUNDIN L., 1966 Transantarctic relationships and their significance, as evidenced by Chironomid midges, with a monograph of the subfamilies Podonominae and Aphroreniinae and the austral Heptagyiae. - Kungliga Svenska Vetenskapsakadamiens Handlingar, series 4. 11: 1-472.
- CASPERS N., 1983 Chironomiden-Emergenz zweier Lunzer Bäche, 1972. - Arch. Hydrobiol. Suppl. 65: 484-549.
- CATALAN J., CURTIS C.J., KERNAN M., 2009 Remote European mountain lake ecosystems regionalisation and ecological status. -Freshwater Biol. 54: 2419-2432.
- CHAIB N., SAMRAOUI B,. MARZIALI L., ROSSARO B., 2011 -Chironomid taxocenosis in a South Mediterranean wadi, the Kebir-East (Algeria). - Studi Trentini di Scienze Naturali. 89: 29-34.
- ČIAMPOROVÁ-ZAT'OVIČOVÁ Z., HAMERLÍK L., ŠPORKA F., BITUŠÍK P., 2010 - Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: a basis for climate change assessment. - Hydrobiologia. 648: 19-34.
- CORTELEZZI A., PAGGI A.C., RODRIGUEZ M.A., RODRIGUEZ C., 2011 -Taxonomic and non-taxonomic responses to ecological changes in an urban lowland stream through the use of Chironomidae (Diptera) larvae. - Sci. Total Environ. 409: 1344-1350.
- CRANSTON P., HARDY N.B., MORSE G., 2012 A dated molecular phylogeny for the Chironomidae (Diptera). - Syst. Entomol. 37: 172-188.
- CRANSTON P.S., OLIVER D.R., 1987 Problems in Holarctic chironomid biogeography. - Entomol. Scand. 29: 51-56.
- DALLAS H.F., RIVERS-MOORE N.A., 2012 Critical thermal maxima of aquatic macroinvertebrates: towards identifying bioindicators of thermal alteration. - Hydrobiologia. 679: 61-76.
- DAVIES R.G., 1971 Computer programming in quantitative biology. -Academic Press, London: 504 pp.
- FERRARESE U., 1983 Chironomidi, 3 (Diptera: Chironomidae: Tanypodinae). Guide per il riconoscimento delle specie animali delle acque interne italiane. - Consiglio Nazionale delle Ricerche: no. 26. AQ/1/204.
- FERRARESE U., ROSSARO B. 1981 Chironomidi, 1 (Diptera, Chironomidae: Generalità, Diamesinae, Prodiamesinae). Guide per il riconoscimento delle specie animali delle acque interne italiane. - Consiglio Nazionale delle Ricerche: no. 12. AQ/1/129.
- FREE G., SOLIMINI A., ROSSARO B., MARZIALI L., GIACCHINI R., PARACCHINI B., *et al.*, 2009 - Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake

morphology, aquatic chemistry and sediment composition. -Hydrobiologia. 633: 123-136.

- HAMERLIK L., BRODERSEN K.P., 2010 Non-biting midges (Diptera: Chironomidae) from fountains of two European cities: micro-scale island biogeography. - Aquat. Insect. 32: 67-79.
- HAMERLIK L., JACOBSEN D., 2012 Chironomid (Diptera) distribution and diversity in Tibetan streams with different glacial influence. -Insect. Conserv. Diver. 5: 319-326.
- HAMERLIK L., JACOBSEN D., BRODERSEN K.P., 2011 Low species richness of non-biting midges (Diptera: Chironomidae) in Neotropical artificial urban water bodies. - Urban Ecosyst. 14: 457-468.
- HEIRI O., BROOKS S.J., BIRKS H.J B., LOTTER A.F., 2011 A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. - Quat. Sci. Rev. 30: 3445-3456.
- HERING D., MOOG O., SANDIN L., VERDONSCHOT P.F.M., 2004 -Overview and application of the AQEM assessment system. -Hydrobiologia. 516: 1-20.
- HESTER E.T., DOYLE M.W., 2011 Human impacts to river temperature and their effects on biological processes: a quantitative synthesis.
 J. Am. Water Resour. As. 47: 571-587.
- HOGG I.D., EADIE J.M., DE LAFONTAINE Y., 1998 Atmospheric change and the diversity of aquatic invertebrates: are we missing the boat?
 - Environ. Monit. Assess. 49: 291-301.
- HUGHES L., 2000 Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15: 56-61.
- JACOBSEN D., MILNER A.M., BROWN L.E., DANGLES O., 2012 -Biodiversity under threat in glacier-fed river systems. - Nat. Clim. Change. 2: 361-364.
- JACOBSEN D., SCHULTZ R., ENCALADA A., 1997 Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. - Freshwater Biol. 38: 247-261.
- KERNAN M., VENTURA M., BITUŠÍK P., BRANCELJ A., CLARKE G., VELLE G., et al., 2009 - Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. - Freshwater Biol. 54: 2470-2493.
- KHURSHID A., 2007 A note on finding peakedness in bivariate normal distribution using Mathematica. - Pak. J. Stat. Operat. Res. 3: 75-86.
- LANGTON P.H., 1991 A key to pupal exuviae of West Palaearctic Chironomidae. - Huntingdon, Coleraine: 386 pp.
- LANGTON P.H., 1995 The pupa and events leading to eclosion. In: ARMITAGE P., CRANSTON P.S., PINDER L.C.V. (eds.), The Chironomidae. The biology and ecology of non-biting midges. -Chapman & Hall, London, UK: 169-193.
- LAROCQUE I., HALL R.I., GRAHN E., 2001 Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). - J. Paleolimnol. 26: 307-322.
- LAROCQUE-TOBLER I., STEWART M.M., QUINLAN R., TRACHSEL M., KAMENIK C., GROSJEAN M., 2012 - A last millennium temperature reconstruction using chironomids preserved in sediments of anoxic Seebergsee (Switzerland): consensus at local, regional and Central European scales. - Quat. Sci. Rev. 41: 49-56.
- LENCIONI V., MAIOLINI B., MARZIALI L., LEK S., ROSSARO B., 2007 -Macroinvertebrate assemblages in glacial stream systems: artificial neural networks. - Ecol. Model. 203: 119-131.
- LENCIONI V., MARZIALI L., ROSSARO B., 2006 Assessment of the ecological status of lakes by macroinvertebrates: a case study. In: Atti del XVI Congresso della Società Italiana di Ecologia, Viterbo-Civitavecchia 9-22 Settembre 2006. Cambiamenti globali, diversità ecologica e sostenibilità. Available from: http://www.ecologia.it/congressi/XVI/articles/
- LENCIONI V., MARZIALI L., ROSSARO B., 2012 Chironomids as bioindicators of environmental quality in mountain springs. -Freshwater Sci. 31: 525-541.

- LINDEGAARD C., 1995 Classification of water bodies and pollution. In: ARMITAGE P., CRANSTON P.S., PINDER L.C.V. (eds.), The Chironomidae. The biology and ecology of non-biting midges. -Chapman & Hall, London, UK: 385-404.
- LINDEGAARD C., MORTENSEN E., 1988 Abundance, life history and production of Chironomidae (Diptera) in a Danish lowland stream. - Arch. Hydrobiol. Suppl. 81: 563-587.
- LOTTER A.F., HEIRI O., BROOKS S., VAN LEEUWEN J.F.N., EICHER U., AMMANN B., 2012 - Rapid summer temperature changes during termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland). - Quat. Sci. Rev. 36: 103-113.
- LUOTO T.P., 2012 Spatial uniformity in depth optima of midges: evidence from sedimentary archives of shallow Alpine and boreal lakes. - J. Limnol. 71: 228-232.
- MARZIALI L., ARMANINI D.G., CAZZOLA M., ERBA S., TOPPI E., BUFFAGNI A., et al., 2010a - Responses of Chironomid Larvae (Insecta, Diptera) to ecological quality in Mediterranean River Mesohabitats (South Italy). - River Res. Appl. 26: 1036-1051.
- MARZIALI L., CASALEGNO C., LENCIONI V., ROSSARO B., 2010b -Definition and Assignment of indicator weights to different Chironomid species. In: FERRINGTON L.C.JR. (ed.), Proceedings of the XV International Symposium on Chironomidae. -Chironomidae Research Group, University of Minnesota, St Paul, MN: 103-108.
- MEDEIROS A.S., QUINLAN R., 2011 The distribution of the Chironomidae (Insecta: Diptera) along multiple environmental gradients in lakes and ponds of the eastern Canadian Arctic. - Can. J. Fish. Aquat. Sci. 68: 1511-1527.
- MILNER A.M., PETTS G.E., 1994 Glacial rivers: physical habitat and ecology. Freshwater Biol. 32: 295-307.
- NOCENTINI A.M., 1963 Struttura e dinamica della fauna macrobentonica litorale e sublitorale del Lago Maggiore. - Mem. Ist. Ital. Idrobiol. 16: 189-274.
- NOCENTINI A.M., 1979 Variazioni temporali e spaziali della fauna macrobentonica litorale del Lago di Mergozzo. - Mem. Ist. Ital. Idrobiol. 37: 277-327.
- NOCENTINI A.M., 1985 Chironomidi, 4 (Diptera: Chironomidae: Chironominae, larve). Guide per il riconoscimento delle specie animali delle acque interne italiane. - Consiglio Nazionale delle Ricerche: no. 29. AO/1/233.
- NYMAN M., KORHOLA A., BROOKS S.J., 2005 The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Lapland, with special emphasis on shallow lakes. - Global Ecol. Biogeogr. 14: 137-153.
- RAE I.C., 1985 A multivariate study of resource partitioning in soft bottom lotic Chironomidae. - Hydrobiologia. 126: 275-285.
- RAUNIO J., PAAVOLA R., MUOTKA T., 2007 Effects of emergence phenology, taxa tolerances and taxonomic resolution on the use of the Chironomid pupal exuvial technique in river biomonitoring. -Freshwater Biol. 52: 165-176.
- REMPEL R.S., HARRISON A.D., 1987 Structural and functional composition of the community of Chironomidae (Diptera) in a Canadian Shield stream. - Can. J. Zool. 65: 2545-2554.
- ROHLF J., 1987 BIOM. A package of statistical programs to accompany the text biometry. - Exeter Publ., New York, NY: 238 pp.
- ROSSARO B., 1982 Chironomidi, 2 (Diptera Chironomidae: Orthocladiinae). Guide per il riconoscimento delle specie animali delle acque interne italiane. - Consiglio Nazionale delle Ricerche: no. 16. AQ/1/171.
- ROSSARO B., 1987 Chironomid emergence in the Poriver (Italy) near a nuclear power plant. - Entomol. Scand. Suppl. 29: 331-338.
- ROSSARO B., 1988 Mid-Po river zooplankton, a seven years study. -Hydrobiologia. 160: 97-105.
- ROSSARO B., 1991a Chironomids and water temperature. Aquat. Insect. 13: 87-98.

[page 88]

- ROSSARO B., 1991b Chironomids of stony bottom streams: a detrended correspondence analysis. - Arch. Hydrobiol. 122: 79-93.
- ROSSARO B., 1991c Factors that determine Chironomidae species distribution in freshwaters. Ital. J. Zool. 58: 281-286.
- ROSSARO B., 1992 Ordination methods and Chironomid species in stony bottom streams. Neth. J. Aquat. Ecol. 26: 447-456.
- ROSSARO B., 1993 Macroinvertebrate distribution in streams: a comparison of CA ordination with biotic indices. - Hydrobiologia. 263: 109-118.
- ROSSARO B., 1995 The distribution of Palaearctic Diamesinae. -Spixiana. 18: 177-186.
- ROSSARO B., BOGGERO A., LENCIONI V., MARZIALI L., SOLIMINI A., 2006a. A Benthic quality index for Italian lakes. - J. Limnol. 65: 41-51.
- ROSSARO B., BOGGERO A., LODS CROZET B., FREE G., LENCIONI V., MARZIALI L., 2011 - A comparison of different biotic indices based on benthic macro-invertebrates in Italian lakes. - J. Limnol. 70: 109-122.
- ROSSARO B., CARDOSO A.C., SOLIMINI A., FREE G., MARZIALI L., GIACCHINI P., 2007a - A biotic index using benthic macro-invertebrates for Italian lakes. - Ecol. Indic. 7: 412-429.
- ROSSARO B., LENCIONI V., BOGGERO A., MARZIALI L., 2006b -Chironomids from southern Alpine running waters: ecology, biogeography. - Hydrobiologia. 562: 231-246.
- ROSSARO B., LENCIONI V., MARZIALI L., SOLIMINI A., GIACCHINI R., PARENTI P., 2007b - The relation-ship between body size, pupal thoracic horn development and dissolved oxygen in Chironomini (Diptera: Chironomidae). - Fund. Appl. Limnol. 169: 331-339.
- SAUER J., DOMISCH S., NOWAK C., HAASE P., 2011 Low mountain ranges: summit traps for montane freshwater species under climate change. - Biodivers. Conserv. 20: 3133-3146.
- SÆTHER O.A., 1977 Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys. - B. Fish. Res. Board. Can. 197: 1-211.
- SÆTHER O.A., 1979 Chironomid communities as water quality indicators. - Holarctic Ecol. 2: 65-74.
- SÆTHER O.A., 2000 Phylogeny of the subfamilies of Chironomidae (Diptera). - Syst. Entomol. 25: 393-403.
- SCHMIDT-KLOIBER A., HERING D., 2012 The taxa and autecology database for freshwater organisms. Version 5.0. Availabe from: http://www.freshwaterecology.info/

SERRA-TOSIO B., 1973 - Ecologie et biogéographie des Diamesini

d'Europa (Diptera: Chironomi-dae). - Trav. Lab. Hydrobiol. Piscicult. Grenoble 63: 5-175.

- SHELDON A.L., 2012 Possible climate-induced shift of stoneflies in a southern Appalachian catchment. - Freshwater Sci. 3: 765-774.
- SOKAL R.R., ROHLF F.J., 1981 Biometry. Freeman & Co., San Francisco, CA: 959 pp.
- TARTARI G., BURASCHI E., COPETTI D., SALERNO F., MONGUZZI C., PAGNOTTA R., et al., 2006 - Characterization of the Italian laketypes. - Verh. Int. Ver. Theor. Angew. Limnol. 29: 1811-1816.
- TER BRAAK C.J.F., PRENTICE I.C., 1988 A theory of gradient analysis. - Adv. Ecol. Res. 18: 271-317.
- TIXIER G., WILSON K.P., WILLIAMS D.D., 2009 Exploration of the influence of global warming on the chironomid community in a manipulated shallow groundwater system. - Hydrobiologia. 624: 13-27.
- TOKESHI M., 1995 Species interactions and community structure. In: ARMITAGE P., CRANSTON P.S., PINDER L.C.V. (eds.), The Chironomidae. The biology and ecology of non-biting midges. -Chapman & Hall, London: 297-335.
- VAN DOORSALAEN W., VANOVERBEKE J., DUVIVIER C., ROUSSEAUX S., JANSEN M., JANSEN B., et al., 2009 - Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. - Glob. Change Biol. 15: 3046-3055.
- VANNOTE R.L., MINSHALL G.W., CUMMINS K.W., SEDELL J.R., CUSH-ING C.E., 1980 - The river continuum concept. - Can. J. Fish. Aquat. Sci. 37: 130-137.
- VODOPICH D.S., COWELL B.C., 1984 Interactions of factors governing the distribution of a predatory aquatic insect. - Ecology. 65: 39-52.
- WARD J.V., 1992 Aquatic insects ecology. Wiley & Sons, New York, NY: 456 pp.
- WARD J.V., STANFORD J.A., 1982 Thermal responses in the evolutionary ecology of aquatic insects. - Annu. Rev. Entomol. 27: 97-117.
- WIEDERHOLM T., 1980 Use of benthos in lake monitoring. J. Water Pollut. Control Federat. 52: 537-547.
- WIEDERHOLM T., 1983 Chironomidae of the Holarctic region. Keys and diagnoses. Part I: larvae. - Entomol. Scand. Suppl. 19: 1-457.
- WIEDERHOLM T., 1986 Chironomidae of the Holarctic region. Keys and diagnoses. Part II: pupae. - Entomol. Scand. Suppl. 28: 1-482.
- ZERGUINE K., SAMRAOUI B., ROSSARO B., 2009 A survey of Chironomids from seasonal ponds of Numidia, northeastern Algeria. - Boll. Zool. Agr. Bachicolt. 41: 167-174.